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Abstract
Dominant pre-trained language models (PLMs)
have demonstrated the potential risk of memo-
rizing and outputting the training data. While
this concern has been discussed mainly in En-
glish, it is also practically important to focus on
domain-specific PLMs. In this study, we pre-
trained domain-specific GPT-2 models using
a limited corpus of Japanese newspaper arti-
cles and evaluated their behavior. Experiments
replicated the empirical finding that memoriza-
tion of PLMs is related to the duplication in the
training data, model size, and prompt length,
in Japanese the same as in previous English
studies. Furthermore, we attempted member-
ship inference attacks, demonstrating that the
training data can be detected even in Japanese,
which is the same trend as in English. The
study warns that domain-specific PLMs, some-
times trained with valuable private data, can
“copy and paste” on a large scale.1

1 Introduction

As pre-trained language models (PLMs) have be-
come increasingly practical, critical views on the
memorization of PLMs are emerging in security
and copyright (Bender et al., 2021; Bommasani
et al., 2021; Weidinger et al., 2022). Prior research
has indicated that neural networks have the prop-
erty of unintentionally memorizing and outputting
the training data (Carlini et al., 2019, 2021, 2023;
Lee et al., 2023; Yu et al., 2023). In particular,
Carlini et al. (2021) demonstrated that memorized
personal information can be detected from GPT-2
models (Radford et al., 2019). This can lead to an
invasion of privacy, reduced utility, and reduced
ethical practices (Carlini et al., 2023). If there is no
novelty in the generation, there would be a problem
with copyright (McCoy et al., 2023; Franceschelli
and Musolesi, 2023).

1An early version of this study was accepted for non-
archival track of the Fourth Workshop on Trustworthy Natural
Language Processing (Ishihara, 2024).

Research on memorization of PLMs has been
intensively advanced, and empirical findings have
been reported (Ishihara, 2023). Initial studies re-
main on the qualitative side (Carlini et al., 2021),
and subsequent studies have begun to focus on
quantitative evaluations. According to one of the
first comprehensive quantitative studies (Carlini
et al., 2023), the memorization of PLMs is strongly
related to the string duplications in the training
set, model size, and prompt length. Benchmark-
ing of memorized string detection has also pro-
gressed, including constructing evaluation sets (Shi
et al., 2024; Duarte et al., 2024; Kaneko et al., 2024;
Duan et al., 2024).

These studies were conducted in English, and
their reproducibility is uncertain under domain-
specific conditions. Domain-specific PLMs are
sometimes built on rare private corpora and have
smaller pre-training corpora than general PLMs.
When the data size is small, models tend to be
pre-trained in multiple epochs. However, increas-
ing the number of epochs is equivalent to string
duplications, which risks increased memorization.
Furthermore, security and copyright considerations
become increasingly important, as the memorized
contents tend to be more specific than general cor-
pora. We, therefore, pose the following practically
significant questions about domain-specific PLMs:
how much of the pre-training data is memorized,
and is the memorized data detectable?

This study is the first attempt to quantify the
memorization of domain-specific PLMs using a
limited corpus of Japanese newspaper articles. Our
research objective is to identify the memorization
properties of domain-specific PLMs. First, we de-
veloped a framework for quantifying the memo-
rization and detecting training data of PLMs us-
ing Japanese newspaper articles (Section 3). We
then pre-trained domain-specific GPT-2 models
and quantified their memorization (Section 4). Fur-
thermore, we addressed membership inference at-
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tacks (Shokri et al., 2017), which predicts whether
the output string was included in the training data
(Section 5).

The main findings and contributions of this paper
are summarized as follows.

• Quantification: Japanese PLMs were demon-
strated to sometimes memorize and output the
training data on a large scale. Experiments re-
ported that memorization was related to dupli-
cation, model size, and prompt length. These
empirical findings, which had been reported
in English, were found for the first time in
Japanese.

• Detection: Experiments demonstrated that the
training data was detected from PLMs even
in Japanese. The membership inference ap-
proach suggested in English was successful
with the AUC (area under the ROC curve)
score of approximately 0.6. As well as the
empirical findings of memorization, the more
duplicates and the longer the prompt, the eas-
ier the detection was.

2 Related Work

This section reviews related work and highlights
the position of this study.

2.1 Memorization of PLMs
Memorization of PLMs refers to the phenomenon
of outputting fragments of the training data. Re-
search on memorization is diverse, with various
definitions and assumptions. We focus on autore-
gressive language models, such as the GPT fam-
ily (Radford et al., 2018, 2019; Brown et al., 2020;
Black et al., 2022). These are promising models
and major research targets.

Definition of memorization. Many studies have
adopted definitions based on partial matching of
strings (Carlini et al., 2021, 2023; Kandpal et al.,
2022). This definition of eidetic memorization as-
sumes that memorized data are extracted by provid-
ing appropriate prompts to PLMs. Another defini-
tion of approximate memorization considers string
fuzziness. For similarity, Lee et al. (2022) used
the token agreement rate, and Ippolito et al. (2023)
used BLEU.

Our study designed the first of these definitions
in Japanese and reported the experimental results.
Both definitions of memorization are ambiguous in
languages without obvious token delimiters such as

Japanese. Definitions based on the concepts of dif-
ferential privacy (Jagielski et al., 2020; Nasr et al.,
2021) and counterfactual memorization (Zhang
et al., 2023) are beyond the scope of this study.

