
Analytics Graph Query Solver (AGQS): Transforming Natural Language
Queries into Actionable Insights

Debojyoti Saha1,∗, Krishna Singh2,∗, Moushumi Mahato3, Javaid Nabi4
Language AI Appliances & Analytics

Samsung R&D Institute, Bengaluru, India
{1d.saha, 2krish.singh, 3moushumi.m, 4javaid.nabi} @samsung.com

Abstract

In today’s era, data analytics is crucial because
it allows organizations to make informed deci-
sions based on the analysis of large amounts
of data. The evolving landscape of data an-
alytics presents a growing challenge in ef-
fectively translating natural language queries
into actionable insights. To address this chal-
lenge, we introduce a novel system that seam-
lessly integrates natural language processing
(NLP), graph-based feature representation, and
code generation. Our method, called Analyt-
ics Graph Query Solver (AGQS), utilizes large
language models (LLMs) to construct a dy-
namic graph representing keywords and engi-
neered features. AGQS transforms textual in-
put queries into structured descriptions and gen-
erates corresponding plans. These plans are ex-
ecuted stepwise to create a unied code, which
is subsequently applied to our in-house virtual
assistant dataset to fulll the user’s query. Fur-
thermore, a robust verication module ensures
the reliability of the obtained results. Through
experimentation, our system achieved an accu-
racy of 62.2%, outperforming models like GPT-
4 (50.2%), Graph Reader (56.6%), Mistral3
7B (38.6%), and Llama 7B (37.6%). Overall,
our approach highlights the importance of fea-
ture generation in textual query resolution and
demonstrates notable improvements in accessi-
bility and precision for data analytics. With this
method, we aim to present a solution for con-
verting natural language queries into actionable
steps, ultimately generating code that provides
data insights. This approach can be utilized
across different datasets, empowering develop-
ers and researchers to gain valuable insights
effortlessly.

1 Introduction

In the rapidly advancing eld of data-driven an-
alytics, the ability to extract meaningful insights
from large datasets is crucial for decision-making.

*Equal contribution

Researchers, developers, and non-technical users
often require quick access to information or analyt-
ics results, but the formulation of technical code to
get data insights can be a complex task. A better
approach would be where users may express their
needs using technical or diverse natural language
forms to get data insights, some using technical
terms like "churn prediction", while others may
phrase their queries in more general, non-technical
terms like "customers who are likely to leave next
month". This makes it easier for users as they don’t
need to think about writing codes to extract data
insights. This kind of system is more user-friendly
and results in a signicant number of incoming
queries, for example, Figure 1 shows count of tech-
nical and non-technical queries for our smartphone
based in-house virtual assistant data. The conve-
nience of asking queries in a natural language al-
lows users to easily gain insights from the data.
However, to understand and address these queries
is a different task altogether and a solution is re-
quired that is capable of bridging the gap between
technical terminology or natural language and an
automated plan for query execution, along with
ensuring accuracy and relevance in the analysis
process.

Figure 1: Technical and Non-technical Query Count in
the month of July 2024

This research presents a novel system called An-
alytics Graph Query Solver (AGQS) designed to
address these challenges by transforming natural
language queries into executable, context-aware
solutions. The system takes input queries in any
textual form and reformulates them into a struc-
tured and meaningful description, followed by
the generation of a plan to execute the required
analysis. The core of this system is a graph-
based structure that represents keywords and
engineered features, which are essential for ex-
tracting actionable insights from datasets. By
leveraging this graph, the system can map user
queries to relevant features and relationships,
enabling the generation of step-wise plan to fur-
ther produce a unied code that is applied to the
dataset to fulll the user’s query.
To construct the graph, we gather relevant re-

search from the eld of data analysis and also uti-
lize large language models (LLMs) to expand this
selection. We derive engineered features (func-
tions or operations) from these studies, and extract
detailed descriptions of the features using LLMs.
From these descriptions, we extract relevant key-
words. This collection of engineered features and
keywords forms the nodes, while their connections
form the edges of the graph. The resulting graph
serves as a fundamental tool for exploring the rela-
tionships between keywords and features, playing
a crucial role in identifying an effective solution
for the user’s query.

To ensure that the generated results are accu-
rate, the system employs a verication module
that operates at multiple stages of the query res-
olution process. This module checks the relevance
of selected features, removes redundancies, and
validates the nal code. By combining the capa-
bilities of graph exploration, LLM-based fea-
ture generation, and a robust verication pro-
cess, our system not only answers technical and
non-technical queries but also ensures that the
insights provided are both accurate and action-
able.
This approach allows users from diverse back-

grounds to interact with complex datasets through
natural language, while the system intelligently
handles the underlying complexity. This empowers
users to focus on their core goals without needing
to translate their questions into technical specica-
tions, providing a seamless and powerful analytics
experience.

Our contributions include:

• We introduce a novel method for building
graphs based on analytical use cases, allowing
exibility for complex datasets and enhancing
data representation.

• Our approach provides automated code gen-
eration that delivers solutions to queries and
insights, streamlining the transition from anal-
ysis to actionable results.

• We combine advanced graph construction, in-
telligent query reformulation, and automated
code generation into a cohesive solution, im-
proving both the depth and accuracy of data
analysis.

