Pipeline Neural Data-to-text with Large Language Models

Chinonso Cynthia Osujim', Brian Timoney‘, Thiago Castro Ferreirao, Brian Davis’

&

Adapt Research Centre, Ireland”
Dublin City University, Ireland*
aiXplain, USA®
chinonso.osuji@adaptcentre.ie brian.timoney3@mail.dcu.ie
thiago@aixplain.com brian.davis@adaptcentre.ie

Abstract

Previous studies have highlighted the advan-
tages of pipeline neural architectures over end-
to-end models, particularly in reducing text
hallucination. In this study, we extend prior
research by integrating pretrained language
models (PLMs) into a pipeline framework, us-
ing both fine-tuning and prompting methods.
Our findings show that fine-tuned PLMs con-
sistently generate high quality text, especially
within end-to-end architectures and at interme-
diate stages of the pipeline across various do-
mains. These models also outperform prompt-
based ones on automatic evaluation metrics
but lag in human evaluations. Compared to
the standard five-stage pipeline architecture, a
streamlined three-stage pipeline, which only in-
clude ordering, structuring, and surface realiza-
tion, achieves superior performance in fluency
and semantic adequacy according to the human
evaluation.

1 Introduction

Advancements in data-to-text natural language
generation (NLG) have evolved from seq2seq
models (Hochreiter and Schmidhuber, 1997; Cho
et al., 2014) and vanilla encoder-decoder models
(Vaswani et al., 2017) towards pretrained language
models (PLMs) (Raffel et al., 2020; Lewis et al.,
2019; Radford et al., 2019) . Initially, PLMs were
fine-tuned on specific datasets to perform text gen-
eration tasks. Recently, these models are prompted
with textual instructions, with or without examples,
to guide text generation (zero-shot and few-shot
learning). Although PLMs excel in several natural
language processing tasks, they face challenges in
generating text from complex structured data due
to the intricate demands of accuracy and structure
(Kasner and Dusek, 2024). Despite these chal-
lenges, PLMs demonstrate superior performance in
generating high-quality text under fine-tuned, few-
shot, or zero-shot learning scenarios, leveraging
extensive pre-training on general knowledge.

Bananaman broadcastedBy BBC
Bananaman creator John_Geering
Bananaman firstAired "1983-10-03"
Bananaman lastAired "1986-04-15"
Bananaman starring Tim_Brooke-Taylor

\

Bananaman was shown on the BBC, first airing on 3 October
1983 and the final broadcast being 15 April 1986. It was
created by John Geering and starred Tim Brooke Taylor.

Figure 1: A sample of the input triples and the expected
output.

In a previous study, Ferreira et al. (2019) com-
pared traditional 5-stage pipeline approaches to
end-to-end neural methods, utilizing systems such
as GRU (Cho et al., 2014) and the BERT trans-
former (Vaswani et al., 2017). The pipeline ap-
proach, despite lacking pretraining or fine-tuning,
outperformed the end-to-end method in automatic
and human evaluations, especially in domains not
seen in the training phase.

Building on Ferreira et al. (2019), this study in-
tegrates PLMs and large language models (LLMs)
into the pipeline architecture to compare their ef-
fectiveness against the baseline. We assess the
generalization capabilities of pipeline neural archi-
tectures and end-to-end systems under fine-tuned
and few-shot settings, also proposing a simplified 3-
stage pipeline architecture. Automatic evaluations
and human assessments of the results highlight a
preference for end2end architecture and the poten-
tial for optimized pipeline designs. The code and
results are publicly available'.

2 Related Work

End-to-End (E2E) architectures, while simplifying
generation processes, face limitations due to the
lack of intermediate steps, which can hinder control
over semantic fidelity (Kasner and Dusek, 2020;
Ferreira et al., 2019). Researchers have increas-
ingly adopted pipeline architectures for data-to-text
tasks, leveraging diverse deep neural network mod-

]https: //github.com/NonsoCynthia/PipeD2T

320

Proceedings of the 17th International Natural Language Generation Conference, pages 320-329
September 23-27, 2024. ©2024 Association for Computational Linguistics

https://github.com/NonsoCynthia/PipeD2T

Generative Model (LLMs)

Content o
Structuring H Lexicalization]»
J)

How to say it?

‘Generative Model (LLMs)

5 Stage Pipeline Neural Architecture

]
)
)
)
)
)
Referring Expression | ! Gene
Generation h Output
E— 1
| -
)
)
)
)
I

A
w 3 Stage Pipeline Neural Architecture

| Inputsnaﬂ I |L cu-nms:"“IEI } I Output

End-to-End Architecture

Figure 2: Experimental Setup.

els (Moryossef et al., 2019; Ferreira et al., 2019;
Kasner and Dusek, 2022).

