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Abstract

This paper presents Text2Traj2Text, a novel
learning-by-synthesis framework for caption-
ing possible contexts behind shopper’s trajec-
tory data in retail stores. Our work will im-
pact various retail applications that need bet-
ter customer understanding, such as targeted
advertising and inventory management. The
key idea is leveraging large language models to
synthesize a diverse and realistic collection of
contextual captions as well as the correspond-
ing movement trajectories on a store map. De-
spite learned from fully synthesized data, the
captioning model can generalize well to trajec-
tories/captions created by real human subjects.
Our systematic evaluation confirmed the effec-
tiveness of the proposed framework over com-
petitive approaches in terms of ROUGE and
BERT Score metrics.

1 Introduction

Retail is an essential industry that is closely tied
to our daily lives. Imagine a customer visiting a
supermarket. The customer first goes to the fruit
section and compares various products. Next, they
go to the fish section, where they compare two
products. Afterward, they pass by the processed
food section and head to the checkout, purchasing
discounted organic strawberries and fish. From
these movements and purchases, one can guess that
“the customer is budget-conscious and interested in
healthy meals.”

Such profiling and verbalization of possible con-
texts behind shopping behaviors is vital for retailers
to improve customer understanding and customer
experience. We are interested in automating this
intelligent activity, with recent advances in large-
scale language modeling. Doing so would help
facilitate and scale up retailer’s operations beyond
the number of experts, and can also enhance sev-
eral applications such as targeted advertising (Liu

*Work done during an internship at CyberAgent Inc.

The Customer carefully compares many items to balance 
price and quality, preferring fresh, unprocessed items.

Contextual Caption

Price: Medium
Quality: High
Feature: 20% discount

Item InformationMovement Trajectory

Purchased Item

Figure 1: Contextual Captioning of Human Move-
ment Trajectories. Given a human movement tra-
jectory associated with semantic information such as
nearby items and actual purchases in a retail store, we
aim to produce contextual captions that best explain the
possible contexts behind.

et al., 2018; Ghose et al., 2019) and inventory man-
agement (Carreras et al., 2013).

As the first step toward this goal, we formulate
a new task, contextual captioning of human move-
ment trajectories, with a particular focus on retail
applications. Let us illustrate an example in Fig. 1.
The input of this task is a movement trajectory
associated with its semantic information, such as
item positions and purchased items for a customer
navigating a retail store. The output is a contex-
tual caption that explains a possible context behind
the demonstrated trajectories, such as purposes and
preferences for the purchases.

While it is intuitive to learn neural captioning
models for this task, it is nontrivial how to gather
the sufficient number of training data, more specif-
ically trajectories annotated with contextual cap-
tions. Although recent advancements in wireless
sensing technologies have already enabled accurate
indoor localization (Zafari et al., 2019), collecting
actual customer locations in stores is often nontriv-
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ial due to privacy concerns. Even if location data
were available, annotating appropriate captions for
them is labor intensive.

In this work, we present TEXT2TRAJ2TEXT, a
learning-by-synthesis framework to address this
challenge. As illustrated in Fig. 2, this frame-
work consists of two phases: TEXT2TRAJ (data
synthesis) and TRAJ2TEXT (model fine-tuning).
In the TEXT2TRAJ phase, we leverage large lan-
guage models (LLMs) to synthesize realistic and
diverse collections of contextual captions as well
as concrete trajectories on store maps. Then in
the TRAJ2TEXT phase, we construct a captioning
model fine-tuned on the synthesized data.

Through systematic evaluation, we show that the
diverse data synthesis by LLMs allows our cap-
tioning model to generalize well to actual human
trajectories and human-created captions. It also
outperforms several existing LLM services (GPT-
3.5 (OpenAI, 2023a), GPT-4 (OpenAI, 2023b)) as
well as open-source benchmark Llama2 (GenAI,
Meta, 2023) adapted to the task via in-context learn-
ing, in terms of ROUGE and BERT Score metrics.

Our contributions are summarized as follows:
(1) formulating a new captioning task called con-
textual captioning of human movement trajectories;
(2) proposing a learning-by-synthesis framework,
TEXT2TRAJ2TEXT, and demonstrating its effec-
tiveness on actual human data; (3) creating a bench-
mark dataset to accelerate future research.1

2 Contextual Captioning of Human
Movement Trajectories

2.1 Motivating Scenario

The goal of our task is to generate concise text
that describes possible underlying contexts of hu-
man movement trajectories, such as purposes and
preferences. We focus particularly on a retail sce-
nario, where people walk around a store, browse
items of interest, and choose some to buy. Retailers
analyze such shopping behaviors collected from
consenting customers to gain deeper understanding
of customers and improve customer experiences
via demand prediction, inventory management, or
targeted advertising. Much like web search en-
gines automatically infer user preferences from
click streams, we aim to automate customer activity
profiling, ultimately across a wide range of stores
beyond what is possible with a limited number of

1Our code and dataset will be available at https://
github.com/CyberAgentAILab/text2traj2text.

experts. Formatting profile results as sentences, as
human experts do when communicating with stake-
holders, is crucial for improving the interpretability
of such automation.