2 Related Work

Natural Language Querying and Analytics Sys-
tems: Natural language interfaces (NLIs) for
databases (Popescu et al., 2003) have been explored
extensively. (Li and Jagadish, 2014) developed the
NaLIR system, which enabled users to write natu-
ral language queries that are transformed into SQL.
Similarly, DBPal (Basik et al., 2018) sought to
improve natural language querying by leveraging
deep learning models to parse and convert natural
language into structured database queries. While
these approaches mark signicant advancements
in allowing non-technical users to interact with
databases, they often struggle with ambiguity in
natural language and fail to extend beyond prede-
ned technical vocabularies. Also, these systems
primarily focus on database interactions and do not
extend to tasks like feature engineering or code
generation based on dynamic queries.
The challenge of handling diverse natural lan-

guage inputs is further complicated when queries
involve complex analytical tasks. Research (Tur
and De Mori, 2011) in speech-to-text analytics sys-
tems and subsequent developments in dialogue sys-
tems have highlighted the difculty of ensuring
query intent is accurately captured and translated
into actionable steps. Another work (Liu et al.,
2020) has shown that while NLP techniques such
as semantic parsing can improve the exibility of
these systems, there remains a gap in generating ac-
curate and contextually relevant outputs in response
to natural language queries that mix technical and
non-technical terminology.

Figure 2: Graph Construction Mechanism

Graph-Based Representations and Feature
Engineering: Graph-based approaches have
emerged as powerful tools for capturing relation-
ships between entities in various elds, includ-
ing information retrieval and knowledge discovery.
The use of graphs to represent structured informa-
tion has been explored extensively in knowledge
graphs (KGs) (Ji et al., 2021), where entities and
their relationships are stored in a graph format to
enhance data retrieval and exploration. KGs, such
as those developed by Google and Microsoft, have
demonstrated the effectiveness of this approach for
large-scale applications. However, extending these
principles to more focused, domain-specic ana-
lytics tasks presents unique challenges, especially
when it comes to feature engineering. AutoKG
(Chen and Bertozzi, 2023) automates the construc-
tion of domain-specic knowledge graphs, allow-
ing dynamic query handling, but it does not extend
to generating features or unied code execution for
analytics as in our system.

Feature engineering, a critical component of data
analytics, has traditionally relied on manual pro-
cesses or predened dataset-specic algorithms.
Work by (Zhang et al., 2018) explored automated
feature engineering through tools like FeatureTools
(Alteryx, 2018), which generate features based on
relational data. While promising, these tools still re-
quire signicant manual setup and lack integration
with natural language inputs. Other approaches,
such as the use of automated machine learning (Au-
toML) (He et al., 2021), have sought to streamline
feature engineering, but they often produce features
in isolation without considering how features inter-
act or relate in the context of a broader task. Au-
toAI (Tushir, 2019) automates feature engineering
and model selection but is not designed for natu-
ral language inputs. They require structured data
and predened workows, which can dynamically

generate features from natural language queries.
AutoFE (Li et al., 2023) automates feature engi-
neering with machine learning techniques but lacks
integration with natural language processing for
dynamic query reformulation.

LLM-Based Code Generation: OpenAI Codex
(Finnie-Ansley et al., 2022) and GitHub Copilot
(Wermelinger, 2023) translate natural language in-
structions into code, simplifying technical tasks
for developers. These tools generate code but are
not designed to reformulate user queries, extract
or generate features, and explore relationships like
graph-based systems. AlphaCode (Li et al., 2022)
generates competitive-level coding solutions based
on user input but lacks the integration of feature
engineering or analytics-related tasks.

Query Reformulation: It is a well-studied area
in the context of information retrieval (Manning,
2009), where queries are rewritten to improve
search results. However, applying these principles
to analytical queries, especially in data science and
machine learning contexts, is a more recent devel-
opment. Systems like AutoAI (Tushir, 2019) and
H2O.ai (H2O.ai, 2022) have introduced automated
workows that guide users through model selection
and hyperparameter tuning, but they still require
structured inputs. Another research (Cao et al.,
2021) suggests that reformulating natural language
queries into a more structured plan that outlines
each step of the analysis process can signicantly
improve the effectiveness of these systems.

3 Proposed Methodology

Our methodology focuses on constructing a graph
that represents keywords and engineered features
and then using this graph to formulate plan to ad-
dress user queries. The process consists of several
steps, including graph construction, query reformu-
lation, graph exploration and unied code genera-

Engineered
Feature

Feature Description Keywords

average_session _du-
ration

This engineered feature calculates the average duration of a voice assistant
session. The average session duration is calculated by taking the difference
between the local timestamps of the rst and last utterances within a session,
and then averaging these durations across all sessions. This metric provides
insights into the user’s engagement with the voice assistant, helping to
understand how long users typically spend interacting with the assistant in a
single session.

1. session duration
2. user engagement
3. voice assistant ses-
sion

Table 1: Example of an Engineered Feature

tion. Additionally, a verication module is imple-
mented at multiple stages to ensure the accuracy of
the generated results. The entire process of graph
construction is illustrated in Figure 2. The overall
mechanism of query reformulation, graph explo-
ration and unied code generation are illustrated in
Figure 3.
The graph, denoted as G = (V,E), where each

node vi ∈ V represents a keyword or an engineered
feature, and each edge ei ∈ E represents the rela-
tionship between keyword and engineered feature.
The graph’s construction which is explained in de-
tail in Section 3.1, follows a systematic approach.
Subsequent sections 3.2 through 3.4 outline the ex-
ecution ow of this approach, showing how we use
the graph throughout the process.