Issues with memorization of PLMs. Training
data extraction is a security attack related to the
memorization of PLMs (Ishihara, 2023). Many
studies follow the pioneering work of Carlini et al.
(2021). They reported that a large amount of in-
formation could be extracted by providing GPT-2
models with various prompts (generating candi-
dates) and performing membership inference. In
particular, when dealing with PLMs with sensitive
domain-specific information such as clinical data,
the leakage of training data can lead to major prob-
lems (Nakamura et al., 2020; Lehman et al., 2021;
Jagannatha et al., 2021; Singhal et al., 2023; Yang
et al., 2022). It is also necessary to discuss from
the perspective of human rights, such as the right
to be forgotten (Li et al., 2018; Ginart et al., 2019;
Garg et al., 2020).

There has been a traditional research area for
evaluating the quality of text generation, but few
studies have focused on novelty (McCoy et al.,
2023). Novelty in text generation is directly re-
lated to the discussion of copyright (Franceschelli
and Musolesi, 2023). Lee et al. (2023) analyzed
plagiarism patterns in PLMs using English domain-
specific corpora.

The memorization of PLMs has also been identi-
fied as data contamination damaging the integrity
of the evaluation set. Several studies have identified
the inclusion of evaluation sets in the large datasets
used for pre-training, which has led to unfairly high
performance (Magar and Schwartz, 2022; Jacovi
et al., 2023; Aiyappa et al., 2023).

Our study of quantifying memorization and per-
forming membership inference would serve to con-
front these issues precisely in Japanese.

2.2 Quantifying Memorization and Detecting
Training Data of PLMs

Recent studies have quantitatively evaluated mem-
orization and related issues.

Empirical findings. As mentioned in Section 1,
empirical findings in English are known that the
memorization of PLMs is strongly related to the
string duplications in the training set, model size,
and prompt length (Carlini et al., 2021). There
are supportive reports for this finding for duplica-
tion (Lee et al., 2022; Tirumala et al., 2022; Lee
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et al., 2023; Ippolito et al., 2023; Kandpal et al.,
2022; McCoy et al., 2023), model size (Huang
et al., 2022; Kandpal et al., 2022; Lee et al., 2023;
Karamolegkou et al., 2023; Ippolito et al., 2023;
McCoy et al., 2023), and prompt length (Huang
et al., 2022; Kandpal et al., 2022).

Evaluation sets for quantification. We describe
the quantification methods used in the pioneering
study (Carlini et al., 2023) and point out the poten-
tial for improvement. Owing to inference time lim-
itations, it is impossible to evaluate memorization
using all of the training data. For example, Carlini
et al. (2023) targeted GPT-Neo models (Black et al.,
2022) and constructed an evaluation set by sam-
pling 50,000 samples from the Pile dataset (Gao
et al., 2020) used for pre-training. Sampling and
string splitting are unavoidable during the construc-
tion of the evaluation set, as shown in Figure 1.
Each sampled sentence was divided into prompts
of each length from 50 to 500 tokens at the begin-
ning, with the following 50 tokens as references.

However, this splitting does not consider the im-
portance of references. In other words, it does not
consider whether references are protected subjects
against security concerns. We argue that using
newspaper articles can provide real-world settings
in data splitting via their paywalls. Newspaper pay-
wall restricts access to online content through a
paid subscription (Myllylahti, 2016). Online news
services with paid subscription plans often publish
newspaper articles only at the beginning, with the
rest of the text available only to their members.
This system creates a real-world setting in which
there is a private part following the public part
as illustrated in Figure 2. Using private parts as
references can achieve the splitting in which pub-
lishers hide important information that they want
to preserve.

Newspaper paywalls are often discussed in the
literature tied to journalism. For example, Kim et al.
(2020) examined the impact of newspaper paywalls
on daily page views and differences among pub-
lishers. Several other studies were conducted in the
context of publishers’ digital strategies (Myllylahti,
2014; Carson, 2015; Sjøvaag, 2016).

Evaluation sets for training data detection. To
evaluate the detection of memorized training data
from PLMs, it is necessary to have data that is guar-
anteed not to have been used for pre-training. A
promising approach is to use new texts generated
after constructing PLMs. Shi et al. (2024) con-

This is the beginning of the sampled 
sentence ……

Training set

Prompt Reference

Sampling

L=50 tokens 
L=100 

Splitting

…
L=150 

…

New texts

Figure 1: The existing method for constructing an eval-
uation set for quantifying memorization and detecting
training data. This procedure requires sampling data
from the training set used to pre-train and splitting the
text into prompts and references. Positive examples are
created from training data and negative examples from
new text that are guaranteed not to be training data.

structed a dataset based on the creation date of the
Wikipedia articles. Duarte et al. (2024) developed
a dataset from the publication years of 165 books.

Along with evaluation sets, detection methods
have been explored. For example, Shi et al. (2024)
proposed Min-k% Prob, which extracts k % tokens
with high log-likelihood and uses the average log-
likelihood for detection. Min-k% Prob is regarded
as one of the current prevailing methods (Kaneko
et al., 2024; Zhang et al., 2024; Meeus et al., 2024).
Kaneko et al. (2024) introduced SaMIA, which
generates multiple candidates and calculates the
average of the ROUGE-1 (Lin, 2004) without us-
ing the output of likelihood. The AUC score and
TPR@10%FPR (True Positive Rate when False
Positive Rate is 10 %) are used as the metrics (Mat-
tern et al., 2023; Shi et al., 2024; Kaneko et al.,
2024). Note that Carlini et al. (2022) recommended
reporting TPR when FPR is low in membership in-
ference assessments.

