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Abstract
M2 and its variants are the most widely used
automatic evaluation metrics for grammatical
error correction (GEC), which calculate an
F -score using a phrase-based alignment be-
tween sentences. However, it is not straight-
forward at all to align learner sentences con-
taining errors to their correct sentences. In
addition, alignment calculations are computa-
tionally expensive. We propose GREEN, an
alignment-free F -score for GEC evaluation.
GREEN treats a sentence as a multiset of n-
grams and extracts edits between sentences by
set operations instead of computing an align-
ment. Our experiments confirm that GREEN
performs better than existing methods for the
corpus-level metrics and comparably for the
sentence-level metrics even without comput-
ing an alignment. GREEN is available at
https://github.com/shotakoyama/green.

1 Introduction

Grammatical error correction (GEC) is one of text
generation tasks that aims to convert erroneous
texts into error-corrected ones. Because of promis-
ing applications in second language learning, GEC
has attracted widespread attention from the NLP
community (Chollampatt and Ng, 2018a; Zhao
et al., 2019; Sun et al., 2021; Kaneko et al., 2022;
Zhou et al., 2023). Various automatic evaluation
metrics for GEC have been proposed to make eval-
uations cheaper and faster by avoiding high-cost
human evaluations.

M2 (Dahlmeier and Ng, 2012) and its variants
are the most widely used metrics in the automatic
evaluation for GEC. They first compute a phrase-
based alignment between sentences to extract edits
of correction. They then calculate an F -score by
comparing edits from the source to the reference
sentences and edits from the source to the corrected
sentences. The CoNLL-2014 shared task of GEC
adopted M2 as its evaluation metric, and the BEA-
2019 shared task adopted ERRANT (Bryant et al.,

2017), one of the variants of M2. Currently, they
are the representative metrics for GEC.

However, it is not straightforward at all to align
source sentences (learner sentences containing er-
rors) to their target sentences (correct sentences).
In addition, the alignment calculation is compu-
tationally expensive and time-consuming for long
sentences with many edits from the source sen-
tence. Furthermore, M2 requires manually anno-
tated data with edits from the source to the refer-
ence sentences to extract edits; ERRANT needs
no manually annotated data but depends on a part-
of-speech tagger to perform the alignment calcula-
tion. Supposing that we could extract edits between
sentences without alignments, we would design a
more practical and useful alignment-free evaluation
method that achieves the same level of performance
as M2 and ERRANT without depending on addi-
tional data or tools to extract the alignment.

In this paper, we propose GREEN, an alignment-
free F -score for GEC evaluation, which treats a
sentence as n-gram occurrences using a multiset
(a set with repeated elements) of n-grams to com-
pute an F -score by comparing edits between two
multisets. We conducted experiments to verify the
effectiveness of GREEN on the CoNLL-2014 eval-
uation dataset (Grundkiewicz et al., 2015) and the
SEEDA dataset (Kobayashi et al., 2024). Even
without computing an alignment, GREEN exhibits
a higher correlation with human evaluation in terms
of both Pearson and Spearman correlation coeffi-
cients for the corpus-level metrics. It also achieves
comparable performance with existing methods for
the sentence-level metrics.

2 Related Work

We review five existing representative reference-
based metrics for GEC. M2, ERRANT, PT-M2, and
CLEME are alignment-based F -scores. GLEU is a
metric based on n-gram precision.

https://github.com/shotakoyama/green
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2.1 M2 (Dahlmeier and Ng, 2012)

M2 is the earliest and most representative GEC-
specific automatic evaluation metric. M2 calculates
an Fβ-score by comparing the system-corrected ed-
its against human-annotated reference edits. Since
the corrected sentences are not annotated with edits,
M2 automatically explores the corrected edits that
have maximum overlaps with reference edits. This
is the advantage of M2 because we do not need
to conduct manual annotations for system outputs
once the reference annotations are provided.

One of the issues with M2 is time complexity.
M2 finds the shortest path of a directed acyclic
graph. Let the number of tokens in the source, ref-
erence, and corrected sentence be less than or equal
to k. The bottleneck in the average case lies in the
graph pruning algorithm to calculate the optimal
alignment, which requires the O(k2) time com-
plexity. However, in the worst case, when no nodes
are pruned in this process, the numbers of nodes
V and edges E are constant multiples of k2 and
k4. Since topological sort requires O(V +E) time
complexity to find the shortest path, M2 requires
O(k4) in the worst case. The official implemen-
tation in the CoNLL-2014 shared task adopts the
Bellman-Ford algorithm, which has a time com-
plexity of O(V E), resulting in the worst-case time
complexity of O(k6). In this paper, we adopted the
faster implementation1 using topological sort.