The data-to-text generation pipeline, originally
delineated by (Reiter and Dale, 1997) and refined
by (Ferreira et al., 2019) with deep neural models,
involves several stages: content selection/ordering,
content aggregation/structuring, lexicalization, Ref-
erence Expression Generation (REG), and surface
realization (SR), details of which is explained in
the Appendix A and broader in the study. This com-
prehensive approach integrates neural techniques
to convert structured data into readable text, with
linguistic rules for the surface realizer. Unlike this
architecture, some studies use simplified pipeline
neural architectures with fewer stages, focusing
on content selection, structuring, and textual re-
alization. For example, Moryossef et al. (2019);
Zhao et al. (2020) divides text generation into plan-
ning and realization stages, using ordered trees or
relational graph convolutional networks (R-GCN)
(Zhao et al., 2020) to guide the neural generation
system, providing explicit control over the output.

Recent research has utilized PLMs like TS (Raf-
fel et al., 2020) and BART (Lewis et al., 2019)
for both pipeline and end-to-end data-to-text gen-
eration, achieving more fluent text than human
references (Ribeiro et al., 2020). This is evident
from the top competitor (Guo et al., 2020) in the
WebNLG’20 (Castro Ferreira et al., 2020) compe-
tition. Studies have also shown that these PLMs
when fine-tuned outperform generative LLMs like
GPT-3.5 (Ye et al., 2023) in prompt-based scenar-
ios, reducing hallucinations and over-generation
issues (Yuan and Firber, 2023; Axelsson and
Skantze, 2023), which are pivotal areas of investi-
gation in our current study. By integrating PLMs
into both traditional and simplified pipeline archi-
tectures, our research seeks to quantify their impact
on the fidelity and fluency of generated text, partic-
ularly under fine-tuned and few-shot conditions.

3 Methodology

3.1 Data

We utilize the enhanced WebNLG’17 English
dataset (Castro Ferreira et al., 2018), a derivative of
the WebNLG corpus (Gardent et al., 2017), which
includes 25,298 texts describing 9,674 sets of up
to 7 RDF triples across 15 domains. Five of these
domains are exclusive to the test set, making them
unseen during training, while the remaining 10 do-
mains are seen. These domain distinctions pose
challenges for model generalization and domain
adaptation. For the intermediate stages of our
pipeline, we utilized a specially curated dataset
that includes specific inputs and expected outputs
for each stage. However, the outputs from the Sur-
face Realization (SR) stage are evaluated against
the gold standard provided by the WebNLG’17 test
set.

3.2 Models

To evaluate the performance and suitability of end-
to-end and pipeline architectures, we employed
fine-tuned models such as GPT-2-large (Radford
etal., 2019), BART-large (Lewis et al., 2019), Flan-
T5-large (Chung et al., 2022), as well as instruction-
based models like GPT-3.5 and GPT-4 Turbo (Ye
et al., 2023; Achiam et al., 2023) OpenAl models,
Cohere Command Text v14 (Ustiin et al., 2024),
and Mistral-7B-Instruct-v0.1 (Jiang et al., 2023).
The Cohere and OpenAl models were accessed
through the aiXplain platform (Sharma et al., 2024).
We set learning rates to 3e-5 for BART, 5e-5 for
GPT-2, and 1e-5 for the Flan-T5 model.

3.3 Pipeline Architecture

We implemented two experimental setups for the
pipeline architecture. The first setup is a 5-stage
neural pipeline architecture consisting of order-
ing, structuring, lexicalization, REG, and surface

321

| Ordering | Structuring | REG

| Lexicalization

Domains | Al Seen Unseen| All Seen Unseen| All Seen

Metrics

Unseen All Seen

Unseen
Bleu Meteor Comet| Bleu Meteor Comet| Blen Meteor Comet

Baseline | 0.34 0.56 0.09 | 036 0.59 0.12 | 039 0.70
Flan-t5 0.57 0.65 048 | 0.53 0.67 039 | 058 0.72

0.07 |38.12 055 075 |48.14 0.6 0.76 [24.15 049 071
045 |45.37 0.60 0.76

4572 0.62 0.77 (4433 0.58 0.75

bart 049 060 036 | 058 061 054 | 056 066 046 1987 039 064 |20.16 040 0.64 [1945 039 0.63
gpt2 037 057 015 | 040 063 016 | 043 069 017 |40.37 057 075 |43.87 059 0.6 |3604 054 073
gptd 037 033 043 | 046 048 043 3828 053 074 [37.92 053 074 |3870 053 074

gpt-3.5 039 0.32 047 | 048 0.50 047 | 048 048
Mistral7b| 0.28 0.24 033 | 028 0.29 0.28 | 0.00 0.00
Cohere 024 0.23 026 | 0.16 0.18 0.14 | 0.30 0.30

047 |29.58 046 0.69 [3123 047 070 [27.63 045 0.68
0.00 | 1843 036 055 [14.16 033 051 |23.21 039 059
030 | 356 014 033 | 426 0.13 033 | 270 0.14 033

| End2end

\ SR

Domains All Seen Unseen

All Seen Unseen

Metrics | Bleu Meteor Comet | Blen Meteor Comet | Bleu Meteor Comet | Bleu Meteor Comet| Bleu Meteor Comet| Bleu Meteor Comet