3.1 System Architecture

3.1.1 Graph Construction
The construction of the graph begins with the col-
lection of studies from analytics surveys. An exam-
ple study is "Churn Analysis" where we nd users
who are going to leave the service in near future.
These studies are ltered based on their applicabil-
ity and usefulness in the context of the data we are
working with. Such as, study like "average order
value analysis" for data of e-commerce will not be
suitable for our smartphone-based in-house virtual
assistant data.
To expand the scope of the study selection, we

utilize a large language model (LLM) to suggest
additional studies that might not have been covered
in our manual ltering process. The LLM is pro-
vided with a prompt to generate a list of studies
that align with our research domain, ensuring that
the results are relevant and diverse.
Once the set of studies is nalized, we prompt

the LLM to generate a set of engineered features
for each study. An example of feature is shown in
Table 1. These features are essentially python code
which dene specic operations or transformations

that can be applied to the data to extract meaningful
insights. Example codes are given in B.1 and B.2
in Appendix. The features would strictly use the
data attributes available in our dataset. The descrip-
tions of data attributes are provided to the LLM
as context to create results tightly aligned with the
dataset’s structure and content.
The set of analytics studies, respective engi-

neered features and their corresponding data at-
tributes are stored in a DB as shown in Listing 1.
{

" Study Name " : " F e a t u r e Usage Ana l y s i s " ,

" Eng in ee r ed F e a t u r e s " : {
" u s e r _ d e v i c e _ p r e f e r e n c e " : [" d e v i c e _ t y p e " , "

hands_f ree_mode "] ,

" t ime_o f_day_u s age " : [" l o c a lHou r " , "
app_ l aunch_ t ime "]

}
}

Listing 1: An example of Analytics Study DB

Next, detailed descriptions of the engineered fea-
tures are generated. These descriptions provide a
deeper understanding of what each feature means
and how it can be applied to the data. From these
descriptions we extract salient keywords (Li et al.,
2024) which gives an overview of the functional-
ity of features as shown in Table 1 and Figure 2.
We also generate relationship which gives rationale
of how a particular keyword relates to the feature.
These keywords serve as the building blocks of the
graph.
Since many studies might have similar features

and may end up having similar keywords, we nor-
malise the set of keywords to get a unique set K,
shown in eq. (1).

K = {K1, K2, · · · , Kn}. (1)

This normalization process involve grouping
synonymous or similar terms under a unied
keyword to avoid redundancy. For example,
‘hands_free_mode’:[‘hands-free’, ‘hands-
free mode usage’, ‘hands-free mode’,

Figure 3: Mechanism showing Query Reformulation, Graph Exploration and Unied Code Generation

‘hands_free_mode’]

The graph G is then constructed, where nodes
represent either features or normalized keywords.
The nal graph is expressed as shown in eq. (2).

G = {F,K,R} (2)

where F represents the set of engineered features,
K represents the set of normalized keywords, and
R represents the relationships between them.

3.1.2 Query Reformulation and Plan
Generation

Given a user query, our objective is to leverage the
graph created to identify relevant features that can
help provide a solution to the current user query.
This is achieved through a single chain-of-thought
prompt. The process begins by determining a suit-
able analysis name, then generating an elaborate
description of the user query, capturing its nuances
and context comprehensively. Moreover, essential
query keywords(Li et al., 2024) are extracted from
the user query. These are the key terms that summa-
rize the main components of the query. We denote
these query keywords as shown in eq. (3)

Qk = {qk1, qk2,, qkn} (3)

The output of above process is shown in Step 1 of
Table 6.

The next step is to generate a plan that consists
of subtasks to be followed to arrive at the query’s

solution. The plan is generated by LLM using
the prompt available in Appendix A. Each query
keyword is mapped to a specic step in the plan as
shown in Step 2 of Table 6, ensuring that there is
a clear connection between the keywords and the
planned analysis.
To improve the accuracy of this step, we em-

ploy the "Verication Module" (detailed in Section
3.1.5). This eliminates redundant keywords and
steps from the generated plan and also removes
keywords which do not correspond to an action-
able step. As shown in Step 3 of Table 6, the action
plan of "voice assistant" is similar to "usage fre-
quency", hence it is removed by the verication
module.

3.1.3 Graph Exploration
• Traversal: For each query-keyword qki, we
search for relevant keywords in our analytics-
study based graph G as in eq. (2), denoted
as rk = {rk1, rk2, rk3..} , where rki ∈ K.
The relevant keywords are selected based on
a relevance score, which is calculated using
a semantic similarity measure between the
query keyword qki and each potential match-
ing keyword rkj as shown in Step 4 of Table 6.
For each relevant keyword rkj , we examine
the neighbouring feature nodes in the graph
as shown in Step 5 of Table 6. These feature
nodes are evaluated for their relevance based
on the relationship R dened in the graph.
If the features meet a predened relevance

threshold, they are retained for further anal-
ysis. If no features cross the threshold for a
particular relevant keyword, the system moves
on to the next keyword in the set rkj+1 . This
process is repeated for all query keywords in
eq. (3).

• Termination: In order to terminate the graph
exploration, we employ a Large Language
Model (LLM) to verify if the initial keyword-
plan mapping can be accomplished using the
selected features alone. If the LLM conrms
that the analysis can be completed with the
chosen features, we proceed to assemble all
the features to complete the analysis. If, how-
ever, the LLM determines that additional fea-
tures are needed, the system prompts the LLM
to generate new features for any remaining
steps. This ensures that the query is compre-
hensively addressed, even if the initial graph
exploration did not yield all the necessary fea-
tures. This feature is added in the graph as
well so that it can be utilized if required to
solve a future user query.

• Reusability: If new feature is suggested by
LLM to solve a query, the feature is added in
the graph for reusability. To do so, we create
description and keywords for this feature in
the same way we did for all other features. In
this way the graph is also dynamically updated
with new features and related keywords.