Another issue is the inability to properly evaluate
systems that generate corrupted sentences (Felice
and Briscoe, 2015). M2 gives F = 0 to a sys-
tem that makes no changes to system-corrected
sentences because M2 calculates scores based on
alignments. For this reason, M2 may evaluate a sys-
tem that generates outputs that are worse than the
source text as F ≥ 0. This is a common problem
for other alignment-based F -score methods that
are variants of M2.

2.2 ERRANT (Bryant et al., 2017)

ERRANT computes an F -score by comparing the
edits on the reference and corrected sentences simi-
larly to M2. ERRANT automatically extracts edits
for both reference and corrected sentences using the
linguistically enhanced alignment algorithm (Fe-
lice et al., 2016) based on the spaCy part-of-speech
tagger and Damerau-Levenshtein distance, with
time complexity of O(k2). The unnecessity of

1https://github.com/craggy-otake/m2scorer_
python3_fast

manually annotated reference edits is an advantage
of ERRANT. We used the official implementation
v3.0.02.

2.3 PT-M2 (Gong et al., 2022)

PT-M2 is a method that incorporates a pre-trained
model into M2. PT-M2 calculates a score using
BERT (Devlin et al., 2019) for edits extracted by
M2. M2 gives a weight of 1 to each edit regardless
of the impact of the edit, but PT-M2 weights the
edits by score, thus enabling it to give higher scores
to corrected sentences containing more important
corrections. We used the official implementation3.

2.4 CLEME (Ye et al., 2023)

The original ERRANT equally evaluates edits of
long and short phrases, resulting in unfair evalua-
tions. CLEME performs edit extraction using ER-
RANT and evaluates the edits with length weight-
ing. This length weighting gives larger weights to
longer edits to prevent unfairness in the edit evalu-
ation. We used the official implementation4.

2.5 GLEU (Napoles et al., 2015, 2016a)

BLEU (Papineni et al., 2002), which is an
n-gram-based metric for machine translation,
shows a negative correlation on the CoNLL-2014
dataset (Grundkiewicz et al., 2015). GLEU is de-
signed by adding a penalty term to the BLEU for-
mula to show a positive correlation with human
evaluation. GLEU is an O(k) algorithm because
it is an n-gram-based method. However, GLEU
iterates 500 times to randomly sample one of the
multiple references for each sentence, which makes
the execution time of GLEU longer. In this paper,
GLEU refers to the revised formula in Napoles et al.
(2016a) and we explain this formula in Section 3.3.
We adopted our reimplementation5.

3 Proposed Method: GREEN

First, we describe GREEN with one reference sen-
tence in Section 3.1. We will extend GREEN for
multiple references in Section 3.2.

3.1 GREEN for Single Reference

GREEN treats a sentence as a multiset of n-grams
with the maximum n-gram size N . For exam-

2https://github.com/chrisjbryant/errant
3https://github.com/pygongnlp/PT-M2
4https://github.com/THUKElab/CLEME
5This is because the original version is implemented in

Python2.

https://github.com/craggy-otake/m2scorer_python3_fast
https://github.com/craggy-otake/m2scorer_python3_fast
https://github.com/chrisjbryant/errant
https://github.com/pygongnlp/PT-M2
https://github.com/THUKElab/CLEME
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Source S
“What is you ?”

Reference R
“Who are you ?”

Correction C
“Who is you !”
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Source S: What is you ?
Reference R: Who are you ?
Correction C: Who is you !

Figure 1: A three-set Venn diagram shows the occur-
rence of word 1-grams of S,R,C.

ple, a sentence “a a b” is treated as a multiset
{a, a, b, a-a, a-b}6 when we set N = 27. GREEN
considers the difference between multisets of n-
grams as a correction. Corrections can be classified
into deletion, insertion, and keep. For example, cor-
rections from {a, c} to {b, c} involves deletion of
a, which decreases the number of words, insertion
of b, which increases the number of words, and
keep of c, which does not change the word count8.