2.2 Task Formulation

Given a movement trajectory X and its semantics
including items in contact I and purchased items
P , we aim to generate a contextual caption S, as
each detailed below.

Input: Trajectory and its semantics. The move-
ment trajectory is a sequence of T locations, i.e.,
X = (x1, . . . , xT ), where xt ∈ R2 corresponds to
a 2-D location where the customer stayed at each
time step t. Items in contact are the items closest to
the customer at each time step, i.e., I = (i1, . . . iT ).
Purchased items are the items that the customer
purchased, which form a subset of the items in
contact, i.e., P ⊂ I . Technically, it is feasible to
collect those data from consenting customers via
wireless indoor localization technologies (Zafari
et al., 2019) used in combination with point-of-
sales (POS) systems. Nevertheless, such data col-
lection is hard to scale in practice, as it is difficult
to intervene in a retail store currently operating and
obtain approval from each customer.

Output: Contextual captions. The contextual
caption is a sequence of tokens, i.e., S =
(s1, s2, . . . ), where s is a token. We assume that
each caption is concise, typically spanning a few
sentences, and describes various aspects of the cus-
tomer’s shopping behavior such as their preferences
for price versus quality, required quantity, and other
characteristics related to item choices (e.g., ready-
to-eat, health-conscious).

3 TEXT2TRAJ2TEXT

Fig. 2 illustrates the overview of the proposed
framework, TEXT2TRAJ2TEXT, which consists of
TEXT2TRAJ data synthesis phase and TRAJ2TEXT

model fine-tuning phase.

3.1 TEXT2TRAJ: Data Synthesis

In the TEXT2TRAJ phase, we propose leveraging
pretrained, instruction-tuned LLMs in combination
with a human trajectory planner to synthesize a
diverse and realistic collection of annotated tra-
jectory data. This approach is inspired by recent
advancements in robotics research that aim to gen-
erate complex robot motion by incorporating LLMs

https://github.com/CyberAgentAILab/text2traj2text
https://github.com/CyberAgentAILab/text2traj2text
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Label

Contextual Description:
Foodie customer interested in 
exploring new flavors and 
ingredients. The customer 
decides their purchases while 
shopping, often drawn to unique 
and gourmet items. The customer 
values quality over price and 
prefers fresh, natural items.

Paraphrase

Paraphrased Description: The 
customer is a gourmet enthusiast 
who enjoys trying out new flavors 
and ingredients. When shopping, 
they are often enticed by unique 
and gourmet items. They value 
quality over price and prefer 
fresh and natural products. They 
like to experiment with various 
itize quality over price and 
prefer fresh and natural products.

Paraphrased Description: The 
customer is a food enthusiast who 
enjoys trying out new flavors and 
ingredients. While shopping, they 
are attracted to unique and

gourmet items and prioritize 
quality over price. They prefer 
fresh and natural products and 
like to often attracted to unique 
and gourmet items.

Paraphrased Description:
A customer who loves food and 
is always excited to explore 
new flavors and ingredients. 
When shopping, they are 
frequently captivated by unique 
and gourmet products. They 
prioritize quality over price 
and have a preference for fresh 
and natural items.

Fine-tuning

Text2Traj: Data Synthesis Phase

Traj2Text: Model Fine-tuning Phase

Step 1

Contextual Captions:
Foodie customer interested in 
exploring new flavors and 
ingredients. The customer 
decides their purchases while 
shopping, often drawn to unique 
and gourmet items. The customer 
values quality over price and 
prefers fresh, natural items.

Purchase Quantity: 18

Purchase consideration: 5

Generating Contextual Captions

Step 2

Generating Action Plans

purchase quantity: 2
Fruit

purchase quantity: 2
Meat

purchase quantity: 1
Alcohol

⋮

Step 3

Generating Item Lists

Purchase Item List:
[Luxury Apples, Premium Mango]

Interest Item List:
[Organic Kiwi, Premium Papaya]

Fruit

Purchase List:
[Luxury Apples, Premium Mango]

Interest List:
[Organic Kiwi, Premium Papaya]

Fruit

Purchase List:
[Whiskey, Luxury Champagne]

Interest List:
[White Wine, Sparkling Wine]

Alcohol
⋮

Step 4

Generating Trajectories

Planner

Input

Figure 2: Text2Traj2Text Framework. (1) TEXT2TRAJ: We leverage LLMs to synthesize contextual captions
and their instances as concrete action plans, item lists, and in-store trajectories. (2) TRAJ2TEXT: We fine-tune a
language model with the synthesized data to be able to produce contextual captions from trajectory data.

into hierarchical motion planning frameworks (Ahn
et al., 2022; Wang et al., 2024, 2023; Liu et al.,
2023). It utilizes the reasoning ability of LLMs
for task planning to determine which actions to
take or which goals to approach, while employing
classical motion planning to generate feasible mo-
tion trajectories for each action. Similarly, in our
framework, an LLM first creates diverse contextual
captions and instantiates coarse action plans from
the captions. A trajectory planner then traces the
plans to generate feasible movement trajectories on
a store map. More specifically, the TEXT2TRAJ

phase consists of four steps as shown below.