We use Japanese newspaper articles to construct
the evaluation set and perform the existing detec-
tion method. Newspaper articles are generated
daily, ensuring data is not used for pre-training.
Given the widespread use of newspaper articles in
many languages, our proposal has the appeal of
high versatility in low-resource languages.

3 Problem Statement & Methodology

This section explains the problem addressed in this
study and the methodology (Figure 2). We use a
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Prompt

Pre-training Generation
Candidate

■■■■■■■■
■■■■■■■■
■■■■■ ……
■■■■■■■■
■■■■■■■■
■■■■■■■■

Public part is a prompt.

Newspaper paywall:

Private part can be used for evaluation.
Reference

Training set

Evaluation

New texts

Figure 2: The procedure of quantifying the memorization and training data detection of PLMs in this study. First,
we pre-trained GPT-2 models using newspaper articles as a training set. We then generated strings using the public
part as a prompt. The memorization was quantified using the private part. We also tackle the training data detection
task, using articles used for pre-training as positive examples and not as negative examples.

methodology similar to that in Carlini et al. (2023).

3.1 Constructing Evaluation sets.

As described in Section 2, we construct evaluation
sets using newspaper articles and paywalls.

Evaluation sets for quantification. To quan-
tify memorization, sentences need to be split into
prompts and references. We propose to use the
beginning of the newspaper article (the public part)
as a prompt and the continuation in the paywall
(the private part) as a reference.

Evaluation sets for training data detection.
Positive and negative examples are required to mea-
sure the performance of training data detection. We
propose to use the newspaper articles used to con-
struct the PLMs as positive examples and those
published later as negative examples.

3.2 Quantifying Memorization

The three steps to quantify memorization are de-
scribed.

Step 1. Preparing PLMs. First, as a preparation,
PLMs are built using all sentences containing both
public and private parts of newspaper articles.

Step 2. Generating candidate. For a given arti-
cle in the evaluation set, we consider the string in
the public part to be prompt and generate a string
that follows.

Step 3. Calculating similarity. The degree of
memorization is evaluated by comparing the gen-
erated string with the private part. We designed
two Japanese definitions of memorization of PLMs.
While previous studies were based on English
words, we must consider that there are no spaces

between words in Japanese. The definitions of
memorization in this study are as follows.

• The eidetic memorization is measured by the
number of forward-matching characters. This
is a definition that is independent of the prop-
erties of the word segmenter and tokenizer.
Therefore, it has advantages in dealing with
languages without explicit word boundaries,
such as Japanese. As this study uses Japanese
newspaper articles and their paywall, we had
to use a derivation slightly different from the
original eidetic memorization. It is a deriva-
tion of the original definition with the restric-
tion of forward-matching characters.

• The approximate memorization is measured
by a normalized Levenshtein distance (Yujian
and Bo, 2007). The Levenshtein distance is a
measure of the number of characters required
to match one string to the other. We convert
this value to similarity by dividing it by the
number of characters of the higher value.

3.3 Detecting Training Data.
We also attempt to detect memorized training data.
In this problem setting, there are two differences
from quantifying memorization.

• The reference is not available. This is because
the situation where an attacker knows the ref-
erence is not realistic.

• The likelihood of PLMs is available. We can
get not only the output string but also the like-
lihood.

Therefore, instead of Step 3 in which memo-
rization is quantified in terms of string similarity
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between the candidate and the reference, we estab-
lish Step 3’ in which membership probability is
calculated.

Step 3’. Calculating membership probability.
For the detection method, we use Min-k% Prob
for k in {10, 20, 30, 40, 50, 60}. As described in
Section 2, Min-k% Prob calculates the member-
ship probability by extracting and averaging k %
tokens with high log-likelihood. The AUC score
and TPR@10%FPR are reported in common with
the previous studies.

4 Experiment 1: Quantification

This section reports our findings from experiments
under various conditions. First, multiple PLMs and
the evaluation set were prepared, and then mem-
orization was quantified. We analyzed the results
from a quantitative and qualitative perspective.

4.1 Preparing Evaluation Set

As a dataset containing information on newspaper
paywalls, we selected the corpus of Japanese news-
paper articles provided by Nikkei Inc2. The news-
paper articles were covered from March 23, 20103

to December 31, 2021. In this corpus, the shorter
of the first 200 words or half the number of words
in the entire article is defined as the public part.
This corpus was filtered to include approximately
1-2 billion (B) tokens. Note that there are cases in
which the entire article, including the private part,
is made public according to various circumstances
such as the importance of the topics.

We randomly sampled 1,000 articles published
in 2021 as our evaluation set. The number of char-
acters in the public part was approximately 200
words in most articles; however, some were shorter.
Only a minority (25 articles) ended the public part
using punctuation marks4. The private parts are
extremely long for some articles, and we extracted
them until the end of the first sentence5 to simplify
the problem. Histograms of the number of charac-
ters in the public and private part in the constructed
evaluation set are shown in Figure 3 and 4.