Baseline |31.88 0.45 061 [50.79 039 076 | 588 0.09
Flan-t5 |51.55 032 081 [53.05 033 081 (4971 030

0.45 |51.68 032 0.67 |56.35 041 0.77 |38.39 0.21 0.56
0.80 |40.58 0.28 0.69
0.76 |18.69 026 051 [2343 027 054 |12.61 024 049
0.70 |21.37 021 053 |31.85 026 061 | 7.84 0.15 044

46.61 030 071 [33.13 026 0.67

bart 4141 031 0.79 49.85 0.32 0.81 [31.25 0.30
gpt2 38.03 0.31 0.75 49.19 0.32 0.80 2296 0.29
gptd 4143 032 0.80 |40.50 0.32 0.80 |42.55 0.32

gpt-3.5 (3995 032 080 [39.16 032 0.80 [4090 031
Mistral7b|3433 032 078 [3361 033 078 |3507 031
Cohere [4040 030 079 [39.00 031 079 |42.08 030

0.80 |10.73 023 050 [11.85 023 050 | 930 022 049
0.80 |21.69 030 0.60 [21.68 031 0.59 |21.69 029 0.62
078 | 759 039 056 | 750 037 057 | 772 040 055
0.79 |21.63 028 0.64 |21.29 028 0.64 |22.04 027 0.65

Table 1: Results from the individual stages of the 5-stage pipeline and the end-to-end data-to-text systems. Bold and underlined

results denote the best and the second best ones respectively.

All
Bleu Meteor Comet

Unseen
Bleu Meteor Comet

Seen
Bleu Meteor Comet|

Domains
Metrics

40.17 031 0.79
3937 032 0.79
2809 029 071

39.17 032 0.80
3846 033 0.80
2952 030 0.74

4139 030 0.8
40.25 031 0.79
26.15 027 069

gptd
gpt-3.5
mistral7b

Table 2: Surface realization results of the 3-stage pipeline
architecture (Struct2SR).

realization. We fine-tuned the PLMs on task-
specific gold datasets and used five-shot examples
to prompt the instruction-based LLM:s for each task.
In the ordering and structuring stages, predicates
served as pointers and were mapped to their re-
spective triples after generation. The output from
the lexicalization stage was mapped to the corre-
sponding entities from the structuring stage. The
REG stage results were then passed to the surface
realizer, which uses hand-crafted rules to produce
the final output. The results for the intermediate
stages are sourced from a gold standard test set,
ensuring both input and expected output accuracy.
In our pipeline approach, each stage methodically
processes its input and passes the resulting output
to the subsequent stage, culminating in the surface
realization (SR) stage. However, comprehensive
evaluations are concentrated at this final SR stage,
providing a measure of the overall performance
based on the integrated outputs from all preceding
stages.

Due to the high performance of state-of-the-art
neural models, some proposed pipeline approaches
decrease the number of stages, simplifying the gen-
eration process (Guo et al., 2020). In this direction,
our second setup is a streamlined 3-stage pipeline

architecture consisting of ordering, structuring, and
surface realization. Here, the outputs from the
structuring stage in the 5-stage setup are directly
fed into the surface realization models, such as
GPT-3.5, GPT-4 Turbo, and Mistral7b. This con-
figuration uses five-shot examples to facilitate the
generation of the final text, focusing on optimizing
the pipeline’s efficiency and minimizing error ac-
cumulation through reduced complexity. Detailed
representations of these setups and examples of
the prompts used are available in Appendix A for
further reference.

3.4 End2End Surface Realizer

In this approach, we fine-tuned Flan-T5, BART,
and GPT-2 on our end-to-end dataset. For GPT-4
Turbo, GPT-3.5, Cohere, and Mistral7b, we used
prompt engineering with tailored instructions and
5-shot examples of end-to-end data to achieve the
desired data-to-text generation.

3.5 Maetrics

The performance of the models across various
pipeline stages, including discourse ordering, struc-
turing, and referring expression generation, was
assessed using accuracy. This evaluation method
compared the models’ predictions against a sin-
gle gold-standard reference due to the multiple
verbalizations of triples in the input stages. For
the remaining pipeline stages—Ilexicalization and
surface realization—as well as the outputs of the
end-to-end experiment, evaluation was conducted
using Meteor (Banerjee and Lavie, 2005) and Bleu

322

(Papineni et al., 2002). Additionally, we included
the Comet neural metric (Rei et al., 2020), known
for its strong correlation with human judgments.