GREEN compares the match between the correc-
tions from the source sentence S to the reference
sentence R and the corrections from S to the cor-
rected sentence C. To count the match between
S → R and S → C, we introduce a Venn diagram
illustrating the occurrences of word n-grams in
S,R,C in Figure 19. Table 1 shows what types of
corrections are performed in S → R and S → C,
respectively, for all n-grams in each region of this
Venn diagram. For example, the region S ∩R ∩ C
contains n-grams that appear in S but not in R
and C, such as “What”. We call this region True
Delete (TD) because these n-grams are correctly
deleted through S → R and S → C. Similarly, the
region S ∩R ∩ C containing n-grams inserted in
both S → R and S → C is called True Insert (TI)

6In this paper, n-grams are represented by connecting each
word with a hyphen instead of a whitespace to avoid confusing
n-gram with sentence.

7Thus a-a-b is not included in this multiset.
8In GREEN, correction does not involve substitution. Sub-

stitution in alignment-based metrics corresponds to a combi-
nation of deletion and insertion in GREEN.

9We do not show n-grams of lengths two or more for
simplicity in the Venn diagram.

Region Name S → R S → C

S ∩R ∩ C True Delete Delete Delete
S ∩R ∩ C True Insert Insert Insert
S ∩R ∩ C True Keep Keep Keep
S ∩R ∩ C Over-Delete Keep Delete
S ∩R ∩ C Over-Insert None Insert
S ∩R ∩ C Under-Delete Delete Keep
S ∩R ∩ C Under-Insert Insert None

Table 1: A table describes each region in Figure 1. Cor-
rection in which no n-gram appears in the common
region involves “None”.

and the region S∩R∩C containing n-grams kept in
both S → R and S → C is called True Keep (TK).
TD, TI, and TK are True Positive (TP) because
both S → R and S → C take the same type of
corrections. The regions S ∩R∩C and S ∩R∩C
contain n-grams that are not deleted or inserted in
S → R, but are excessively deleted or inserted in
S → C. We call them Over-Delete (OD) and
Over-Insert (OI), respectively. The elements in
OD and OI are False Positive (FP) because they
are mistakenly deleted or inserted in S → C. The
regions S ∩R∩C and S ∩R∩C contain n-grams
that should have been deleted or inserted in S → C
as they are deleted or inserted in S → R. We call
them Under-Delete (UD) and Under-Insert (UI),
respectively. The elements in UD and UI are False
Negative (FN) because they should have been
deleted or inserted in S → C.

Next, we explain how to calculate the number of
n-grams in each region of the Venn diagram by the
operations on multisets. In this paper, we use three
operations on multisets: intersection (∩), union (∪),
and difference (\). Each operation on multisets A
and B is defined concerning the multiplicity of
any element x in A and B. The multiplicity of
an element x in a multiset A, which is denoted as
mA(x), represents the number of times x occurs
in A. For example, mA(a) = 2 and mA(a-a) = 1
when A = {a, a, b, a-a, a-b}. In this paper, we
define the three operations above as follows:

mA∩B(x) = min(mA(x),mB(x)),

mA∪B(x) = max(mA(x),mB(x)),

mA\B(x) = max(mA(x)−mB(x), 0).

Hence, the number of n-gram x included in each re-
gion of the Venn diagram in Figure 1 is represented
as follows:

TDS,R,C(x) = mS∩R∩C(x) = mS\(R∪C)(x)
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=max{mS(x)−max(mR(x),mC(x)), 0}, (1)

TIS,R,C(x) = mS∩R∩C(x) = m(R∩C)\S(x)

=max{min(mR(x),mC(x))−mS(x), 0}, (2)

TKS,R,C(x) = mS∩R∩C(x)

=min(mS(x),mR(x),mC(x)), (3)

ODS,R,C(x) = mS∩R∩C(x) = m(S∩R)\C(x)

=max{min(mS(x),mR(x))−mC(x), 0}, (4)

OIS,R,C(x) = mS∩R∩C(x) = mC\(S∪R)(x)

=max{mC(x)−max(mS(x),mR(x)), 0}, (5)

UDS,R,C(x) = mS∩R∩C(x) = m(S∩C)\R(x)

=max{min(mS(x),mC(x))−mR(x), 0}, (6)

UIS,R,C(x) = mS∩R∩C(x) = mR\(S∪C)(x)

=max{mR(x)−max(mS(x),mC(x)), 0}. (7)

GREEN calculates TP, FP, and FN for each n-
gram size. The TP, FP, and FN of n-grams for
S,R,C are calculated as follows:

TPn,S,R,C

=
∑

∀n-gram x

(TDS,R,C(x) + TIS,R,C(x) + TKS,R,C(x)) ,

FPn,S,R,C =
∑

∀n-gram x

(ODS,R,C(x) + OIS,R,C(x)) ,

FNn,S,R,C =
∑

∀n-gram x

(UDS,R,C(x) + UIS,R,C(x)) .