3.1.4 Unied Code Generation and Execution
Using the enhanced context which constitutes the
given problem statement, initial plan generated for
the analysis and selected engineered features along
with custom generated codes (if required), we gen-
erate a unied code (shown in Step 6 in Table 6)
to complete the task. Example codes of features
are given in B.1 and B.2 in Appendix along with
unied code in B.3.
Before executing the code, we run it through a

verication process to check for syntactical correct-
ness and ensure that it aligns with the plan gen-
erated earlier. This is crucial for maintaining the
coherence of the solution. The verication process
is described further in the next section.

3.1.5 Verication Module
As it is widely recognised, LLMs are prone to hal-
lucinations(Banerjee et al., 2024); the verication

module plays a pivotal role in maintaining the ac-
curacy and reliability of the results. It is designed
to perform checks at various points in the ow to
ensure the output is both efcient and actionable.

• Code-Based Verication: In the graph con-
struction phase (Section 3.1), two critical
steps are the normalization of keywords and
the creation of keyword-feature relationships.
However, we observe the LLM sometimes
deviates from the given instructions and out-
put format requirement. To tackle these is-
sues, the verication module actively identi-
es and corrects deviations in both keyword
normalization and keyword-feature relation-
ship creation. It ensures that keywords are
standardized correctly, eliminates redundan-
cies, and establishes relationships for all key-
words, thereby preserving the sanctity of the
data. To address this issue, it ensures removal
of extra relationships generated for keywords
that are not relevant to the resolution of the
query.

• LLM-Based Verication: In the query refor-
mulation step, it is noticed that the LLM some-
times produces redundant or non-actionable
keyword-plan mappings. This can result in
unnecessary exploration of the graph with-
out discovering the required feature and in
turn increasing latency. To address this is-
sue, the LLM-based verication module elim-
inates such redundant or non-actionable key-
word plan mappings, as shown in Table 2 In
addition, it is essential to review the generated
code for syntactical errors, so the LLM-based
verication module is employed to check for
such errors in all the codes generated.

• SME Verication: After the query is trans-
formed into a step-by-step logical plan, a Sub-
ject Matter Expert (SME) reviews the plan
to ensure it aligns with the intended purpose
of the user query. If any errors are identied
in the sequence of actions, the SME provides
feedback on the mistake. This feedback, along
with the original user query and the generated
plan, is then presented to the LLM as part of
a self-reection process. The LLM uses this
feedback to revise the plan, which is subse-
quently applied to complete the user’s task.

Engineered Feature LLM generated Keyword-Feature-Relation tuple Verication module revised tuple
name:
‘user_engagement’,

‘key-words’:
[‘user_interaction’,
‘audio_length’,
‘preferences’,
‘user_expectations’]

(‘preferences’, ‘user_engagement’,‘indicates’),
(‘audio_length’,‘user_engagement’,‘evaluates’),
(‘user_interaction’,’user_engagement’,‘measures’),
(‘active_user’,’user_engagement’,‘may indicate’),
(‘satised_user’,’user_engagement’,‘may indicate’),
(‘interests’,’user_engagement’,‘can help in understanding’),
(‘user_expectations’,’user_engagement’,‘can help in
understanding’)

(‘preferences’, ’user_engagement’,
‘indicates’),
(‘audio_length’,
‘user_engagement’, ‘evaluates’),
(‘user_interaction’,
‘user_engagement’, ‘measures’),
(‘user_expectations’,
‘user_engagement’, ‘can help in
understanding’)

Table 2: Keyword-Feature-Relation Verication

4 Experiments and Results

4.1 Dataset

• Data Attribute Preparation: In the data pre-
processing phase, initially we select the rel-
evant data attributes from the raw dataset of
smartphone-based in-house virtual assistant.
Next, attributes containing null values are ex-
cluded as these will not impact meaningfully
to any analysis. Furthermore, attributes with
only a single unique value are removed, as
they lack variability and will not contribute
much to our features.

Additionally, to enhance the interpretability
and utility of all the data attributes, we em-
ploy Mistral3 (AI, 2023) to generate detailed
descriptions of each attribute. These descrip-
tions not only provide a clear understanding
of the attributes but also facilitate in the accu-
rate selection and coding of the features which
use these attributes. This comprehensive ap-
proach to data pre-processing ensures that the
generated code is based on high-quality, well-
dened data, thereby enhancing the reliability
and validity of the overall solution.

• Experimental Setup

Data Overall Technical Non-Technical

Test 2000 1380 620

Dev 500 370 130

Table 3: Data sizes for experimental setup

Our approach is a zero-shot method, hence it
does not require any training data. For valida-
tion, we begin with a dataset comprising 500
queries (technical and non-technical) from de-
velopers and researchers, which upon closer
analysis, distilled into 50 unique analytical
studies. Each of these studies represents a

distinct analytical task requested by the devel-
opers. The test and validation data distribution
is shown in Table 3. Examples of technical
and non-technical queries is illustrated in Ta-
ble 6. The classication of technical and non-
technical query is beyond the scope of this
paper.

To evaluate the effectiveness of the method,
we compare the data summary identied by
our approach against a set of true labels that
were established for these 50 analytical stud-
ies.

By applying our proposed method, we gen-
erate predicted results for each query, which
we then compare with the true output. This
comparison enable us to calculate the accu-
racy of our approach across the 500 valida-
tion queries. We apply this method across
all queries, providing a comprehensive mea-
sure of performance in terms of how accu-
rately they identied the correct data insights
requested by the user.