4 Results

Table 1 presents the performance outcomes for
each stage of the 5-stage pipeline, as well as for
the end-to-end architecture. The baseline results
are based on the transformer model from Ferreira
et al. (2019), evaluated across both the individ-
ual pipeline stages and the end-to-end architecture.
To ensure clarity, we initially focus on compar-
ing the performance of the fine-tuned models Flan-
T5, GPT2, and BART across these stages. Subse-
quently, we compare the performance of prompt-
based models GPT-3.5, GPT4-turbo, Cohere and
Mistral7b. Finally, we draw a general conclusion
regarding the overall performance of the models
across the pipeline stages.

Fine-tuned models Across all domains, Flan-T5
surpasses both BART and GPT-2, except for the
structuring stage where BART excels. In the seen
category, Flan-T5 maintains its superiority across
all pipeline stages compared to GPT-2 and BART.
Notably, GPT-2 closely competes with BART, par-
ticularly in the ordering stage where BART outper-
forms. In the unseen domain (referenced in Table
1), Flan-T5 and BART regularly outperform GPT-2
across various stages, including ordering, structur-
ing, and referring expression generation (REG).
However, in the lexicalization stage, GPT-2 out-
shines BART in this domain.

In the surface realization stage of the pipeline
architecture, the baseline model seemed to perform
best followed by the Flan-T5 model. All other
model seemed to perform poorly. But in general
the fine-tuned models performed best.

Prompt-based LLMs Due to the substantial
costs linked to proprietary models like GPT-4
Turbo, we limited their application to specific
stages of the pipeline and for end-to-end data-to-
text generation. To control expenses, we refrained
from generating referring expressions for evalua-
tion from the gold standard inputs due to the exten-
sive dataset involved. Nonetheless, we did produce
results for the Referring Expression Generation
(REG) stage within the pipeline, where the inputs
were directly sourced from the mapped lexicaliza-
tion outputs of the pipeline itself. The results of
these models in Table 1 indicate that the perfor-

mance of the Cohere model across several pipeline
stages was notably inferior, followed by the re-
sults of the Mistral7b model. However, GPT-3.5
was seen to perform better than GPT4-turbo in the
ordering and structuring stage but an exception
is observed in the seen category of the ordering
stage and in all categories of the lexicalization stage
where it trailed behind GPT4-turbo.

Fine-tuned vs. Prompt-based models Overall,
in comparing fine-tuned and instruction-based mod-
els in Table 1, we noticed better performance in
the fine-tuned models compared to the prompt-
based model. Furthermore, it’s worth highlighting
that GPT-3.5 exhibited exceptional performance in
the REG unseen domain category, a noteworthy
achievement for models of its kind.

End2End Architecture The Flan-T5 model out-
performed other models, including the baseline
in the end-to-end architecture, achieving the high-
est scores in both Bleu and Comet for the all and
unseen domains. However, the baseline model
delivered superior results in the Meteor category.
Among the fine-tuned models, GPT-2 ranked the
lowest, followed by the BART model, with Flan-T5
leading. While comparing prompt-based models in
the collective domains, the GPT-4 model excelled
in Bleu, Meteor, and Comet metrics, followed by
the Cohere model, GPT-3.5, and finally Mistral7B.

Pipeline vs. End2End We evaluated the results
of the surface realization stage in both the 5-stage
and 3-stage pipeline architectures, as well as the
End-to-End architecture as shown in Table 1 and 2.
The End-to-End method uniformly outperformed
the pipeline setups, except in the baseline, where
it emerged as the overall best in both the all and
seen domains across the models and architectures.
However, the performance gap between the End-
to-End and the 3-stage pipeline was smaller than
the gap between the End-to-End and the 5-stage
pipeline when using GPT-3.5 and GPT-4 as bench-
marks. This suggests that while the End-to-End ap-
proach generally yields superior results, the more
pronounced performance decline in the 5-stage
pipeline may be due to error cascading, indicat-
ing that reducing the number of pipeline stages
could lead to better text generation.

Human Evaluation Two of our authors served
as human evaluators for four top models: Flan-T5
end-to-end, GPT-4 end-to-end, Flan-T5 surface re-

323

Domains { Fluency Semantic Adequacy { Omission Addition { Incorrect Number Incorrect Entity Average
flan-t5-sr 6.30 6.19¢ 0.48 0.73 0.91 0.62 0.68
flan-t5-end2end | 6.68° 6.86° 0.86 0.98 1.00 0.83 0.92
gptd-struct2SR | 6.83“ 6.8545 0.93 0.98 0.99 0.95 0.96
gptd-end2end 6.824 6.944F 0.97 0.98 1.00 0.96 0.98

Table 3: Results of the human evaluation and semantic Accuracy evaluation using GPT-40. Ranking was determined by

pair-wise Mann-Whitney statistical tests with p < 0.05.

alization (flan-t5-sr) stage result, and the GPT-4
Struct2SR result, using 100 balanced samples. The
evaluators were not informed about which mod-
els generated the samples to ensure an impartial
assessment. For proper comparison, they rated flu-
ency and semantic adequacy on a 1-7 Likert scale
just as in Ferreira et al. (2019). Semantic errors
such as omissions, additions, and incorrect num-
bers and entities were identified using GPT-40° on
120 samples each. Results are presented in Table 3.