Finally, GREEN accumulates TP, FP, and
FN for corpus-level to obtain an F score.
S = (S1, . . . , SD),R = (R1, . . . , RD),C =
(C1, . . . , CD) denote a set of D source, reference,
and corrected sentences respectively. GREEN cal-
culates precision and recall for n-gram lengths
from 1 to N and the geometric mean of these pre-
cisions and recalls as BLEU (Papineni et al., 2002)
does.

prec(N, S,R,C)

=

(
N∏

n=1

∑D
i=1 TPn,Si,Ri,Ci∑D

i=1 (TPn,Si,Ri,Ci + FPn,Si,Ri,Ci)

) 1
N

,

recall(N, S,R,C)

=

(
N∏

n=1

∑D
i=1 TPn,Si,Ri,Ci∑D

i=1 (TPn,Si,Ri,Ci + FNn,Si,Ri,Ci)

) 1
N

.

At last, we calculate an Fβ score as follows:

Fβ(N, S,R,C)

=
(1 + β2)prec(N, S,R,C)recall(N, S,R,C)
β2prec(N, S,R,C) + recall(N, S,R,C)

where β is a factor denoting how important recall
is in comparison to precision. In this paper, we call
this Fβ score GREENβ .

3.2 GREEN for Multiple References
When we use multiple references, i.e., when m
reference sentences Ri1 , . . . , Rim are given for the
i-th source sentence Si, GREEN selects the refer-
ence sentence R̂i that maximizes the sentence-level
GREEN for the corrected sentence Ci as follows:

R̂i = argmax
R∈{Ri1

,...,Rim}
GREENβ(N, (Si), (R), (Ci)).

(8)
We compute GREENβ(S, R̂,C) using D reference
sentences R̂ = {R̂1, . . . R̂D} selected by Equa-
tion (8). This practice of selecting the reference
that maximizes the sentence-level F -score is also
adopted in M2 and ERRANT.

3.3 Reformulation of GLEU
To compare GREEN with GLEU, we transform
GLEU into a form using the representations in
Equations (1) through (7). Equation (9) is a
multiset-based representation of the original GLEU
formula. The transformation in Figure 2 results in
Equation (10). We can see that GLEU is calculated
by subtracting UD as penalty term from the numer-
ator of n-gram precision

∑
mR∩C(x)/

∑
mC(x).

GLEU uses only TI, TK, OI, and UD from Equa-
tions (1) through (7), while GREEN uses all of
them. GLEU has FNs in the penalty term but no
FPs, which could lead to underestimating FPs and
unreasonably giving high scores to systems that
make aggressively incorrect edits.

4 Experiments

4.1 Settings
To demonstrate the effectiveness of GREEN, we
computed its correlation with human judgments on
the CoNLL-2014 evaluation dataset (Grundkiewicz
et al., 2015) and the SEEDA dataset (Kobayashi
et al., 2024). The CoNLL-2014 dataset is based on
the test dataset of the CoNLL-2014 shared task (Ng
et al., 2014), which utilizes student essays and con-
sists of 1,312 source sentences. In this dataset,
each instance has two reference sentences. This
evaluation dataset consists of the rankings for each
instance from 13 GEC system outputs (12 submis-
sions of the shared task participants and the source
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pn =

∑
∀n-gram x∈R∩C

mR∩C(x)−
∑

∀n-gram x∈S∩C
max{0,mS∩C(x)−mR∩C(x)}∑

∀n-gram x∈C
mC(x)

(9)

=

∑
∀n-gram x∈R∩C

mR∩C(x)−
∑

∀n-gram x∈S∩C
max{0,min(mS(x),mC(x))−min(mR(x),mC(x))}∑

∀n-gram x∈C
mC(x)

=

∑
∀n-gram x∈R∩C

mR∩C(x)−
∑

∀n-gram x∈S∩C
max{0,min(mS(x),mC(x))−mR(x)}∑

∀n-gram x∈C
mC(x)

=

∑
∀n-gram x

mR∩C(x)−
∑

∀n-gram x

m(S∩C)\R(x)∑
∀n-gram x

mC(x)
=

∑
∀n-gram x

TI(x) + TK(x)− UD(x)∑
∀n-gram x

TI(x) + TK(x) + OI(x) + UD(x)
(10)

Figure 2: Reformulation of GLEU.

text). The SEEDA dataset shares the source and
reference sentences with the CoNLL-2014 dataset.
This dataset consists of the rankings for 15 cor-
rected texts, including source text and two human-
written texts. To follow modern trends in GEC,
SEEDA employs the modern neural systems, while
the CoNLL-2014 dataset consists of classical sys-
tems. The default setting of the SEEDA evaluation
excludes two fluency texts (GPT-3.5 corrected text
and human-written text) from 15 texts, and we fol-
lowed this. SEEDA has two system rankings with
different annotation methods: SEEDA-S for the
sentence-based human evaluation and SEEDA-E
for the edit-based human evaluation.