2https://aws.amazon.com/
marketplace/seller-profile?id=
c8d5bf8a-8f54-4b64-af39-dbc4aca94384

3Launch date of Nikkei’s online edition
4Japanese punctuation mark is “。”.
5We used bunkai (https://github.com/megagonlabs/

bunkai).

Figure 3: Histogram of the number of characters in
the public part in the evaluation set. Most articles are
around 200 words, but some are shorter.

Figure 4: Histogram of the number of characters up to
the end of the first sentence in the private part of the
evaluation set. Nine articles exceeded 200 characters
and were therefore skipped in the visualization.

4.2 Step 1: Preparing PLMs
For comparison, we used both domain-specific and
general GPT-2 models in our experiments.

Domain-specific GPT-2. The domain-specific
GPT-2 models were pre-trained using the full text
of the corpus. The parameter size is 0.1 B (117 mil-
lion). The model was saved for multiple training
epochs: 1, 5, 15, 30, and 60. In the pre-training
of the domain-specific GPT-2 models, the loss to
the validation set was 3.33 at 20 epochs, dropping
to 3.30 at 40 epochs and slightly worse to 3.35
at 60 epochs. We stopped the pre-training at 60
epochs due to this observed loss. The articles in
the evaluation set were also included in the corpus.
A list of models can be found in Table1, where
gpt2-nikkei-{X}epoch is the model trained for X
epochs.

Previous research in English (Carlini et al., 2023)
using models from 0.1 B to 6 B identified compa-
rable trends in training data overlap and prompt
length across all models. Therefore, we consider
the experiments with the 0.1 B worthwhile. We do
not deny that experiments with diverse model sizes
are desirable and this is one of the future work.

We used Hugging Face Transformers (Wolf et al.,
2020) for pre-training6 and the unigram language

6We used Transformers 4.11 and TensorFlow 2.5.

https://aws.amazon.com/marketplace/seller-profile?id=c8d5bf8a-8f54-4b64-af39-dbc4aca94384
https://aws.amazon.com/marketplace/seller-profile?id=c8d5bf8a-8f54-4b64-af39-dbc4aca94384
https://aws.amazon.com/marketplace/seller-profile?id=c8d5bf8a-8f54-4b64-af39-dbc4aca94384
https://github.com/megagonlabs/bunkai
https://github.com/megagonlabs/bunkai
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model name parameter size eidetic approximate
aggregation - max average average median
gpt2-nikkei-1epoch 0.1 B 25 0.560 0.190537 0.120345
gpt2-nikkei-5epoch 0.1 B 25 0.839 0.229408 0.142857
gpt2-nikkei-15epoch 0.1 B 48 0.788 0.236079 0.142857
gpt2-nikkei-30epoch 0.1 B 48 0.948 0.241923 0.149627
gpt2-nikkei-60epoch 0.1 B 48 0.874 0.238184 0.145833
rinna/japanese-gpt2-small 0.1 B 12 0.580 0.181397 0.115385
rinna/japanese-gpt2-medium 0.3 B 15 0.657 0.205017 0.129032
abeja/gpt2-large-japanese 0.7 B 19 0.760 0.210954 0.136364
rinna/japanese-gpt-1b 1.3 B 18 0.882 0.219001 0.142857

Table 1: Experimental results of memorization for each model. As the number of epochs increases, memorization
enhances. The domain-specific GPT-2 models memorized their training data more than the other models. The
memorization of general GPT-2 models increased along with the parameter size. The parameter size B stands for
Billion.

model (Kudo, 2018) as the tokenizer. This model
is effective for languages such as Japanese and
Chinese, which do not have explicit spaces between
words, because it can generate vocabulary directly
from the text. The vocabulary size was 32,000.
The hyperparameters were set up with reference to
the Transformers document7. Specifically, we set
the learning rate to 0.005, batch size to 64, weight
decay (Loshchilov and Hutter, 2019) to 0.01, and
the optimization algorithm to Adafactor (Shazeer
and Stern, 2018). Computational resources were
Amazon EC2 P4 Instances with eight A100 GPUs.

General GPT-2. Models pre-trained on different
datasets were also included for comparison. This
is because it is possible for the strings generated to
coincide by chance, regardless of the nature of the
memorization. We selected models with parameter
sizes of 0.1, 0.3, 0.7, and 1.3 B. The model names
in Table 1 are the public names of the Hugging
Face Models8. The models were pre-trained on the
Japanese Wikipedia9 and CC-10010.

4.3 Step 2: Generating Candidate
We generated a single string from a single prompt
using a greedy method that produces the word with
the highest conditional probability each time. Ex-
ploring decoding strategies is one of the research
questions for the future.

4.4 Step 3: Calculating Similarity &
Quantitative Analysis

For all models, we computed the eidetic and ap-
proximate memorization of 1,000 articles in the

7https://github.com/huggingface/transformers/
tree/main/examples/flax/language-modeling

8https://huggingface.co/models
9https://meta.wikimedia.org/wiki/Data_dumps

10https://data.statmt.org/cc-100/

prompt length eidetic approximate
-116 0.892157 0.235276

116-187 1.010101 0.279301
187-198 0.734694 0.224895
198-199 0.864865 0.216248
199-200 1.454545 0.295147

Table 2: Average eidetic and approximate memorization
when the evaluation set was divided into 200 samples.
The chunk with the longest prompts had the largest
memorization for the model of 60 epochs.

evaluation set (Table 1). For clarity, we illustrate
the change in approximate memorization with each
epoch in the domain-specific GPT-2 models in Fig-
ure 5. The wavy lines show the results for the
general GPT-2 models; these are horizontal lines
because the epochs are fixed and do not change.