4.2 Results

Model Overall Technical Non-
technical

GPT 4 (Achiam
et al., 2023)

50.2 52.43 48.85

Graph Reader (Li
et al., 2024)

56.6 65.14 32.31

Mistral3 7B (AI,
2023)

38.6 41.62 30.0

Llama 7B (Touvron
et al., 2023)

37.6 39.73 31.54

AGQS (Ours) 62.2 69.19 42.31

Table 4: Comparison of model accuracy

The results are derived by employing a zero-
shot approach with various large language models

Type of Query User Query Expected Output Actual Output Output
Overlap

Result

Non technical I have a voice assistant product for smartphone.
Identify users who use our product a lot and really
know how to make the most of its fancy features.
We want to nd such users.

user_id list: [u1, u2, u4,
u10,.u3476]

user_id list: [u2, u4,
u3476, u5076]

81.3% Pass

Technical I have a voice assistant product for smart-phone. I
want to nd the potential churn users over a month.

user_id list: [u85,
u1599, u5493,
u7444,.,u10587]

user_id list: [u1489,
u1521, u1599,
u8565,.,u10587]

71.8% Fail

Table 5: Example output of Technical and Non-technical queries

(LLMs) as shown in Table 4. These models are
given the attributes from our in-house dataset, ac-
companied by their non-enhanced descriptions. A
set of user query is provided to each model, re-
questing the generation of code for solving the
given query. The resultant code is executed on the
same dataset, and the results are compared with
those obtained from our proposed method. The
performance of the validation set is assessed, and
the accuracy ndings are tabulated in Table 4. An
example of output on resolving technical and non-
technical queries is shown in Table 5. As per the
example queries, the output is a list of user ids.
We nd the maximum overlap of the actual output
from expected output where if the overlap is be-
yond 75%, we mark the query resolution as‘Pass’,
otherwise‘Fail’.

GPT-4 (Achiam et al., 2023) outperforms other
models in addressing non-technical queries due to
its extensive training on large amount of dataset.
GPT-4 (Achiam et al., 2023) achieves an accu-
racy level of 43.85% for non-technical queries and
52.43% for technical queries, resulting in an over-
all accuracy of 50.2% on the validation set. In
contrast, the Graph Reader (Li et al., 2024), which
utilizes a graphical representation of elds, per-
forms better on technical queries, with an accuracy
of 65.14%, but only achieves 32.31% accuracy for
non-technical queries, resulting in an overall ac-
curacy of 56.6% on the development set. Despite
AGQS’s reformulation of queries not being as ef-
fective as GPT-4 (Achiam et al., 2023), it is able
to identify relevant features from the graph, which
enhances the context and increases the accuracy
of the results. The proposed method achieves an
overall accuracy of 62.2%, with a 42.31% accuracy
for non-technical queries.

Discussion: GPT-4 (Achiam et al., 2023), with
its signicantly larger number of parameters com-
pared to other models, is capable of extracting more
information from the large number attribute de-
scriptions, enabling it to generate superior code.

On the other hand, Graph Reader (Li et al., 2024)
approaches the problem by rst constructing a log-
ical plan and then systematically linking the steps
in this plan to the corresponding attributes in the
graph. This method allows it to identify relevant
attributes more effectively than other LLMs, which
explains its better performance compared to the
other techniques evaluated. However, our method
outperforms others as it incorporates the relation-
ship between engineered features and keywords,
which provides a more specic and precise contri-
bution to the plan, ultimately assisting in executing
actions to fulll the user’s query.

5 Conclusion

Our work introduces a novel system that bridges the
gap between natural language queries and complex
data analytics through a unied framework com-
prising techniques of NLP, knowledge graph, and
automated code generation. By constructing a dy-
namic graph of keywords and engineered features
and leveraging large language models for query
reformulation, plan generation and code creation,
our system achieves a notable accuracy of 62.2%,
surpassing existing models. AGQS demonstrates
signicant advancements in translating diverse user
queries into actionable data insights, emphasizing
the critical role of feature generation and keyword-
feature relationships in effective step-wise planning
and execution.

In future work, we plan to expand the system’s
scalability to handle larger datasets and more com-
plex queries, improving natural language under-
standing to better manage ambiguous inputs, and
developing more sophisticated feature generation
methods. Additionally, practical improvements
will be guided by user feedback, along with in-
tegrating emerging technologies that holds the po-
tential to further enhance the system’s capabilities.

Ty
pe

of
Q
ue

ry
U
se
r
Q
ue

ry
St
ep

1
:
Q
ue

ry
D
es
cr
ip
-

tio
n

St
ep

2:
Pl
an

G
en

er
at
io
n

an
d
M
ap

pi
ng

St
ep

3:
Pl
an

Ve
ri
c

at
io
n

St
ep

4:
In
iti
al

N
od

e
Se

le
c-

tio
n

St
ep

5:
Fe

at
ur
e
E
xp

lo
-

ra
tio

n
St
ep

6:
U
ni
fy

C
od

e

N
on

te
ch
ni
ca
l

Q
ue

ry
1:

I
ha
ve

a
vo
ic
e

as
si
st
an
tp

ro
du

ct
fo
rs
m
ar
t-

ph
on

e.
Id
en
tif
y
us
er
s
w
ho

us
e
ou

rp
ro
du

ct
a
lo
ta
nd

re
-

al
ly

kn
ow

ho
w
to

m
ak
e
th
e

m
os
t
of

its
fa
nc
y
fe
at
ur
es
.

W
e
w
an
tt
o
n

d
su
ch

us
er
s.