Following Grundkiewicz et al. (2015), we mea-
sure Pearson r and Spearman ρ correlation coeffi-
cients between the evaluation metric scores and hu-
man rankings. We must convert them into corpus-
level system scores because the human judgment
dataset consists of sentence-level rankings. We use
the Expected Wins (EW) score (Bojar et al., 2013)
employed in the WMT13 task of the evaluation
metric as the corpus-level system score because
Grundkiewicz et al. (2015) validated that we can
obtain high accuracy by EW with the human judg-
ment dataset for GEC.

In our experiments, for n-gram-based metrics,
we use a maximum n-gram length of N = 4 for
word-level tokenization following the setting of

GLEU, and N = 6 for character-level following
the setting of CHRF (Popović, 2015), which is
a character-level metric for machine translation.
The difference in tokenization is denoted as “word-
GREEN” (word-level) or “charGREEN” (character-
level).

Napoles et al. (2016b) reported that the average
of sentence-level scores is better for evaluating the
GEC systems than the corpus-level score when us-
ing M2 and GLEU. However, corpus-level metric is
adopted to measure the system performance in the
CoNLL-2014 shared task (Ng et al., 2014) and the
BEA-2019 shared task (Bryant et al., 2019). Be-
cause it is important for an evaluation measure to
perform well at both the corpus-level and sentence-
level metrics, we conduct experiments at both lev-
els in this paper.

After the CoNLL-2014 shared task first adopted
β = 0.5 for M2, it has been the standard practice
to use F0.5 for alignment-based F -scores. Since it
is more important for a GEC system to be precise
than to correct as many errors as possible, it is con-
sidered better to weigh precision twice more than
recall for M2 and its variants. However, weighing
precision more in n-gram-based F -score results
that the metric most highly evaluates the unedited
source sentence because precision is 100 for the
source sentence, which contains no FPs. Therefore,
we should not weigh precision more than recall in
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Corpus-Level Metrics Sentence-Level Metrics
CoNLL SEEDA-S SEEDA-E CoNLL SEEDA-S SEEDA-E
r ρ r ρ r ρ r ρ r ρ r ρ

Alignment-based F -score
M2 0.623 0.687 0.616 0.517 0.736 0.776 0.872 0.731 0.797 0.762 0.869 0.951
ERRANT 0.644 0.687 0.529 0.364 0.690 0.699 0.871 0.775 0.764 0.727 0.855 0.930
PT-M2 0.686 0.786 0.737 0.720 0.798 0.916 0.934 0.890 0.831 0.804 0.878 0.930
CLEME 0.648 0.709 0.573 0.427 0.702 0.727 0.877 0.824 0.818 0.804 0.872 0.930
n-gram-based precision
wordGLEU 0.696 0.445 0.870 0.811 0.891 0.895 0.779 0.720 0.926 0.923 0.915 0.916
charGLEU 0.606 0.593 0.807 0.706 0.843 0.867 0.655 0.665 0.880 0.853 0.905 0.937
n-gram-based F -score
wordGREEN 0.741 0.698 0.920 0.909 0.911 0.930 0.835 0.731 0.922 0.902 0.920 0.937
charGREEN 0.786 0.813 0.913 0.881 0.911 0.909 0.834 0.852 0.928 0.881 0.930 0.916

Table 2: Pearson (r) and Spearman (ρ) correlation coefficients between each metric and the human score of the
CoNLL-2014 evaluation dataset and the SEEDA dataset.

Metric AMU AMU-S
M2 4.34 196.60
ERRANT 12.35 14.34
PT-M2 109.82 > 1 hour
CLEME 10.15 12.10
wordGLEU 2.69 2.80
wordGREEN 0.55 0.56

Table 3: The average execution time in seconds to evalu-
ate the AMU system output in the CoNLL-2014 dataset
and the slow AMU (AMU-S) in which one sentence in
AMU is replaced by an example making M2 slow.

n-gram-based F -score. Furthermore, we should
rather weigh recall more than precision because the
effect of individual annotator bias (Bryant and Ng,
2015) may unreasonably reduce precision due to
the system corrections such that they are correct
but not edited by the annotator. To alleviate this
annotator bias, we employ β = 2.0, which weighs
recall twice more than precision, for GREEN in
our experiments.