Figure 5: Visualization of the average value of approxi-
mate memorization. Similar results were confirmed for
other metrics.

Although the model at 30 epochs can not be
regarded as overfitted, a large memorization was
observed. A previous study (Tirumala et al., 2022)
also reported the memorization of PLMs could oc-
cur before the overfitting. The low average value
is due to the large number of samples where no

https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling
https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling
https://huggingface.co/models
https://meta.wikimedia.org/wiki/Data_dumps
https://data.statmt.org/cc-100/
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public / private / model name strings eidetic approximate
public part (...) 年明け以降の新型コロナウイルスの新規感染者数

が大幅に増加するとの懸念が一定の重荷になってい
る。 [EN] (...) There is a certain burden of concern that the
number of new cases of COVID-19 will increase significantly
after the new year.

- -

private part 前引け後の東証の立会外で、国内外の大口投資家が
複数の銘柄をまとめて売買する「バスケット取引」は
約65億円成立した。 [EN] Approximately 6.5 billion yen
in “basket trading,” in which large investors from Japan and
abroad buy and sell multiple stocks at once, was concluded
outside the TSE auction after the previous close.

- -

gpt2-nikkei-1epoch JPX日経インデックス400と東証株価指数(TOPIX)も下
落している。

0 0.052632

gpt2-nikkei-5epoch 市場からは「きょうは2万9000円～2万9000円の範囲
で、この水準を上抜けるには戻り待ちの売りが出や
すい」(国内証券ストラテジスト)との声があった。

0 0.093333

gpt2-nikkei-15epoch 前引け後の東証の立会外で、国内外の大口投資家が複

数の銘柄をまとめて売買する「バスケット取引」は約

396億円成立した。

48 0.948276

gpt2-nikkei-30epoch 前引け後の東証の立会外で、国内外の大口投資家が複

数の銘柄をまとめて売買する「バスケット取引」は約

412億円成立した。

48 0.948276

gpt2-nikkei-60epoch 前引け後の東証の立会外で、国内外の大口投資家が複

数の銘柄をまとめて売買する「バスケット取引」は約

344億円成立した。

48 0.948276

rinna/japanese-gpt2-small 日経平均株価は前日比100円程度安の2万8800円近辺で
軟調に推移している。

0 0.035088

rinna/japanese-gpt2-medium 日経平均株価は、前日比100円程度安の2万8800円近辺
で軟調に推移している。

0 0.052632

abeja/gpt2-large-japanese 日経平均株価は、前日比100円程度安の2万8800円近辺
で軟調に推移している。

0 0.052632

rinna/japanese-gpt-1b </s> 0 0.000000

Table 3: The sample in the evaluation set with the highest eidetic memorization in gpt2-nikkei-60epoch and the
generated results. Strings that forward match the private part for reference are highlighted in green .

memorization is observed.
From a security and copyright perspective, we

should focus on the samples where memorization is
observed, as even a small number of samples with
large memorization can be problematic. Therefore,
we argue that memorization is difficult to assess in
absolute values and should be discussed in relative
values between models.

Memorization enhances along with epochs.
This phenomenon replicates the empirical finding
that memorization is associated with duplication
within a training set, even in Japanese. Figure 5
shows that the median approximate memorization
was strengthened through repeated pre-training on
the same dataset. As shown in Table 1, similar
results were obtained for other metrics. The max-
imum eidetic memorization changed from 25 to
48 after 15 epochs. The average eidetic and ap-
proximate memorization also tended to increase in

the epochs. We speculate that the reason for the
decreased memorization at the end of the epochs is
due to the size of the model and training set. Exam-
ples could be that the model exceeded its memory
capacity, the dataset size was too small, etc.

The larger the size, the more memorized. In
the other models, a larger number of parameters
led to increased memorization. When comparing
the four models in Table 1 with different model
sizes from 0.1 to 1.3 B, all metrics demonstrated an
increase with size. We speculate that this is because
the general memorization property increases with
an increasing number of parameters. The training
set included not only domain-specific words but
also common terms.

The longer the context, the more memorized.
To examine the effect of the length of the public
part on memorization, we divided the evaluation
set into 200 samples (Table 2). Many samples were
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AUC TPR@10%FPR
method model name 32 64 128 256 512 32 64 128 256 512
Min-k% Prob gpt2-nikkei-1epoch 0.50 0.53 0.55 0.55 0.56 18.5 21.7 21.9 20.1 19.6
(k = 10) gpt2-nikkei-5epoch 0.51 0.55 0.59 0.58 0.58 19.1 23.7 26.7 25.7 20.9

gpt2-nikkei-15epoch 0.50 0.54 0.59 0.59 0.59 19.6 22.5 26.9 24.8 23.4
gpt2-nikkei-30epoch 0.50 0.53 0.58 0.59 0.60 16.8 21.0 25.9 25.7 19.6
gpt2-nikkei-60epoch 0.50 0.54 0.60 0.60 0.59 15.8 21.0 27.6 25.0 19.6