Step 1: Generating contextual captions. First,
we give a prompt (Fig. 4 in Appendix A) to an LLM
for producing contextual captions on three types
of information: (i) individual customer’s product
preferences (e.g., “loves apple”), (ii) category-
level interests (e.g., “interested in fruits”), and (iii)
decision-making tendencies (e.g., “have a list of
items to purchase”). The LLM’s output also in-
cludes the number of items planned to purchase
(i.e., purchase quantity) and the person’s purchase
consideration. Higher purchase consideration sug-
gests more comparison of products before purchas-
ing, while a lower one indicates a tendency to have
pre-determined shopping plan.

Step 2: Generating action plans. Given a
prompt (Fig. 5 in Appendix A) that contains the
outputs from Step 1 (i.e., a contextual caption and
purchase quantity) and item categories in a store,
the LLM generates an action plan, a list of pairs of
item categories and their expected purchase quan-
tity, e.g., {“fruit”: 4, “meat”: 0, “alcohol”: 1}.

Step 3: Generating item lists. Given a prompt
(Fig. 6 in Appendix A), the LLM converts each
item category determined in Step 2 into more spe-
cific item information, i.e., (i) a purchase list con-
sisting of the name of items planned to purchase,
and (ii) an interest list of items that the individual
is likely to show interest in. The interest item will
contain more items as the purchase consideration
is set higher. Also, the number of items in the
purchase list may not always match the planned
purchase quantity generated in the previous step, as
the number of actual purchases can change based
on other factors, such as the availability of suitable
items in the store.

Step 4: Generating movement trajectories. Fi-
nally, based on the purchase and interest lists gen-
erated in Step 3, we invoke a trajectory planner to
instantiate concrete human movement trajectories
on a store map. We first assign ranks to each item
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category stochastically for each trajectory genera-
tion, with the rank reflecting the category’s relative
position in the store layout. The rank tendency
is predefined based on the store’s layout, where
categories located closer to the entrance typically
receive a higher rank.

The purchase consideration is again considered
here; if it is set high, ranks have higher variances,
resulting in more exploratory behaviors. Starting
from a fixed starting location x0 ∈ Ω (e.g., the en-
trance), the planner generates a feasible trajectory
traversing items in the purchase and interest lists
according to the category ranks in a store map like
the one shown in Fig. 1.

3.2 TRAJ2TEXT: Model Fine-tuning
In the TEXT2TRAJ phase introduced so far, we first
synthesize contextual captions and then instantiate
concrete trajectories. Reversely, in the following
TRAJ2TEXT phase, we aim to build a captioning
model that takes the synthesized trajectory data as
input to produce plausible captions.

Input translation. As the input to the caption-
ing model, we translate movement trajectory X =
(x1, . . . , xT ), items in contact I = (i1, . . . , iT ),
and purchased items P , into textual representa-
tions. Importantly, movement trajectories can
become lengthy as customers take more time
for shopping, and can also contain many mun-
dane moments. Here, we adopt a simple yet ef-
fective filtering technique to focus on important
events in the trajectories. First, we calculate the
displacement between consecutive locations, i.e.,
∥xt − xt−1∥, and extract moments when the indi-
vidual stopped based on if the displacements are
below a predetermined threshold. Then, items
in contact at the stopping moments as well as
those in the purchase list are simply concatenated:
“Trajectory is fruit</s>vegetable</s>
...\n Customer purchase item list is
[’Carrots’, ’Beef’...] \n Output:.”

Data augmentation. The diversity of training
data is crucial for the high generalization capability
of learned models. While synthesized trajectories
can sufficiently be diversified based on randomized
ranks of item categories (in Step 4 of Sec. 3.1),
the variety of contextual captions may still be lim-
ited due to the expressiveness of the used LLM.
To ensure high diversity for the captions, we intro-
duce data augmentation by paraphrasing; for each
annotated trajectory, we let the LLM to produce

alternative expressions of the caption with similar
meanings, and relabel the trajectory accordingly.

4 Experiments

We conducted systematic experiments to evaluate
the effectiveness of the TEXT2TRAJ2TEXT frame-
work. Through the experiments, we aim to answer
the following questions:

[RQ.1] Can the models trained by our proposed
framework generate appropriate captions for
synthesized trajectories? (Sec. 4.2)

[RQ.2] Can the models generalize to human-
created trajectories/captions? (Sec. 4.3)

[RQ.3] Can the models generalize to unseen
maps? (Sec. 4.3)

4.1 Experimental Setup
Data synthesis. Following Sec. 3.1, we synthe-
sized 80 pairs of contextual captions and the corre-
sponding movement trajectories using GPT-4 (Ope-
nAI, 2023b), while assuming a scenario of shop-
ping at a supermarket. See Appendix A for con-
crete prompts and Tab. 6 for the store map we used.
We adopted a classical hierarchical planning frame-
work for trajectory generation; a global planner
(probabilistic roadmaps proposed by Kavraki et al.
(1996)) first determines a sequence of sub-goals
from the current item to the next one, and a local
planner (dynamic window approach proposed by
Fox et al. (1997)) then produces a collision-free
trajectory between the sub-goals. The synthesized
data were divided into 64 training and 16 valida-
tion samples and augmented by paraphrasing with
GPT-3.5 (OpenAI, 2023a), where the number of
added captions from a single original caption was
2, 4 or 8. For example, in the case of adding 8
paraphrases, the total number of training samples
becomes 64 × 9 (where 1 is the original caption
and 8 is its paraphrased captions).2

Implementation details. On the synthesized
data, we fine-tuned the T5-Base model (Raffel
et al., 2020) available on HuggingFace3, as its
encoder-decoder structure was demonstrated ef-
fective for multimodal generation tasks (Xu et al.,
2023). All fine-tuning was conducted on a sin-
gle Tesla T4 GPU using AdamW optimizer with a

2Synthesizing captions is more complex than paraphrasing
them, where we adopted GPT-4 for the former task and GPT-
3.5 for the latter to consider cost-effectiveness.