4.2 Results of Corpus-Level Metrics

The correlation coefficients between the reference-
based corpus-level GEC metrics and the EW scores
on the CoNLL and SEEDA datasets are shown in
the left half of Table 2. We confirmed that word-
GREEN or charGREEN performs the best in these
corpus-level metrics. We confirmed that word-
GREEN and charGREEN perform the best on the
CoNLL-2014 and SEEDA datasets, respectively, in
corpus-level metrics. The three alignment-based F -
scores of M2, ERRANT, and CLEME show similar

performance, while PT-M2 is better than these met-
rics, which implies that the impact of incorporating
the pre-trained model is significant. GLEU shows
a relatively worse performance with Spearman ρ
in CoNLL-2014 as shown in Chollampatt and Ng
(2018b), while GLEU shows a relatively better per-
formance in SEEDA as shown in Kobayashi et al.
(2024). We can confirm that GREEN, in contrast to
GLEU, performs consistently well in both classical
and neural system evaluations.

4.3 Results of Sentence-Level Metrics
The correlation coefficients between the reference-
based sentence-level GEC metrics and the EW
scores on the CoNLL and SEEDA datasets are
shown in the right half of Table 2. We can confirm
that wordGREEN and charGREEN show compa-
rable performance to the existing sentence-level
metrics. In particular, charGREEN shows the best
Pearson correlation coefficients r on the SEEDA-S
and SEEDA-E datasets. On CoNLL-2014, PT-M2

shows the highest correlation using a pre-trained
model BERT. All the sentence-level metrics show
higher correlations than their corpus-level coun-
terparts, as shown in Napoles et al. (2016b). The
GEC field needs to investigate why sentence-level
metrics are good in future work.

4.4 Efficiency of GREEN
We measured the average execution time of 10 runs
to calculate the score for evaluating the output of
the AMU system that shows the highest score with
human evaluation in the CoNLL-2014 shared task.
As mentioned in Section 2.1, the worst-case time
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Figure 3: Pearson correlation coefficient on the CoNLL-
2014 dataset varying β.

complexity of M2 is quite high. We also measure
the average execution time of AMU-S, which re-
places one sentence of AMU with an example10

making M2 slow because it corresponds to the
worst-case scenario. We show the execution times
in seconds in Table 3. GREEN has the advantage
of being faster than other methods in execution
time, although its performance is better than or
comparable to others. M2 and PT-M2 are not prac-
tical in the worst-case scenario. The advantage
of GREEN is that it does not require linguistic re-
sources to compute alignments or pre-trained mod-
els, which enables even non-English GEC to per-
form the evaluation immediately and efficiently in
linear time, without the preparation of annotated
data required in M2 and PT-M2 or linguistic re-
sources required in ERRANT and CLEME. De-
spite an n-gram frequency-based method, GLEU
takes a longer execution time than GREEN because
GLEU samples random references 500 times when
using multiple references.

5 Analysis

5.1 Impact of β for F -score

In Section 4, we confirmed the effectiveness of
GREEN in terms of performance and efficiency.
In our experiments, we employed β = 2.0. We
investigate the impact of β on the performance
of GREEN and other F -score-based metrics. We
show the change of Pearson r for F -based corpus-
level metrics on the CoNLL-2014 dataset when
changing the β from 0.00 to 5.00 in 0.01 incre-
ments in Figure 3. ERRANT and PT-M2, which
are variants of M2, show a similar trend to M2 in

10We included this in Appendix A.

0.3 0.4 0.5 0.6
92

93

94

INPUT

AMU

CAMB

CUUI

IITB

IPN

NTHU

PKU

POST
RAC

SJTU

UFC

UMC

r=-0.224
ρ=-0.423

Human

ch
ar

G
R

E
E

N
(β

=
1.
0)

0.3 0.4 0.5 0.6

91

91.5

INPUT

AMU

CAMB
CUUI

IITBIPN

NTHU

PKU

POST

RAC

SJTU
UFC

UMC

r=0.786
ρ=0.813

Human

ch
ar

G
R

E
E

N
(β

=
2.
0

)

Figure 4: Scatter plots of corpus-level charGREEN
scores with β = 1.0 and that with β = 2.0 on the
CoNLL-2014 submissions.

that they correlate better for 0 ≤ β ≤ 0.5. We can
see that these alignment-based methods and the n-
gram-based method GREEN show different trends
in changing β. GREEN performs better than M2

and its variants when we set the appropriate β such
as 2.0. However, if β is too small, the performance
degrades, resulting in negative correlations.