Min-k% Prob gpt2-nikkei-1epoch 0.46 0.47 0.48 0.50 0.53 11.4 15.0 15.0 17.3 14.9
(k = 20) gpt2-nikkei-5epoch 0.48 0.50 0.52 0.53 0.55 13.7 19.5 18.1 18.8 17.4

gpt2-nikkei-15epoch 0.46 0.49 0.53 0.54 0.56 12.6 19.7 20.7 20.6 18.3
gpt2-nikkei-30epoch 0.45 0.48 0.52 0.54 0.58 11.7 18.7 20.2 20.1 14.5
gpt2-nikkei-60epoch 0.47 0.50 0.56 0.57 0.57 13.1 18.9 23.8 23.0 17.9

Table 4: The performance (AUC and TPR@10%FPR) of Min-k% Prob for k = 10 and k = 20 with the prompt
length in {32, 64, 128, 256, 512}. Bold text means the best value in each column.

close to 200 in length, with thresholds of 116, 187,
198, and 199 in decreasing order. The chunks with
more characters had the largest average for both ei-
detic and approximate memorization for the model
of 60 epochs. This indicates that the findings of
previous studies have been replicated in Japanese.

Domain-specific models do memorize. The
domain-specific GPT-2 model recorded eidetic
memorization of up to 25 characters in only one
epoch. This was higher than those of the other mod-
els at 0.3, 0.7, and 1.3 B. The average eidetic and
approximate memorization also exceeded those of
the other models. This indicates the training data
were memorized, rather than a simple coincidence.

4.5 Qualitative Analysis

As a qualitative analysis, we report on a sample
with the longest strings memorized in the evalua-
tion set (Table 3). In the generated results for each
model, the strings that forward match the private
part for reference are highlighted in green . The
full text can be found in the footnote URL 11.

48 characters were memorized in the domain-
specific GPT-2 model of 15 epochs. This memo-
rization persisted after 30 or 60 epochs. The mem-
orized pattern appeared only once in the training
set. The sudden loss drop in a particular sample is
a phenomenon of memorization of PLMs, which
has also been reported in Carlini et al. (2021). No
such phenomena were observed in the other models.
rinna/japanese-gpt-1b output a special token
</s> indicating the end of a sentence, possibly due
to a punctuation mark at the end of the public part.
Appendix A shows a sample of the second-longest
memorization, presenting an example where the
public part does not end with punctuation.

11https://www.nikkei.com/article/DGXZASS0ISS14_
Q1A231C2000000

5 Experiment 2: Detection

This section demonstrates that memorized strings
can be detected from Japanese PLMs. Specifically,
we investigated whether detecting training data
from Japanese PLMs is possible using the proven
Min-k% Prob in English. We targeted the domain-
specific GPT-2 models (1, 5, 15, 30, and 60 epochs)
described in the previous section.

5.1 Preparation Evaluation Set
As explained in Section 3.3, newspaper articles pub-
lished after pre-training were prepared as negative
examples. Specifically, we extracted 1,000 articles
published in January 2023. In summary, the evalua-
tion set contained 1,000 articles in the pre-training
data (used in the previous section) and 1,000 ar-
ticles that were not used. Each article was split
into prompts and references with the prompt length
in {32, 64, 128, 256, 512}, according to Shi et al.
(2024)12. The texts were split into words follow-
ing the previous studies (Shi et al., 2024; Kaneko
et al., 2024). We used MeCab (Kudo, 2005) and
mecab-ipadic-NEologd (Sato et al., 2017). Note
that languages without explicit word-separation
spaces, such as Japanese, require specific libraries
and dictionaries. The final number of positive and
negative examples, truncated for data of insuffi-
cient length, was as follows: (957, 931) at 32-word
counts, (908, 868) at 64, (772, 701) at 128, (452,
435) at 256, and (235, 237) at 512.

5.2 Step 3’: Calculating Membership
Probability & Quantitative Analysis

Quantitative results demonstrated that training data
is detectable in PLMs, even in Japanese. The per-
formance (AUC and TPR@10%FPR) of Min-k%

12Previous studies had not covered prompt lengths of 512,
but we tried. This was because the newspaper articles had
relatively long sentences.

https://www.nikkei.com/article/DGXZASS0ISS14_Q1A231C2000000
https://www.nikkei.com/article/DGXZASS0ISS14_Q1A231C2000000
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Prob for k = 10 and k = 20 with the prompt length
in {32, 64, 128, 256, 512} is shown in Table 4. We
focus on k = 10 from our search, which gave the
best results (Appendix B). The AUC scores ex-
ceeded the value of the random prediction (0.50)
in almost all cases. On the other hand, the k = 20,
which Shi et al. (2024) reported as the best, did not
show sufficient performance. This suggests the im-
portance of the parameter k. In summary, detection
performance was related to duplication and prompt
length, which is consistent with empirical findings
on memorization. As all model sizes are the same,
their effects were outside the scope.

The more epochs, the more detectable. As the
number of epochs increased, detection performance
also improved. In particular, values were larger in
all columns when comparing epochs 1 and 5.

The longer the context, the more detectable.
The AUC score and TPR@10%FPR tended to in-
crease as the prompt length was increased. The
prompt length of 32 had almost no detection per-
formance, but when the prompt length reached 128,
the AUC score approached 0.60. It is worth high-
lighting that this AUC score was not high enough.
Meeus et al. (2024) pointed out that detection by
Min-k% Prob does not work if the model size and
the corpus size are not large.