3https://huggingface.co/t5-base

https://huggingface.co/t5-base
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learning rate of 5.6 × 10−5, where the batch size
and the number of epochs were set to 8 and 5, re-
spectively. The model checkpoint with the BERT
Precision score (Zhang* et al., 2020) highest for
the validation data was used for evaluation.

Baseline models. We compared our captioning
model against the following baselines: (a) T5-
Small and T5-Base (Raffel et al., 2020) fine-tuned
without paraphrasing-based data augmentation;
(2) GPT-3.5 (OpenAI, 2023a), GPT-4 (OpenAI,
2023b), and the open-source benchmark Llama-2-
7b-chat-hf (referred to as Llama2) (GenAI, Meta,
2023)4. GPT-3.5, GPT-4, and Llama2 were used
via in-context learning; following (Maynez et al.,
2023), a few (1, 2, or 4) samples randomly selected
from the training data were given as examples, and
contextual captions were generated for the given
movement trajectory.

Evaluation metrics. We employed ROUGE (R-
1, R-2, R-L) (Lin, 2004) and BERT Score (BS-
precision, recall, f1 score) (Zhang* et al., 2020) as
evaluation metrics. ROUGE score captures lexical
overlap by comparing n-grams and word sequences
between generated and reference texts, while BERT
Score, which utilizes BERT embeddings, measures
semantic similarity.

4.2 Evaluation with Synthesized Trajectories

[RQ.1] Can the models trained by our proposed
framework generate appropriate captions for
synthesized trajectories? Tab. 1 presents the
quantitative results on 20 synthesized trajectories
created in the same way as training/validation data.
Overall, our model achieved the best performance
even with an order-of-magnitude fewer parameters
(223M) compared to the GPT family and Llama2
(over billions). We observe a monotonic improve-
ment in nearly all metrics as the number of para-
phrases increases, indicating the effectiveness of
our data augmentation strategy. In contrast, T5-
Small and T5-Base with vanilla fine-tuning demon-
strated quite limited performances. The number
of examples presented to GPT-3.5, GPT-4, and
Llama2 was critical for their in-context learning
ability, but this comes with increased inference
costs and limits practical scalability.

Ablation study. Additionally, we investigate how
each of the movement trajectories (with the list of

4https://huggingface.co/meta-llama/
Llama-2-7b-chat-hf

Models R-1 R-2 R-L BS-p BS-r BS-f1

T5-Small 0.069 0.015 0.060 0.792 0.770 0.816
T5-Base 0.287 0.094 0.243 0.860 0.859 0.861

GPT-3.5 0.240 0.049 0.151 0.854 0.841 0.868
+ 1 examples 0.326 0.080 0.211 0.887 0.883 0.891
+ 2 examples 0.358 0.093 0.225 0.892 0.888 0.895
+ 4 examples 0.364 0.101 0.235 0.894 0.890 0.897

GPT-4 0.180 0.034 0.119 0.844 0.822 0.868
+ 1 examples 0.322 0.064 0.192 0.881 0.873 0.890
+ 2 examples 0.334 0.070 0.199 0.887 0.881 0.894
+ 4 examples 0.378 0.106 0.240 0.897 0.892 0.902

Llama2 0.199 0.020 0.129 0.819 0.788 0.854
+ 1 examples 0.255 0.070 0.167 0.834 0.790 0.885
+ 2 examples 0.305 0.089 0.198 0.855 0.824 0.889
+ 4 examples 0.391 0.128 0.267 0.886 0.877 0.897

Ours
2 paraphrases 0.374 0.140 0.297 0.888 0.894 0.882
4 paraphrases 0.368 0.131 0.287 0.888 0.893 0.884
8 paraphrases 0.412 0.138 0.297 0.907 0.910 0.905

Table 1: Quantitative results for synthesized data.