"A
na
ly
si
s"
:

{
"a

na
ly
si
s_
na

m
e"

:"
U
se
r

E
ng
ag
em

en
t
an
d

Fe
at
ur
e

U
til
iz
at
io
n
A
na
ly
si
s"
,

"d
es
cr
ip
tio

n"
:

"T
hi
s

an
al
ys
is

ai
m
s
to

id
en
tif
y

hi
gh

ly
en
ga
ge
d

us
er
s
of

th
e
vo
ic
e
as
si
st
an
tp

ro
du

ct
w
ho

no
t

on
ly

us
e

th
e

pr
od

uc
t

fr
eq
ue
nt
ly

bu
t

al
so

le
ve
ra
ge

its
ad
va
nc
ed

fe
at
ur
es

ef
fe
ct
iv
el
y.

It
in
vo
lv
es

ex
am

in
in
g

us
er

in
te
ra
ct
io
n
da
ta
to

qu
an
tif
y

us
ag
e
fr
eq
ue
nc
y,

di
ve
rs
ity

of
fe
at
ur
e

us
ag
e,

an
d

pr
o

ci
en
cy

in
ut
ili
zi
ng

co
m
pl
ex

fe
at
ur
es
."
,

"k
ey
w
or
ds
":

["
us
er

en
ga
ge
m
en
t"
,
"f
ea
tu
re

ut
i-

liz
at
io
n"
,"
vo
ic
e
as
si
st
an
t"
,

"a
dv
an
ce
d
fe
at
ur
es
",
"u
se
r

in
te
ra
ct
io
n

da
ta
",

"u
sa
ge

fr
eq
ue
nc
y"
]}

"k
ey
w
or
d_

pl
an
_m

ap
pi
ng

":
{ "u

se
r

en
ga

ge
m
en

t"
:

"M
ea
su
re

ho
w

of
te
n
us
er
s

in
te
ra
ct
w
ith

...
",

"f
ea
tu
re

ut
ili
za
tio

n"
:

"A
na
ly
ze

th
e
va
ri
et
y
of

fe
a-

tu
re
s
us
ed

by
in
di
vi
du

al
s
to

ga
ug

e
...
",

"v
oi
ce

as
si
st
an

t"
:
"F
oc
us

of
th
e
an
al
ys
is
;t
he

pr
od

uc
t

be
in
g
ex
am

in
ed

.."
,

"a
dv

an
ce
d

fe
at
ur
es
":

"I
de
nt
if
y
sp
ec
i
c
co
m
pl
ex

fe
at
ur
es

of
th
e
pr
od

uc
ta
nd

m
ea
su
re

.."
,

"u
se
r
in
te
ra
ct
io
n

da
ta
":

"C
ol
le
ct

an
d
an
al
yz
e
da
ta

on
ho
w
us
er
s
in
te
ra
ct
w
ith

th
e
vo
ic
e
as
si
st
an
t,
.."
,

"u
sa
ge

fr
eq

ue
nc

y"
:

"Q
ua
nt
if
y
ho
w
of
te
n
us
er
s

en
ga
ge

w
ith

th
e

vo
ic
e

as
si
st
an
tt
o
id
en
tif
y
...
"
}

"v
er
i
ed
_
ke
yw

or
d_

pl
an
_

m
ap
pi
ng

":
{ "u

se
r

en
ga

ge
m
en

t"
:

"M
ea
su
re

ho
w

of
te
n
us
er
s

in
te
ra
ct

w
ith

th
e

vo
ic
e

as
si
st
an
t
to

id
en
tif
y

hi
gh

en
ga
ge
m
en
t."
,

"f
ea
tu
re

ut
ili
za
tio

n"
:

"A
na
ly
ze

th
e
va
ri
et
y
of

fe
a-

tu
re
s
us
ed

by
in
di
vi
du

al
s
to

ga
ug

e
...
",

"a
dv

an
ce
d

fe
at
ur
es
":

"I
de
nt
if
y
sp
ec
i
c
co
m
pl
ex

fe
at
ur
es

of
th
e
pr
od

uc
ta
nd

m
ea
su
re

...
",

"u
se
r
in
te
ra
ct
io
n

da
ta
":

"C
ol
le
ct

an
d
an
al
yz
e
da
ta

on
ho
w
us
er
s
in
te
ra
ct
w
ith

th
e
vo
ic
e
as
si
st
an
t,
...
"}

"R
at
io
na

le
":

"’
vo
ic
e

as
si
st
an
t’

an
d

’u
sa
ge

fr
eq
ue
nc
y’

re
m
ov
ed

fr
om

pl
an
.

’V
oi
ce

as
si
st
an
t’

is
no

t
an

ac
tio

na
bl
e

st
ep
,

m
ak
in
g
it
re
du

nd
an
ti
n
th
e

co
nt
ex
t
of

a
pl
an
.
’U

sa
ge

fr
eq
ue
nc
y’

is
co
ve
re
d
un

-
de
r’
us
er

en
ga
ge
m
en
t’
an
d

’u
se
ri
nt
er
ac
tio

n
da
ta
’."

{ "u
se
r
en

ga
ge
m
en

t"
:

{"
ke
yw

or
d_

na
m
e"
:

"u
se
r_
en
ga
ge
m
en
t"
,
"r
el
e-

va
nc
e_
sc
or
e"
:"
0.
95

"}
,

{"
ke
yw

or
d_

na
m
e"
:
"m

ai
n-

ta
in
in
g_

us
er
_i
nt
er
es
t"
,"
re
l-

ev
an
ce
_s
co
re
":
"0
.7
5"
},

{"
ke
yw

or
d_

na
m
e"
:

"u
se
r_
in
te
ra
ct
io
n"
,

"r
el
e-

va
nc
e_
sc
or
e"
:"
0.
85

",

{"
ke
yw

or
d_

na
m
e"
:

"u
se
r_
ex
pe
ri
en
ce
",

"r
el
e-

va
nc
e_
sc
or
e"
:"
0.
80

",

{"
ke
yw

or
d_

na
m
e"
:

"u
se
r_
be
ha
vi
or
",

"r
el
-

ev
an
ce
_s
co
re
":
"0
.7
0"
},

"f
ea
tu
re

ut
ili
za
tio

n"
[.
.