6 Conclusion

This study is the first attempt to quantify the memo-
rization and detect training data of domain-specific
PLMs that are not English but Japanese. Although
our study has some limitations, this is a major step
forward, as there is even a scant discussion of string
similarity concerning the memorization of domain-
specific PLMs.

6.1 Limitations

Our study has some limitations.

Dataset accessibility. This study used newspaper
articles with paywall characteristics. The dataset
is available for purchase, but not everyone has free
access to it. While this counterpart has the advan-
tage of dealing with data contamination, there are
disadvantages in terms of research reproducibility.

Larger evaluation sets and models. Although
we randomly selected 1,000 articles as the evalua-
tion set, experiments with a larger dataset are one of
the prospects. Furthermore, the general framework

of our study was domain-independent. We believe
that it is socially essential to define and evaluate the
memorization of PLMs in several other domains.
There is the potential for larger model sizes. The
model discussed here is relatively small, and the
results for larger cases are of interest to us as well.

Association with danger. The security and copy-
right arguments are certainly not fully tested in
the experiments of this study. Considering the de-
gree of danger of memorized strings is also impor-
tant. For example, the undesirable memorization
of personally identifiable information (PII) such as
telephone numbers and email addresses must be
separated from acceptable memorization. Several
studies have evaluated the ability of PLMs to asso-
ciate memorization with PII (Huang et al., 2022;
Shao et al., 2023).

Decoding strategy. In this study, a single string
was generated from a single prompt using the
greedy method, whereas the previous study (Car-
lini et al., 2021; Kandpal et al., 2022; Lee et al.,
2022) used various decoding strategies, such as
top-k sampling, and tuned the temperature to in-
crease the diversity of the generated texts. Carlini
et al. (2023) reported that the choice of the de-
coding strategy does not considerably affect their
experimental results. By contrast, Lee et al. (2023)
observed that top-k and top-p sampling tended to
extract more training data.

Measures for memorization. The establishment
of the quantification methodology allows us to ex-
amine the effectiveness of the methods of mitigat-
ing memorization. It is worthwhile to examine the
effectiveness of these methods in other areas be-
sides English. Ishihara (2023) classified defensive
approaches into three phases:

• pre-processing: data sanitization (Ren et al.,
2016; Continella et al., 2017; Vakili et al.,
2022), and data deduplication (Allamanis,
2019; Kandpal et al., 2022; Lee et al., 2022).

• training: differential privacy (Yu et al., 2021,
2022; Li et al., 2022; He et al., 2023), and
information bottleneck (Alemi et al., 2017;
Henderson and Fehr, 2023).

• post-processing: confidence masking, and fil-
tering(Perez et al., 2022).
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public / private / model name strings eidetic approximate
public part (...) 日本政府は4月、30年度に温暖化ガス排出を13年

度比46％減らす目標を打ち出した。秋に開かれた第26
[EN] (...) In April, the Japanese government set a target to
reduce greenhouse gas emissions by 46 % in FY30 compared
to FY13. The 26th

- -

private part 回国連気候変動枠組み条約締約国会議（COP26）で
は、「世界の平均気温の上昇を1.5度に抑える努力を追
求することを決意する」ことで合意した。 [EN] Confer-
ence of the Parties to the United Nations Framework Conven-
tion on Climate Change (COP26) agreed to “resolve to pursue
efforts to limit the increase in global average temperature to
1.5 degrees Celsius.”

- -

gpt2-nikkei-1epoch 回国連気候変動枠組み条約締約国会議(COP26)で 、脱
炭素に向けた投資や脱炭素の戦略を練り直す。

25 0.414286

gpt2-nikkei-5epoch 回国連気候変動枠組み条約締約国会議(COP26)で も、
企業の対応が注目されそうだ。

25 0.400000

gpt2-nikkei-15epoch 回国連気候変動枠組み条約締約国会議(COP26)では、
50年の実質ゼロに向けた道筋を議論。

27 0.442857

gpt2-nikkei-30epoch 回国連気候変動枠組み条約締約国会議(COP26)では、
30年目標の前倒しが議論された。

27 0.428571

gpt2-nikkei-60epoch 回国連気候変動枠組み条約締約国会議(COP26)では、
各国が脱炭素に向けた行動計画を策定する。

27 0.457143

rinna/japanese-gpt2-small 回 気候変動枠組条約締約国会議(cop24)では、cop24で
排出削減目標が達成された企業を「排出削減企業」と
して認定した。

1 0.357143

rinna/japanese-gpt2-medium 回 気候変動枠組条約締約国会議(cop24)で、cop21の目
標達成に向けた具体的な行動計画の策定が合意され
た。

1 0.342857

abeja/gpt2-large-japanese 回 先進国首脳会議(伊勢志摩サミット)で、日本は
「2030年目標」を公表した。

1 0.114286

rinna/japanese-gpt-1b 回 気候変動枠組条約締約国会議(COP26)では、パリ協
定の実施指針となる「パリ協定実施指針」が採択され
た。

1 0.414286

Table 5: The sample in the evaluation set with the second highest eidetic memorization in gpt2-nikkei-60epoch
and the generated results. Strings that forward match the private part for reference are highlighted in green .

an incorrect generation in a situation where the pub-
lic part gives the context of “第26”, which means
“26th” in English. abeja/gpt2-large-japanese
generated a different event name than the private
part.