Models R-1 R-2 R-L BS-p BS-r BS-f1

w/o Traj 0.337 0.101 0.234 0.877 0.874 0.880
w/o Item 0.218 0.038 0.166 0.862 0.876 0.849
w/ Shuffle Traj 0.395 0.130 0.277 0.901 0.904 0.899
w/ Shuffle Item 0.382 0.116 0.269 0.899 0.902 0.897
w/ 5% noise 0.428 0.159 0.308 0.907 0.911 0.903

Ours 0.427 0.156 0.308 0.907 0.911 0.903

Table 2: Ablation study and noisy robustness evaluation

nearby items) and the purchased items can con-
tribute to the final performances using the valida-
tion dataset. In Tab. 2, we evaluated the following
degraded variants: w/o Traj (resp. w/o Item) that
removed trajectories (resp. purchased items) from
the input; w/ Shuffle Traj (resp. w/ Shuffle Item)
that replaced trajectories (resp. items) with those of
other samples dataset according to the permutation
feature importance method (Breiman, 2001; Fisher
et al., 2019). These degraded versions all demon-
strated quite limited performances, indicating the
necessity of combining trajectories and purchased
items for inferring contexts reliably. We also eval-
uate a more challenging case when the trajectory
data are partially perturbed, possibly due to the in-
accuracy of indoor localization systems. Our model
is robust to such noises, as shown in the table (w/
5% noise).

4.3 Evaluation with Real Human Data

Data collection from human subjects. We re-
cruited eight participants to collect real human data
for our study. The entire experiment consisted of
two phases with different tasks. In the first phase,
two participants were instructed to create four plau-

https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
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Fresh Cod
   price: Average-price
   quality: normal
   amount: small
   daysBeforeExpiration: 3
   is_discounted: False
   discount_rate: 0.0
   is_seasoned: False
   is_precut: False
   special_feature: fresh cod fillet

Mixed Stir-Fry Vegetables
Premium Papaya
Discounted Chicken Drumsticks
Mixed Pork Cuts
Mixed Salad
Pre-cut Watermelon
Onion Powder

Mixed
Chicken

Cuts

Mixed
Ribs

Premium
Lamb
Chops

Discounted
Scallops

Salt

Black
Pepper

Chili
Powder

Seasoned
Octopus

Luxury
Caviar

Fresh
Cod

Discounted
Trail
Mix

Mixed
Fruit

Snacks

Trail
Mix

Fresh
Halibut

Bulked
Mussels

Fresh
Salmon

Seasoned
Salmon
Steak

Fresh
Tuna

Seasoned
Tuna
Steak

Vodka

Cognac

Luxury
King
Crab

Mixed
Seafood

Soup

Luxury
Lobster

Mixed
Sushi

Platter

Discounted
Crab
Legs

Mixed
Seafood
Platter

Cheddar
Cheese

Discounted
Cream
Cheese

Impulse buyer, focusing on items that catch their eye. The customer usually purchases a variety of items, often influenced
 by special offers, attractive packaging, or new products. They shop without a predetermined list, making spontaneous deci
sions based on what they see in the store. The customer does not prioritize price or quality, often making purchases based
 on impulse. They do not usually cook a specific dish, instead enjoying the variety of items they bought on a whim.

Figure 3: Visual user interface used to collect human-created trajectories. The green square represents the current
position. Information on the closest item is shown in the upper right corner, and the list of items added to the cart is
shown in the lower right corner. The caption to be followed is presented at the bottom of the screen.

sible contextual captions about supermarket shop-
pers. Before they began, we provided them with
three example captions to ensure appropriateness
for our task. In the second phase, six participants
were asked to create trajectories using a visual in-
terface (Fig. 3) based on 10 randomly selected cap-
tions — half synthetic and half created by the par-
ticipants in the first phase. On the visual interface,
the current position of a participant was marked
by a green rectangle, with details about the item
adjacent to their current location shown in the top
right corner and items currently added to their cart
displayed in the bottom right. Participants were
allowed to navigate in the store map and add or re-
move adjacent items from their cart using keyboard
input. Each session began from a fixed location and
ended when participant reached the cashier regis-
ter, tracking whole movement trajectories and final
purchases.

Two distinct store maps were adopted in the ex-
periment to validate the generalization ability of
trained models: one used for training data and an-
other as a completely new environment. Partici-
pants first completed two pilot rounds on one map

Captions
Synthesized Human-Created Total

Map
Seen 15 15 30
Unseen 15 15 30
Total 30 30 60

Table 3: Statistics on human-created trajectory data.
Participants produced trajectory data with a carefully
controlled set of synthesized/human-created captions
and seen/unseen maps.

to familiarize themselves with the interface and
layout, followed by five main rounds on this map
for data collection. They then repeated the same
process on the other map. The set and order of
captions, as well as store maps, were randomized
across participants. Each experiment lasted about
one hour. Through this experimental procedure,
we collected 60 sufficiently diverse trajectory data
points from real humans, as summarized in Tab. 3.

[RQ.2] Can the model generalize to human-
created trajectories/captions? Tab. 4 shows the
quantitative results for human trajectories data,
compared between when ground-truth captions are
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Synthesized Captions Human-created Captions

Models R-1 R-2 R-L BS-p BS-r BS-f1 R-1 R-2 R-L BS-p BS-r BS-f1

T5-Small 0.080 0.020 0.066 0.529 0.520 0.539 0.055 0.006 0.047 0.602 0.593 0.613
T5-Base 0.303 0.101 0.259 0.866 0.875 0.858 0.136 0.006 0.122 0.838 0.837 0.839

GPT-3.5 0.383 0.105 0.246 0.898 0.898 0.899 0.291 0.041 0.189 0.877 0.880 0.875
GPT-4 0.376 0.097 0.234 0.897 0.894 0.900 0.309 0.037 0.188 0.878 0.877 0.879
Llama2 0.389 0.137 0.272 0.886 0.876 0.898 0.254 0.032 0.163 0.861 0.855 0.868

Ours w/ 8 paraphrase 0.436 0.163 0.329 0.914 0.920 0.907 0.306 0.041 0.205 0.883 0.890 0.876

Table 4: Performance comparisons between synthesized and human-created captions on real human trajectories.