To investigate this cause, we show the corpus-
level charGREEN and EW scores at β = 1.0, 2.0
in Figure 4. CharGREEN with β = 1.0 gives un-
reasonably high scores to IITB, INPUT, SJTU, and
UFC. INPUT is the source text without any cor-
rections, and IITB, SJTU, and UFC are the three
system outputs with the fewest corrections from the
source among all outputs. Because these outputs
obtain the high precision, GREEN gives unreason-
ably high scores to them with a smaller β. Char-
GREEN with β = 2.0 gives higher scores to sys-
tems that actively make correct corrections (AMU)
and lower scores to systems that are excessively
conservative (IITB) or make many incorrect correc-
tions (IPN), resulting in a high correlation on the
CoNLL-2014 evaluation dataset.

5.2 Evaluating Source and Degradation

Felice and Briscoe (2015) pointed out that M2 suf-
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AMU INPUT IPN NULL
Alignment-based F -score
M2 35.01 0.00 7.09 28.01
ERRANT 31.97 0.00 5.95 0.20
PT-M2 35.94 0.00 5.72 2.44
CLEME 25.14 0.00 4.41 33.44
n-gram-based precision
wordGLEU 58.08 56.34 55.08 0.00
charGLEU 81.68 81.75 81.06 0.00
n-gram-based F -score
wordGREEN 79.26 76.93 76.31 43.46
charGREEN 91.48 91.00 90.74 31.28
human 0.628 0.456 0.300 -

Table 4: Scores for AMU, INPUT, IPN, and NULL by
GEC metrics.
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Figure 5: Scatter plots of corpus-level M2, and PT-M2

scores on the CoNLL-2014 submissions.

fers from the issue that it cannot evaluate the de-
graded output text as worse than the source text.
Napoles et al. (2015) indicated that its cause is that
M2 maximally matches the wrong phrase deletions
to the reference edits. In fact, given a system that
always outputs an empty sentence for each input
sentence (we refer to this system as NULL), this
system would rank sixth out of 13 systems (12
actual task participants and NULL) if it had par-
ticipated in the CoNLL-2014 shared task. This

indicates the insensitivity of M2 to corrupted text,
such as that generated by NULL. The reason is that
M2 matches the long phrase deletions by NULL to
the correct edits in reference and M2 gives NULL
a higher score than it actually is. Table 4 shows
the scores of the CoNLL-2014 dataset by GEC
metrics for AMU (the best system in the human
judgment), INPUT (the source), IPN (the worst
system) and NULL (empty text). Alignment-based
F -scores (M2, ERRANT, PT-M2, CLEME) gives
0.00 to INPUT containing no edits to evaluate.
M2 wrongly evaluates NULL as a relatively better
output because it maximally matches phrase dele-
tions. Although PT-M2 faces the same problem
as M2, it can avoid giving a high score to NULL
by its model-based weighted score. CLEME also
wrongly gives a high score to NULL because it
excludes empty output sentences from the target
of evaluation. Since three of 1312 sentences are
deleted completely in the CoNLL-2014 reference
dataset, CLEME calculates the score of NULL by
only evaluating these three sentences. Since ER-
RANT uses the linguistically enhanced alignment,
it does not match whole-sentence deletions with
the correct reference edits while giving a score of
0.20 for the three deleted sentences.

Figure 5 shows the scores of M2 and PT-M2 and
the EW scores. These two methods give scores
highly correlated with the human evaluation to the
systems with human scores between 0.5 and 0.6.
However, they give inconsistent values to the sys-
tems with EW scores between 0.4 and 0.5. We can
see that the alignment-based F -score has problems
in evaluating the source and degradation.

Both wordGREEN and charGREEN can evalu-
ate the systems in Table 4 in the correct order (AMU
> INPUT > IPN > NULL). WordGLEU can evalu-
ate as GREEN does, however, charGLEU fails to
evaluate AMU better than INPUT. GLEU cannot
evaluate TD, as shown in Equation (10), which re-
sults in rating NULL to be 0. On the other hand,
GREEN can also evaluate TDs in NULL.