GPT-4 Struct2SR achieved the highest fluency
rating, while GPT-4 end-to-end scored highest in
semantic adequacy. The Flan-T5-SR model had
the most semantic errors and the lowest semantic
accuracy, while GPT-4 end-to-end had the lowest
erTors.

The Mann-Whitney test (Mann and Whitney,
1947) showed significant differences in fluency and
semantics between most model pairs, except be-
tween some GPT-4’s and Flan-T5 end2end compar-
isons. Overall, GPT-4 models performed better or
comparably to the Flan-T5 end-to-end model, with
the Flan-T5-SR model the least performing.

5 Conclusion

This study demonstrates that PLMs tend to out-
perform the baseline, particularly in unseen do-
mains. The baseline in this case is a vanilla trans-
former model that was trained from scratch on
the dataset. It also corroborates existing research
which shows that fine-tuned models generally out-
perform prompt-based models in zero-shot scenar-
ios and exhibit comparable trends in few-shot learn-
ing (Yuan and Firber, 2023; Axelsson and Skantze,
2023). However, prompt-based models exhibited
fewer errors in numbers and entities, as well as
fewer additions and omissions compared to the
fine-tuned models. This confirms previous research
on fine-tuned models in pipeline architecture gen-
erating imaginary numbers (Cunha et al., 2024).
Moreover, the performance of prompt-based mod-
els does not decrease in unseen domains, as shown

2https://platform.openai.com/docs/models/
gpt-40

in previous studies and for fine-tuned models.

In the comparison between pipeline and end-to-
end approaches, our study shows that end-to-end ar-
chitecture yielded the best results in both automatic
and human evaluations. In the comparison between
pipeline approaches, our analysis indicates that a
pipeline architecture with fewer stages produces
better outcomes than a full-stage pipeline.

In a combination between model designs, we
speculate that fine-tuned models under a 3-stage ar-
chitecture could outperform prompt-based models.
Additionally, using fine-tuned models for ordering
and structuring, and a prompt-based model for sur-
face realization (i.e., model hybridization) could
yield better results. This is intended to be explored
as future work.

Limitations

Prompt engineering is inherently subjective, and
the prompts used in this experiment may not be the
optimal choices. Additionally, models like GPT-
3.5 and GPT-4 are not open source and can produce
varying responses to the same prompt, which af-
fects the reproducibility of the evaluation scores.

Ethic Statement

Two members of our research group conducted the
evaluations, so ethical approval for human subjects
was not required. The publicly accessible data
used in this research contains no sensitive informa-
tion, ensuring compliance with the EU’s GDPR.
Additionally, since large language models (LLMs)
can produce factually incorrect information and we
lack access to their training data, we cannot con-
trol inherent biases or guarantee the accuracy and
impartiality of the generated text.

Acknowledgements

This work was conducted with the financial sup-
port of the Science Foundation Ireland Centre for
Research Training in Artificial Intelligence under
Grant No. 18/CRT/6223. We would also like to
extend our gratitude to aiXplain for providing free
credits that supported part of this study.

324

https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4o

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Agnes Axelsson and Gabriel Skantze. 2023. Using
large language models for zero-shot natural language
generation from knowledge graphs. arXiv preprint
arXiv:2307.07312.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved cor-
relation with human judgments. In Proceedings of
the acl workshop on intrinsic and extrinsic evaluation
measures for machine translation and/or summariza-
tion, pages 65-72.

Thiago Castro Ferreira, Claire Gardent, Nikolai Ilinykh,
Chris van der Lee, Simon Mille, Diego Moussallem,
and Anastasia Shimorina. 2020. The 2020 bilingual,
bi-directional WebNLG+ shared task: Overview and
evaluation results (WebNLG+ 2020). In Proceed-
ings of the 3rd International Workshop on Natu-
ral Language Generation from the Semantic Web
(WebNLG+), pages 55-76, Dublin, Ireland (Virtual).
Association for Computational Linguistics.

Thiago Castro Ferreira, Diego Moussallem, Emiel Krah-
mer, and Sander Wubben. 2018. Enriching the
WebNLG corpus. In Proceedings of the 11th Interna-
tional Conference on Natural Language Generation,
pages 171-176, Tilburg University, The Netherlands.
Association for Computational Linguistics.

Kyunghyun Cho, Bart van Merriénboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder—decoder ap-
proaches. In Proceedings of SSST-8, Eighth Work-
shop on Syntax, Semantics and Structure in Statistical
Translation, pages 103—111, Doha, Qatar. Associa-
tion for Computational Linguistics.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
Yanping Huang, Andrew Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language mod-
els.

Rossana Cunha, Osuji Chinonso, Jodo Campos, Brian
Timoney, Brian Davis, Fabio Cozman, Adriana
Pagano, and Thiago Castro Ferreira. 2024. Imaginary
numbers! evaluating numerical referring expressions
by neural end-to-end surface realization systems. In
Proceedings of the Fifth Workshop on Insights from
Negative Results in NLP, pages 73-81.