Seen Store Map Unseen Store Map

Models R-1 R-2 R-L BS-p BS-r BS-f1 R-1 R-2 R-L BS-p BS-r BS-f1

T5-Small 0.054 0.008 0.047 0.537 0.528 0.547 0.081 0.018 0.065 0.594 0.584 0.605
T5-Base 0.220 0.055 0.192 0.851 0.855 0.848 0.219 0.052 0.189 0.852 0.856 0.849

GPT-3.5 0.344 0.079 0.224 0.888 0.890 0.887 0.329 0.067 0.210 0.887 0.887 0.887
GPT-4 0.346 0.070 0.215 0.889 0.887 0.890 0.339 0.064 0.207 0.886 0.884 0.888
Llama2 0.330 0.091 0.225 0.875 0.869 0.883 0.314 0.077 0.211 0.872 0.862 0.883

Ours w/ 8 paraphrase 0.379 0.109 0.273 0.900 0.907 0.893 0.364 0.095 0.260 0.897 0.904 0.890

Table 5: Performance comparisons between seen and unseen store maps on real human trajectories.

synthesized or created by human participants. Here
we evaluated T5-Small and T5-Base, GPT-3.5/GPT-
4/Llama2 each with 4 examples for in-context learn-
ing, and our captioning model with 8 paraphrases
based on the previous result. Overall, our cap-
tioning model generalized well to those human-
created data, with acceptably slight degradation
of performances. Again, our model demonstrates
comparable performance to GPT-3.5/4 and Llama2
despite its much smaller number of parameters.
It is inevitably difficult to match generated cap-
tions with human-created ground truths exactly
at word/phrase levels, as indicated by degraded
ROUGE scores. Nevertheless, the semantic consis-
tency measured by BERT Scores remains as high
as that for synthesized captions, indicating the prac-
tical usability.

[RQ.3] Can the model generalize to unseen
maps? Tab. 5 compares the performance between
when store maps are seen (i.e., identical to those for
training data) and unseen. For all models, we con-
firmed negligible performance degradation. This is
practically beneficial, as major retailers often oper-
ate multiple stores that can have different layouts
and item availability, where captioning systems
should be easy to deploy.

4.4 Qualitative Results and Failure Cases

Tab. 6 illustrates some qualitative results of suc-
cess and failure cases. If successful, our caption-
ing model provides an accurate background con-
text such as “have a list of items to buy” (success
cases 1 and 2). Based on additional information
attached to items such as price and quantity, it is
also possible to predict customer’s preference, e.g.,

“prioritizes quality over price and prefers fresh and
unprocessed items” (success case 1) and “customer
who is environmentally conscious” (success case 2,
against ground-truth label: “environmentally con-
scious customer”).

Human-created captions can sometimes include
demographic information of target individuals,
such as “newly married couple customer,” which
are difficult to predict. It is also hard to generate
sentences like “If the main focus is fish, they buy
more vegetables, and if the main focus is meat, they
buy wine and other items together.” (the ground-
truth label in the failure case). Still, our model
appropriately infers the customer’s preference, e.g.,

“willing to pay a premium for quality” and “cus-
tomer who is passionate about food”. Additionally,
unlike success cases 1 and 2, our model does not
mention that the customer has the predetermined
item list. This is consistent with the redundant
trajectory of the failure case, suggesting that our
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Success Case 1 (Synthesized trajectories and captions)

Mixed Pork Cuts, Seasoned Turkey, Mixed Sausages, 
Seasoned Lamb Chops, Cucumbers, Potatoes, Onions, 
Onion Powder, Paprika, Premium Mango, Organic Kiwi, 
Premium Papaya, High-end Matcha Latte

Label Customer is shopping for plant-based items. The customer has a predetermined
list of vegan products like fruits, vegetables, grains, and dairy alternatives. The
customer values quality over price and prefers organic and fresh items.

GPT-4 The customer is a health-conscious shopper who prefers organic and high-quality
products. They usually shop for fresh fruits and vegetables, and they also enjoy
premium snacks like mixed nuts. They prefer to season their food themselves,
often purchasing basic seasonings like salt and pepper. They also enjoy high-
end green tea, indicating a preference for natural and healthy beverages. This
customer values quality over quantity and is willing to pay a premium for organic
and luxury items.

Ours A customer who is conscious of their health and enjoys eating fresh and unpro-
cessed items. They have a predetermined list of purchases, which includes fresh
fruits, vegetables, and grains. The customer prioritizes quality over price and
prefers fresh and unprocessed items.

Success Case 2 (Human-created trajectories and synthesized captions)

Organic Kiwi, Laundry Detergent, High-end Green Tea, 
Luxury Butter

Label An environmentally conscious customer who prioritizes sustainable and eco-
friendly products. The customer usually comes with a predetermined list of
purchases, which includes items like organic produce, fair-trade coffee, and
eco-friendly cleaning products. The customer is willing to pay more for products
that align with their values and prefer unprocessed goods.