B Results of Detecting Training Data

Figure 6 shows the performance of Min-k% Prob
for k in {10, 20, 30, 40, 50, 60} with the prompt
length in {32, 64, 128, 256, 512}. The bold text,
meaning the best value in each column, was con-
centrated at k = 10. Therefore, results for k = 10
were reported in Section 5. The same pattern was
observed in the other k results, where the AUC
scores tended to correlate with prompt length and
number of epochs.
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AUC TPR@10%FPR
method model name 32 64 128 256 512 32 64 128 256 512
Min-k% Prob gpt2-nikkei-1epoch 0.50 0.53 0.55 0.55 0.56 18.5 21.7 21.9 20.1 19.6
(k = 10) gpt2-nikkei-5epoch 0.51 0.55 0.59 0.58 0.58 19.1 23.7 26.7 25.7 20.9

gpt2-nikkei-15epoch 0.50 0.54 0.59 0.59 0.59 19.6 22.5 26.9 24.8 23.4
gpt2-nikkei-30epoch 0.50 0.53 0.58 0.59 0.60 16.8 21.0 25.9 25.7 19.6
gpt2-nikkei-60epoch 0.50 0.54 0.60 0.60 0.59 15.8 21.0 27.6 25.0 19.6

Min-k% Prob gpt2-nikkei-1epoch 0.46 0.47 0.48 0.50 0.53 11.4 15.0 15.0 17.3 14.9
(k = 20) gpt2-nikkei-5epoch 0.48 0.50 0.52 0.53 0.55 13.7 19.5 18.1 18.8 17.4

gpt2-nikkei-15epoch 0.46 0.49 0.53 0.54 0.56 12.6 19.7 20.7 20.6 18.3
gpt2-nikkei-30epoch 0.45 0.48 0.52 0.54 0.58 11.7 18.7 20.2 20.1 14.5
gpt2-nikkei-60epoch 0.47 0.50 0.56 0.57 0.57 13.1 18.9 23.8 23.0 17.9

Min-k% Prob gpt2-nikkei-1epoch 0.43 0.44 0.45 0.48 0.52 9.4 12.1 11.3 14.6 14.5
(k = 30) gpt2-nikkei-5epoch 0.46 0.47 0.48 0.50 0.54 11.1 14.6 13.1 16.2 15.3

gpt2-nikkei-15epoch 0.44 0.47 0.49 0.51 0.55 10.4 17.4 16.2 15.7 15.3
gpt2-nikkei-30epoch 0.43 0.46 0.49 0.52 0.56 10.9 16.2 14.9 15.5 15.7
gpt2-nikkei-60epoch 0.45 0.48 0.53 0.54 0.56 10.4 17.2 19.9 21.5 16.2

Min-k% Prob gpt2-nikkei-1epoch 0.41 0.42 0.43 0.47 0.51 8.9 11.2 8.7 13.9 12.3
(k = 40) gpt2-nikkei-5epoch 0.44 0.45 0.46 0.48 0.53 9.3 14.1 12.3 14.4 16.6

gpt2-nikkei-15epoch 0.43 0.46 0.47 0.49 0.54 9.0 14.8 12.6 15.3 13.6
gpt2-nikkei-30epoch 0.42 0.45 0.47 0.50 0.55 9.0 13.5 12.6 12.8 15.3
gpt2-nikkei-60epoch 0.43 0.47 0.51 0.52 0.55 9.8 16.3 17.6 18.1 16.6

Min-k% Prob gpt2-nikkei-1epoch 0.40 0.41 0.41 0.46 0.51 8.4 9.6 8.0 13.1 11.9
(k = 50) gpt2-nikkei-5epoch 0.43 0.44 0.44 0.47 0.52 9.1 11.8 11.4 13.9 16.6

gpt2-nikkei-15epoch 0.42 0.45 0.46 0.48 0.53 9.9 12.8 12.0 13.7 14.5
gpt2-nikkei-30epoch 0.41 0.44 0.45 0.48 0.54 9.0 12.6 11.5 12.6 15.7
gpt2-nikkei-60epoch 0.42 0.46 0.49 0.50 0.54 10.1 16.3 16.2 16.8 14.9

Min-k% Prob gpt2-nikkei-1epoch 0.40 0.40 0.40 0.46 0.51 8.5 8.6 7.4 11.5 14.0
(k = 60) gpt2-nikkei-5epoch 0.42 0.43 0.43 0.47 0.51 9.0 11.1 10.5 12.4 16.2

gpt2-nikkei-15epoch 0.41 0.44 0.45 0.47 0.52 9.0 14.0 11.5 15.0 16.2
gpt2-nikkei-30epoch 0.40 0.43 0.44 0.48 0.54 8.9 11.1 11.0 13.5 15.7
gpt2-nikkei-60epoch 0.41 0.45 0.48 0.49 0.53 9.7 15.2 14.8 15.5 15.3

Table 6: The performance (AUC and TPR@10%FPR) of Min-k% Prob for k in {10, 20, 30, 40, 50, 60} with the
prompt length in {32, 64, 128, 256, 512}. Bold text means the best value in each column.
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