Thiago Castro Ferreira, Chris van der Lee, Emiel van
Miltenburg, and Emiel Krahmer. 2019. Neural data-
to-text generation: A comparison between pipeline
and end-to-end architectures. EMNLP-IJCNLP 2019
- 2019 Conference on Empirical Methods in Natu-
ral Language Processing and 9th International Joint
Conference on Natural Language Processing, Pro-

ceedings of the Conference, pages 552-562.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. The WebNLG
challenge: Generating text from RDF data. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation, pages 124—133, San-
tiago de Compostela, Spain. Association for Compu-
tational Linguistics.

Qipeng Guo, Zhijing Jin, Ning Dai, Xipeng Qiu, Xi-
angyang Xue, David Wipf, and Zheng Zhang. 2020.
P> A plan-and-pretrain approach for knowledge
graph-to-text generation. In Proceedings of the 3rd
International Workshop on Natural Language Gen-
eration from the Semantic Web (WebNLG+), pages
100-106, Dublin, Ireland (Virtual). Association for
Computational Linguistics.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735-
1780.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b.

Zdenék Kasner and Ondfej Dusek. 2020. Data-to-text
generation with iterative text editing. In Proceed-
ings of the 13th International Conference on Natural
Language Generation, pages 60—67, Dublin, Ireland.
Association for Computational Linguistics.

Zdenék Kasner and Ondrej Dusek. 2022. Neural
pipeline for zero-shot data-to-text generation. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 3914-3932, Dublin, Ireland. As-
sociation for Computational Linguistics.

Zdenék Kasner and Ondfej Dusek. 2024. Beyond
reference-based metrics: Analyzing behaviors of
open llms on data-to-text generation. arXiv preprint
arXiv:2401.10186.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2019.
BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. CoRR, abs/1910.13461.

325

https://aclanthology.org/2020.webnlg-1.7
https://aclanthology.org/2020.webnlg-1.7
https://aclanthology.org/2020.webnlg-1.7
https://doi.org/10.18653/v1/W18-6521
https://doi.org/10.18653/v1/W18-6521
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.18653/v1/d19-1052
https://doi.org/10.18653/v1/d19-1052
https://doi.org/10.18653/v1/d19-1052
https://doi.org/10.18653/v1/W17-3518
https://doi.org/10.18653/v1/W17-3518
https://aclanthology.org/2020.webnlg-1.10
https://aclanthology.org/2020.webnlg-1.10
http://arxiv.org/abs/2310.06825
https://aclanthology.org/2020.inlg-1.9
https://aclanthology.org/2020.inlg-1.9
https://doi.org/10.18653/v1/2022.acl-long.271
https://doi.org/10.18653/v1/2022.acl-long.271
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461

Henry B Mann and Donald R Whitney. 1947. On a test
of whether one of two random variables is stochasti-
cally larger than the other. The annals of mathemati-
cal statistics, pages 50-60.

Amit Moryossef, Yoav Goldberg, and Ido Dagan. 2019.
Step-by-step: Separating planning from realization
in neural data-to-text generation. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2267-2277, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311-318.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,

21(140):1-67.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. Comet: A neural framework for mt
evaluation. arXiv preprint arXiv:2009.09025.

Ehud Reiter and Robert Dale. 1997. Building applied
natural language generation systems.

Leonardo FR Ribeiro, Martin Schmitt, Hinrich Schiitze,
and Iryna Gurevych. 2020. Investigating pretrained
language models for graph-to-text generation. arXiv
preprint arXiv:2007.08426.

Shreyas Sharma, Lucas Pavanelli, Thiago Castro Fer-
reira, Mohamed Al-Badrashiny, and Hassan Sawaf.
2024. aixplain sdk: A high-level and standardized
toolkit for ai assets. In Proceedings of the 17th Inter-
national Natural Language Generation Conference
(INLG), Tokyo, Japan. To appear.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai Shao,
Shichun Liu, Yuhan Cui, Zeyang Zhou, Chao Gong,
Yang Shen, et al. 2023. A comprehensive capability
analysis of gpt-3 and gpt-3.5 series models. arXiv
preprint arXiv:2303.10420.

Shuzhou Yuan and Michael Firber. 2023. Evaluating
generative models for graph-to-text generation. In
Proceedings of the 14th International Conference on
Recent Advances in Natural Language Processing,

pages 1256—-1264.

Chao Zhao, Marilyn Walker, and Snigdha Chaturvedi.
2020. Bridging the structural gap between encoding
and decoding for data-to-text generation. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 2481-2491, On-
line. Association for Computational Linguistics.