GPT-4 A health-conscious and high-end consumer who values quality over quantity.
The customer usually purchases organic fruits, high-end beverages, and luxury
dairy products. The customer also buys household goods, indicating a preference
for maintaining a clean and organized home. The customer’s shopping habits
suggest a preference for luxury items and a willingness to pay more for high-
quality products.

Ours A customer who is environmentally conscious and values eco-friendly products.
They have a predetermined list of purchases, focusing on eco-friendly products
and eco-friendly alternatives. Quality is their primary concern, and they prefer
eco-friendly products.

Failure Case (Human-created trajectories and captions)

Luxury Broccoli, Garlic, Premium Papaya, Premium Steak, 
Mixed Seafood Soup, Mozzarella Cheese, Greek Yogurt, 
Sparkling Wine, Red Wine, Mixed Fruit Snacks, Garlic 
Powder, Italian Seasoning, Mixed Salad

Label Newly married couple customer. They both want to enjoy cooking, so they look
at and buy from a wide range of genres. They decide to a certain extent which
days are fish-centered, meat-centered, and so on. If the main focus is fish, they
buy more vegetables, and if the main focus is meat, they buy wine and other
items together. Since they both work, they do not compromise on price.

GPT-4 A gourmet food enthusiast who enjoys cooking and experimenting with different
recipes. They often shop for a variety of fresh vegetables, premium meats, and
seafood. They also have a preference for luxury fruits and dairy products. They
enjoy pairing their meals with a selection of wines and often indulge in snacks.
They usually shop with a specific recipe in mind, often inspired by international
cuisines.

Ours A customer who is passionate about food and is willing to pay a premium for
fresh produce, meats, and dairy products. Their shopping list consists of a
mixture of fresh produce, meats, and dairy products. They are willing to pay a
premium for fresh produce and are willing to pay a premium for quality.

Table 6: Qualitative comparisons of ground-truth and generated captions. The movement trajectory is shown as a
solid red line, with the purchase list displayed below. Colored rectangles represent shelves for different categories
of items.

model correctly inferred the customer’s decision-
making tendencies.

4.5 Limitations and Practical Implications
Our approach has a few limitations. As we obtain
a captioning model by fine-tuning pretrained lan-
guage models, its text generation capability would
inevitably rely on that of the base model. Namely,

our model cannot handle extremely long shopping
activities beyond the maximum input token length
for the base model. Moreover, there is no guarantee
that the model won’t hallucinate contexts that are
totally irrelevant to a target individual. In practical
system setup, it is crucial to post-process model
outputs, for example, based on heuristic rules or
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manual inspection, so as not to present inappropri-
ate captions to users. Recent work that seeks to
mitigate hallucination (Mündler et al., 2024) would
also help. Finally, similar to web search engines,
it is necessary to allow for an opt-out option on
the customer side for the use of inferred contextual
captions in practical applications.

5 Related Work

Human movement analysis. Studies on human
movements can be found in various research
contexts, such as urban engineering (Pappalardo
et al., 2016; Askarizad and Safari, 2020), traf-
fic simulation (Doniec et al., 2008; Duives et al.,
2013), autonomous driving (Camara et al., 2021),
tourism (Li et al., 2018; Payntar et al., 2021), and
public health (Kraemer et al., 2020). Concrete tech-
niques include pattern mining (Lam et al., 2017;
Ghose et al., 2019), semantic mining (Parent et al.,
2013), trajectory prediction (Rudenko et al., 2020),
and crowd analysis (Zhou et al., 2020). Compared
to these prior arts, our work is the first to explore
the potential of recent progress in large language
modeling to empower human movement analysis
and its application to retail scenarios.

Human activity captioning. Captioning human
activities has been addressed mainly in computer
vision, as a part of image captioning (Hossain et al.,
2019) and video captioning (Aafaq et al., 2019).
Continuous efforts have been made to develop
large-scale multimodal datasets that involve hu-
man activity data and their captions (Krishna et al.,
2017; Grauman et al., 2023). Nevertheless, much
recent work seeks to exploit rich representations of
human activities in visual data, which is not appli-
cable to our task where only location trajectories
and limited semantic information are available.

Generative models as data generators. Finally,
there is a growing trend to utilize generative mod-
els to construct synthetic datasets. For example,
generative adversarial networks and diffusion mod-
els have been used in computer vision to create or
augment visual training data (Karras et al., 2019;

Nichol et al., 2022). LLMs have been used more
widely for dataset generation, such as generating
annotations (Feng et al., 2021; Zhang et al., 2023;
Flamholz et al., 2024; Sainz and Rigau, 2021),
ranking (Hou et al., 2024; Qin et al., 2024; Sun
et al., 2023), and textual datasets (Chen et al., 2023;
Chung et al., 2023). Some recent work uses LLMs
as virtual agents that produce realistic behaviors in
simulated worlds (Park et al., 2023; Kaiya et al.,
2023). Our data synthesis framework is unique in
terms of integrating LLMs and trajectory planners
to produce diverse captioned human trajectories.