5.3 Difference between Corpus-level Metric
and Sentence-level Metric

To investigate why sentence-level metrics perform
better than their corpus-level counterparts, we show
the score of sentence-level charGREEN and M2

in Figure 6. We did not find enough differences
between corpus-level charGREEN (shown in Fig-
ure 4) and sentence-level charGREEN worth men-
tioning. On the other hand, sentence-level M2 gives
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Figure 6: Scatter plots of sentence-level charGREEN
and M2 scores on the CoNLL-2014 submissions.

scores correlated with the human evaluation to the
systems with EW scores between 0.4 and 0.5 while
corpus-level M2 fails (shown in Figure 5). This is
because sentence-level M2 gives F = 1.0 to cases
where S = R = C, resulting in alleviating the bias
to give lower scores to cases closer to INPUT.

5.4 Incorporating Pre-trained Model

We can see that M2 and PT-M2 show similar ten-
dencies as a whole, but locally PT-M2 behaves
more similarly to human evaluation. For example,
in Figure 5, the plotted points in the range of 0.5
to 0.6 of the human score are straightly aligned in
PT-M2, but scattered in M2. This implies the ef-
fectiveness of incorporating the pre-trained model
in GEC evaluation. Incorporating the pre-trained
model into GREEN may realize the state-of-the-art
GEC evaluation. We leave this for future work.

5.5 Evaluating Fluency Edit

We follow the default setting of the SEEDA evalu-
ation in which we exclude the two fluency-editing
systems (GPT-3.5 and REF-F) from the calcu-
lation of correlation coefficients. To observe the
behavior of evaluating fluent texts by GREEN, we
show the score of corpus-level wordGREEN and
EW of the SEEDA-S dataset in Figure 7. We can
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Figure 7: Scatter plots of corpus-level wordGREEN
with β = 2.0 on the SEEDA-S dataset.

cofirm that INPUT (shown by a red dot) and the
systems in the default setting (shown by blue dots)
show a high correlation with GREEN. On the other
hand, two fluency-editing systems (shown by or-
ange dots) stand out as outliers. This result is obvi-
ous because the reference texts used in the SEEDA
evaluation are not fluency-edited texts. However,
we need further study on how to properly evaluate
fluency-edited texts such as LLM-generated texts,
using reference-based evaluation metrics.

6 Conclusions

We proposed an alignment-free GEC evaluation
metric, GREEN, which computes F -score by com-
paring edits between multisets. GREEN shows a
higher correlation for both Pearson and Spearman
correlation coefficients for the corpus-level metrics
and comparable performance with existing evalua-
tion metrics for the sentence-level metrics while it
runs faster than existing methods and does not re-
quire the alignment calculation. We also analyzed
the effect on β for F -score-based methods. We con-
firmed that alignment-based methods and GREEN
have different tendencies on β. We investigated
the problem that alignment-based F -score is diffi-
cult to evaluate the source text and degraded text
correctly. We confirmed that corpus-level GREEN
properly evaluates systems in contrast to existing
corpus-level metrics, and sentence-level metrics
alleviate the bias of alignment-based F -score on
the source and degraded texts. Further challenges
include incorporating pre-trained models and eval-
uating fluency-edited texts.
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A Example that M2 Takes a Long Time to
Calculate

In an issue of the official M2 GitHub repository11,
an example is given in which M2 takes a long time
to calculate. Here is the example in this issue:

As it is a genetic risk , the patient force
might have a high chance of carrying
the risk , hence the need to inform their
relatives is important . Hence , you
are suffering from a genetic disease that
the genetic trait might be passed on to
your next generation if you have a child
. Hence , there is no legal obligation to
disclose to their family members , there
is no legal obligation . Hence , there
is no legal obligation . Hence , there
is no legal obligation . Hence , there
is no legal obligation . Hence , there
is no legal obligation . Hence , there
is no legal obligation . Hence , there
is no legal obligation . Hence , there
is no legal obligation . Hence , there is
no legal obligation . Hence , there is no
legal obligation . Hence , there is no le-
gal obligation . Hence , there is no legal
obligation . Hence , there is no legal obli-
gation . Hence , there is no legal obliga-
tion . Hence , there is no legal obligation
. Hence , there is no legal obligation .
Hence , there

Such a degeneration of repetition sometimes occurs
in neural text generation (Holtzman et al., 2020).
In AMU-S, the 333rd sentence in AMU is replaced
by this sentence.

11https://github.com/nusnlp/m2scorer/issues/8
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