Ahmet Ustiin, Viraat Aryabumi, Zheng-Xin Yong, Wei-
Yin Ko, Daniel D’souza, Gbemileke Onilude, Neel
Bhandari, Shivalika Singh, Hui-Lee Ooi, Amr Kayid,
Freddie Vargus, Phil Blunsom, Shayne Longpre,
Niklas Muennighoff, Marzieh Fadaee, Julia Kreutzer,
and Sara Hooker. 2024. Aya model: An instruction
finetuned open-access multilingual language model.

A Appendix

A.1 Pipeline Neural Architecture Modules

Ordering The ordering stage organizes informa-
tion derived from randomly generated triples in the
dataset. Drawing from methods described in pre-
vious study, the linearized triples are processed
through the model to generate sequences using
predicates. This ensures a logical sequence of in-
formation, with predicates crucially arranging the
triples. The resulting ordered predicates are then
re-associated with their corresponding objects and
subjects, ensuring a seamless information flow. An
example of this process is illustrated in Figure 3,
where input triples (shown in Figure 1) are inputted
into the neural model to determine the ordering
based on predicates. These ordered triples are then
used by the mapping modules to prepare inputs for
the next pipeline stage.

Structuring In the structuring stage, the text is
organized into paragraphs that may consist of sin-
gle or multiple sentences, each carrying sequential
information. This stage crafts sentence realization
from the content of the ordered triples, with predi-
cates guiding the structuring process. The outputs
are mapped to their respective subjects and objects
to enhance text coherence and readability, as illus-
trated in Figure 3.

Lexicalization The provided text, as shown in
Figure 3, represents the output of this process, fea-
turing structured information denoted by placehold-
ers like ENTITY-1, ENTITY-2, etc., representing
entities such as proper nouns, dates, places, and
numbers. Each line describes an action or attribute
associated with these entities, including details like
the determiner (DT) and verb phrase (VP) such as
the aspect, tense, voice, person, and number. The
mapping process then reverts these entity represen-

326

https://doi.org/10.18653/v1/N19-1236
https://doi.org/10.18653/v1/N19-1236
https://doi.org/10.1017/S1351324997001502
https://doi.org/10.1017/S1351324997001502
https://doi.org/10.18653/v1/2020.acl-main.224
https://doi.org/10.18653/v1/2020.acl-main.224
http://arxiv.org/abs/2402.07827
http://arxiv.org/abs/2402.07827

tations to their original forms for further process-
ing.

Referring Expression Generation REG ensures
consistent and clear references to entities within the
text by using appropriate nouns and pronouns like
“country”, “he”, “she”, “her”, and “it” instead of re-
peatedly mentioning proper nouns. This technique
enhances readability and coherence. The REG out-
put in Figure 3 illustrates this process, contributing
to a smoother narrative flow.

Surface Realization The surface realization
stage is the culmination of the pipeline, where the
ordered, structured, and lexically enhanced text,
along with suitable referring expressions, is final-
ized. Displayed in Figure 3, this stage applies hand-
crafted rules to adjust verb phrases and refine the
text, ensuring grammatical accuracy, coherence,
and stylistic integrity. This final step effectively
transforms structured data representations into pol-
ished, comprehensible natural language text, ready
for presentation.

A.2 Data Processing

Preprocessing: To enhance clarity and prevent
misinterpretations in the fine-tuned models, we
substituted the ‘<’ and ‘>’ tags with ‘[’ and ‘]’,
respectively. This change was made after observ-
ing that the original tags often led the models to
generate hallucinated content.

Post processing: We implemented a thorough
cleaning process using Python’s regular expres-
sion package, applying specific patterns to filter
out over-generations in our results.

327

Input Triples:
[TRIPLE] Bananaman broadcastedBy BBC [/TRIPLE] [TRIPLE] Bananaman creator John_Geering [/TRIPLE] [TRIPLE] Bananaman firstAired "1983-10-03" [/TRIPLE]
[TRIPLE] Bananaman lastAired "1986-04-15" [/TRIPLE] [TRIPLE] Bananaman starring Tim_Brooke-Taylor [/TRIPLE]

Ordering Output:
broadcastedBy firstAired lastAired creator starring

Input Triples after mapping:
[TRIPLE] Bananaman broadcastedBy BBC [/TRIPLE] [TRIPLE] Bananaman firstAired "1983-10-03" [/TRIPLE] [TRIPLE] Bananaman lastAired "1986-04-15" [/TRIPLE]
[TRIPLE] Bananaman creator John_Geering [/TRIPLE] [TRIPLE] Bananaman starring Tim_Brooke-Taylor [/TRIPLE]

Structuring Output:
[SNT] broadcastedBy firstAired lastAired [/SNT] [SNT] creator starring [/SNT]

Input Triples after mapping:
[SNT] [TRIPLE] Bananaman broadcastedBy BBC [/TRIPLE] [TRIPLE] Bananaman firstAired "1983-10-03" [/TRIPLE] [TRIPLE] Bananaman lastAired "1986-04-15"
[/TRIPLE] [/SNT] [SNT] [TRIPLE] Bananaman creator John_Geering [/TRIPLE] [TRIPLE] Bananaman starring Tim_Brooke-Taylor [/TRIPLE] [/SNT]

Lexicalization Output:

ENTITY-1 VP[aspect=simple, tense=past, voice=passive, person=null, number=singular] show on ENTITY-2, first airing on ENTITY-3 and DT[form=defined] the final
broadcast VP[aspect=progressive, tense=present, voice=active, person=null, number=null] be ENTITY-4. ENTITY-1 VP[aspect=simple, tense=past, voice=passive,
person=null, number=singular] create by ENTITY-5 and VP[aspect=simple, tense=past, voice=active, person=null, number=null] star ENTITY-6.