6 Conclusion

We presented a new task named contextual cap-
tioning of human movement trajectories, and a
dedicated learning-by-synthesis framework, i.e.,
TEXT2TRAJ2TEXT, with a particular focus on re-
tail scenarios. We leverage LLMs to synthesize
realistic and diverse collection of contextual cap-
tions as well as concrete trajectories on store maps.
Our captioning model fine-tuned on these synthe-
sized data demonstrated equal or even better perfor-
mance than existing LLMs with a higher number of
parameters. Moreover, the model well generalizes
to human-created trajectories and captions.

Although this work focused exclusively on retail
scenarios, we believe that the proposed task and
framework would open up a new opportunity for
adopting neural language generation techniques to
various applications that need automated human
activity understanding. This also raises new tech-
nical challenges such as effective encoding of very
long trajectory data as input to language models
and efficient inference of learned models to enable
online captioning.
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A Prompt for Data Synthesis

STEP 1: Instruction for generating each contextual caption S

System: Your task is to generate descriptions of various customer intentions within a supermarket environment,
elucidating their purchasing preferences and habits meticulously.

Human: Kindly generate {samples} unique descriptions of customer intentions, ensuring each one is varied, embodying
a range of customer profiles and shopping objectives. Every description should be comprehensively structured to
include the following components:

• Outline the overarching characteristics defining the customer’s shopping intention.

• Identify the categories of products the customer is likely to purchase or abstain from, such as a preference for
meat over seafood, or vegetables over fruits.

• Clarify whether the customer arrives with a predetermined list of purchases or if they are likely to explore and
decide while shopping.

• Elaborate on the customer’s family structure,such as being a single individual, a couple, or part of a larger family,
and how this influences their purchasing decisions.

• Highlight customer’s preferences regarding the price and quality of products, specifying if they lean towards
high-end items, discounted quality goods, or more affordable, lower-quality products.

• Describe the customer’s preferences concerning the state of the products, such as pre-cut, seasoned, etc.

• If there is a dish the customer would like to cook, describe it. If not, please state that you do not.

• It is imperative to maintain strong consistency between the customer’s "intention" and "num_item_to_buy". For
example, a family of five might buy a lot of items at once. These customers usually buy in bulk, getting many
products in one visit. On the other hand, some customers come to the supermarket often, but they only buy a few
things each time.

• Ensuring a close alignment between a customer’s "intent" and their ’purchase_consideration’ is crucial. For
instance, customers who are uncertain about their purchase choice or who explore various options typically exhibit
a higher level of "purchase_consideration". In contrast, customers who have a pre-determined purchase decision
before visiting the store usually show lower "purchase_consideration".

Rule:
Ensure all responses maintain the prescribed format and diversity in customer intentions is robustly represented! You
must persist in generating sentences without cessation until you have produced at least {samples} intentions in total!!!

Example:

Figure 4: Prompt used for Step 1 in the Text2Traj phase.
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STEP 2: Instruction for generating an abstract action plan consistent with each contextual caption
generated in STEP 1.

System: As an adept AI, your task is to create a shopping plan for a customer, using their stated intentions, the total
number of items they intend to purchase, and a provided list of product categories.

Human: Your role is to allocate the total number of items the customer plans to purchase across the given product
categories. This allocation should form a cohesive plan that aligns with the customer’s intentions and preferences.

Rule: Ensure all responses maintain the prescribed format! The total number of items in the shopping plan should be
approximately {num_items}. The distribution of products across categories must closely align with the customer’s
intention.

# Customer’s intention {intention}

# category List {category_list}
{format_instructions}

Figure 5: Prompt used for Step 2 in the Text2Traj phase.

STEP 3: Instruction for generating item lists.

System: As a proficient AI assistant, your task is to curate two lists of products that align with the customer’s intentions.
You have access to detailed information, including the customer’s intentions, product descriptions, the quantities they
plan to purchase, and their level of purchase consideration.

Human: Your goal is to create two lists based on the provided information: 1. "inclined_to_purchase": Products that the
customer is highly likely to purchase. 2. "show_interest": Products the customer might consider purchasing or show
interest in, taking into account both the customer’s intentions and their "purchase_consideration" score.

Guidelines:

• Purchases are planned only for products in the {category} category.

• Ensure that the total number of products in the "inclined_to_purchase" list for the {category} category is
approximately {num_purchase_items}.

• Ensure that the total number of products in the "show_interest" list for the {category} category is less than
{num_purchase_items}.

• Align the "inclined_to_purchase" items in the {category} category with the customer’s intentions.

• Generate the "show_interest" list by carefully considering both the customer’s intentions and their "pur-
chase_consideration" score, which ranges from 1 to 5. If the purchase_consideration score is low, focus on a
smaller "show_interest" list. Conversely, if the score is high, the "show_interest" list can be more extensive but
should remain below {num_purchase_items} in total.

Tips:

• Pay close attention to the item descriptions and customer intentions provided.

### Customers intention {intention}
### "purchase_consideration" (1-5) {purchase_consideration}
### Item description {item_description}
{format_instructions}

Figure 6: Prompt used for Step 3 in the Text2Traj phase.
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