Output after mapping:

Bananaman VP[aspect=simple, tense=past, voice=passive, person=null, number=singular] show on BBC, first airing on "1983-10-03" and DT[form=defined] the final
broadcast VP[aspect=progressive, tense=present, voice=active, person=null, number=null] be "1986-04-15". Bananaman VP[aspect=simple, tense=past, voice=passive,
person=null, number=singular] create by John_Geering and VP[aspect=simple, tense=past, voice=active, person=null, number=null] star Tim_Brooke-Taylor.

REG Output:
Bananaman VP[aspect=simple, tense=past, voice=passive, person=null, number=singular] show on the BBC, first airing on October 3 1983 and DT[form=: deflned] the
final broadcast VP[aspect=progressive, tense=present, voice=active, person=null, number=null] be April 15, 1986. It VP[aspect=simple, tense=past, v =passive,

person=null, number=singular] create by John Geering and VP[aspect=simple, tense=past, voice=active, person=null, number=null] star Tim Brooke Taylor.

Surface Realizer Output:
Bananaman was shown on the BBC, first airing on October 3, 1983 and the final broadcast being April 15, 1986. It was created by John Geering and starred Tim
Brooke Taylor.

Figure 3: 5 Stage Pipeline Neural Architecture Outputs

Input
I would like you to generate summaries from the triples provided. Below you'll find examples of the input triples and the
expected summary outputs.
Example 1: """[TRIPLE] A_Loyal_Character_Dancer ISBN_number "1-56947-301-3" [/TRIPLE] [TRIPLE]
A_Loyal_Character_Dancer OCLC_number 49805501 [/TRIPLE] [TRIPLE] A_Loyal_Character_Dancer author
Qiu_Xiaolong [/TRIPLE] [TRIPLE] A_Loyal_Character_Dancer mediaType "Print" [/TRIPLE]"""
Output: The book, A Loyal Character Dancer, has the ISBN number of 1-56947-301-3 and The OCLC number is 43805501. It
was penned by Qiu Xiaolong and is in print.
#in

#iH

Now strictly generate the summaries for the query, extra comments is not allowed. Do not dismiss numbers in digits.
Query: """[TRIPLE] Italy capital Rome [/TRIPLE] [TRIPLE] Amatriciana_sauce country Italy [/TRIPLE] [TRIPLE] Italy
demonym Italians [/TRIPLE] [TRIPLE] Italy leaderName Matteo_Renzi [/TRIPLE] [TRIPLE] Italy leaderName
Sergio_Mattarella [/TRIPLE]"™

OQutput

Italy, known for its Amatriciana sauce, has its capital in Rome. Italians are the demonym for the people of Italy, where
Matteo Renzi and Sergio Mattarella have served as leaders.

Figure 4: A GPT-(3.5 & 4) prompt for end2end surface realization.

328

Input

Generate fluent and concise English text based on the provided triples. Refer to the examples below for input triples and
their corresponding expected textual outputs. Ensure that all information from the triples is included in the generated text,
following the sentence structuring indicated by the opening '[SNT] and closing '[/SNT] tags found in the input examples. Do
not exclude any triple information or include any additional information not directly inferred from the given triples.
Examples:

Input: ""[SNT] [TRIPLE] Atlanta country United_States [/TRIPLE] [TRIPLE] United_States capital Washington [/TRIPLE]
[/SNT] [SNT] [TRIPLE] D.C. United_States ethnicGroup Asian_Americans [/TRIPLE] [/SNT]™™"

Output: Atlanta is in the United States whose capital is Washington, D.C. Asian Americans are an ethnic group in the U.5.

Inpu.t: ""[SNT] [TRIPLE] Antwerp_International_Airport cityServed Antwerp [/TRIPLE] [TRIPLE] Antwerp country Belgium
[/TRIPLE] [/SNT] [SNT] [TRIPLE] Belgium leaderName Philippe_of_Belgium [/TRIPLE] [TRIPLE] Belgium language
French_language [/TRIPLE] [/SNT]"™™"

Output

Antwerp International Airport serves the city of Antwerp, which is located in Belgium. The leader of Belgium is Philippe of
Belgium, and the official language is French.

Figure 5: A GPT-(3.5 & 4) 3-stage pipeline prompt for the final surface realization stage.

329