] }

"u
se
r
en

ga
ge
m
en

t"
:

{"
R
at
io
na

le
":

"
T
he

"u
se
r_
en
ga
ge
m
en
t_
sc
or
e"

qu
an
ti

es
in
te
ra
c-

tio
n

le
ve
l.

T
he

"f
ea
-

tu
re
_u

til
iz
at
io
n_

sc
or
e"

se
rv
es

as
a
ba
se
lin

e
fo
re

n-
ga
ge
m
en
t,
in
di
ca
tin

g
ho
w

fe
at
ur
es

co
nt
ri
bu
te
to

ov
er
-

al
l
en
ga
ge
m
en
t.

T
he

"s
es
-

si
on

_e
ng
ag
em

en
t_
sc
or
e"

m
ea
su
re
s
se
ss
io
n
en
ga
ge
-

m
en
t.

It
is

re
as
on

ab
le

to
ex
pl
or
e
th
e
co
rr
es
po

nd
in
g

co
de

ch
un

ks
fo
r

m
or
e

de
ta
ile

d
in
si
gh

ts
."
,

"S
co
re
_l
is
t"
:

[{
"f
ea
tu
re
_n

am
e"
:

"u
se
r_
en
ga
ge
m
en
t_
sc
or
e"
,

"r
el
ev
an
ce
_s
co
re
":

"0
.9
5"
},

{"
fe
at
ur
e_
na
m
e"
:

"f
ea
tu
re
_u

til
iz
at
io
n_

sc
or
e"
,

"r
el
ev
an
ce
_s
co
re
":

"0
.8
5"
}]
,

{"
fe
at
ur
e_
na
m
e"
:

"s
es
si
on

_e
ng
ag
em

en
t_
sc
or
e"
,

"r
el
ev
an
ce
_s
co
re
":

"0
.9
"}
],

"s
el
ec
te
d_

fe
at
ur
es
":

["
us
er
_e
ng

ag
em

en
t_
sc
or
e"
,

"f
ea
-

tu
re
_u

til
iz
at
io
n_

sc
or
e"
,s
es
-

si
on

_e
ng
ag
em

en
t_
sc
or
e]

}

<
fe
at
ur
e
1
co
de
>

+ .. +
<f
ea
tu
re

n
co
de
>

=
<u

ni
e

d
co
de
>

Te
ch
ni
ca
l

Q
ue

ry
2:

I
ha
ve

a
vo
ic
e

as
si
st
an
tp

ro
du

ct
fo
rs
m
ar
t-

ph
on

e.
I
w
an
t
to

n
d
th
e

po
te
nt
ia
lc
hu

rn
us
er
s
ov
er

a
m
on

th
.

"A
na
ly
si
s"
:

{"
an

al
ys
is
_n

am
e"

:
"C

hu
rn

Pr
ed
ic
tio

n
A
na
ly
-

si
s"
,

"d
es
cr
ip
tio

n"
:

"T
hi
s

an
al
ys
is

ai
m
s
to

id
en
tif
y

th
e
us
er
s
w
ho

ar
e
lik

el
y
to

di
sc
on

tin
ue

us
in
g
th
e
vo
ic
e

as
si
st
an
t
pr
od

uc
t
ov
er

a
m
on

th
by

an
al
yz
in
g
th
ei
r

us
ag
e
pa
tte

rn
."
,

"k
ey
w
or
ds
":

["
ch
ur
n"
,

"u
se
rs
",

"u
sa
ge

pa
tte
rn
",

"s
m
ar
t-
ph

on
e"
]

}

"k
ey
w
or
d_

pl
an
_m

ap
pi
ng

":

{"
ch

ur
n"

:
"I
de
nt
if
y

th
e
us
er
s
w
ho

ar
e
lik

el
y
to

di
sc
on

tin
ue

us
in
g
th
e
vo
ic
e

as
si
st
an
tp

ro
du

ct
",

"u
se
rs
":

"I
de
nt
if
y

th
e
us
er
s
w
ho

ar
e
lik

el
y
to

di
sc
on

tin
ue

us
in
g
th
e
vo
ic
e

as
si
st
an
tp

ro
du

ct
",

"u
sa
ge

pa
tt
er
n"

:
"A

na
l-

ys
e
th
e
us
ag
e
pa
tte

rn
da
ta

of
th
e

us
er
s

to
pr
ed
ic
t

ch
ur
n"
,

"s
m
ar
t-
ph

on
e"

:
"V

oi
ce

as
si
st
an
tp

ro
du

ct
fo
rs
m
ar
t-

ph
on

e"

"v
er
i
ed
_k
ey
w
or
d_

pl
an

_m
ap
pi
ng

":

{"
ch

ur
n"

:
"I
de
nt
if
y

th
e
us
er
s
w
ho

ar
e
lik

el
y
to

di
sc
on

tin
ue

us
in
g
th
e
vo
ic
e

as
si
st
an
t
pr
od

uc
t
ov
er

a
m
on

th
",

"u
sa
ge

pa
tt
er
n"

:
"A

na
l-

ys
e
th
e
us
ag
e
pa
tte

rn
da
ta

of
th
e

us
er
s

to
pr
ed
ic
t

ch
ur
n"
}

{"
ch

ur
n"

:

[{
"k
ey
w
or
d_

na
m
e"
:

"d
om

ai
n_

ab
or
t_
ra
te
",

"r
el
ev
an
ce
_s
co
re
":

"0
.8
"}
,

{"
ke
yw

or
d_

na
m
e"
:

"u
se
r_
sa
tis
fa
ct
io
n"
,

"r
el
ev
an
ce
_s
co
re
":

"0
.7
"}
,

{"
ke
yw

or
d_

na
m
e"
:

"u
se
r_
en
ga
ge
m
en
t_
le
ve
l"
,

"r
el
ev
an
ce
_s
co
re
":

"0
.6
"}
],

"u
sa
ge
_p

at
te
rn
":

[{
"k
ey
w
or
d_

na
m
e"
:

"u
se
r_
sa
tis
fa
ct
io
n"
,
"r
el
e-

va
nc
e_
sc
or
e"
:"
0.
9"
},

{"
ke
yw

or
d_

na
m
e"
:

"u
se
r_
pr
ef
er
en
ce
s"
,

"r
el
ev
an
ce
_s
co
re
":

"0
.8
"}
,

{"
ke
yw

or
d_

na
m
e"
:

"u
se
r_
in
fo
rm

at
io
n_

ne
ed
s"
,

"r
el
ev
an
ce
_s
co
re
":

"0
.7
"}
]

{"
ch

ur
n"

:

{"
R
at
io
na

le
":

"T
he

’d
o-

m
ai
n_

ex
ec
ut
io
n_

ab
or
t_
tim

e
_b

y_
re
as
on

’
fe
at
ur
e

in
di
-

ca
te
s
th
e

tim
e

ta
ke
n

fo
r

th
e

do
m
ai
n

ex
ec
ut
io
n

to
be

ab
or
te
d
du

e
to

va
ri
ou

s
re
as
on

s,
w
hi
ch

co
ul
d

be
a

po
te
nt
ia
l
in
di
ca
to
r

of
ch
ur
n

as
us
er
s

m
ay

ab
an
do

n
th
e
do

m
ai
n
du

e
to

po
or

pe
rf
or
m
an
ce

or
ot
he
r

is
su
es
."
,

"S
co
re
_l
is
t"
:

[{
"f
ea
tu
re
_n

am
e"
:

"d
o-

m
ai
n_

ex
ec
ut
io
n_

ab
or
t_
tim

e
_b

y_
re
as
on

",
"r
el
ev
an
ce
_s
co
re
":
"0
.8
"}
]

<
fe
at
ur
e
1
co
de
>

+ .. +
<f
ea
tu
re

n
co
de
>

=
<u

ni
e

d
co
de
>

Ta
bl
e
6:

A
n
ex
am

pl
e
ta
bl
e
fo
rb

ot
h
ty
pe
s
of

qu
er
ie
s
an
d
th
ei
rp

ro
ce
ss
in
g
th
ro
ug

h
va
ri
ou

s
m
od

ul
es

Limitations

While our approach presents signicant advance-
ments, it does have a few limitations. The system
may encounter challenges with highly ambiguous
or context-dependent queries, potentially affecting
the accuracy of reformulations and feature selec-
tions. Additionally, scalability issues could arise
as datasets and graphs grow larger and more com-
plex, potentially impacting performance. To ad-
dress these limitations, continuous enhancements
of the system is required to ensure its robustness
and effectiveness across diverse applications.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Mistral AI. 2023. Mistral-7B-Instruct-
v0.3. https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3. [Online; accessed
01-Jan-2023].

Alteryx. 2018. Featuretools is an open source frame-
work for automated feature engineering. https:
//www.featuretools.com/. [Online; accessed 26-Jan-
2018].

Sourav Banerjee, Ayushi Agarwal, and Saloni Singla.
2024. Llms will always hallucinate, and we need to
live with this. arXiv preprint arXiv:2409.05746.

Fuat Basik, Benjamin Hättasch, Amir Ilkhechi,
Arif Usta, Shekar Ramaswamy, Prasetya Utama,
Nathaniel Weir, Carsten Binnig, and Ugur Cetintemel.
2018. Dbpal: A learned nl-interface for databases.
In Proceedings of the 2018 International Conference
on Management of Data, pages 1765–1768.

Kaibo Cao, Chunyang Chen, Sebastian Baltes,
Christoph Treude, and Xiang Chen. 2021. Au-
tomated query reformulation for efcient search
based on query logs from stack overow. In 2021
IEEE/ACM 43rd International Conference on Soft-
ware Engineering (ICSE), pages 1273–1285. IEEE.

Bohan Chen and Andrea L Bertozzi. 2023. Autokg:
Efcient automated knowledge graph generation for
language models. In 2023 IEEE International Con-
ference on Big Data (BigData), pages 3117–3126.
IEEE.

James Finnie-Ansley, Paul Denny, Brett A Becker, An-
drew Luxton-Reilly, and James Prather. 2022. The
robots are coming: Exploring the implications of ope-
nai codex on introductory programming. In Proceed-
ings of the 24th Australasian Computing Education
Conference, pages 10–19.

H2O.ai. 2022. operate and innovate with AI . https:
//h2o.ai/. [Online; accessed 01-Jan-2022].

Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. Au-
toml: A survey of the state-of-the-art. Knowledge-
based systems, 212:106622.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Martti-
nen, and S Yu Philip. 2021. A survey on knowledge
graphs: Representation, acquisition, and applications.
IEEE transactions on neural networks and learning
systems, 33(2):494–514.

Fei Li and Hosagrahar V Jagadish. 2014. Nalir: an
interactive natural language interface for querying re-
lational databases. In Proceedings of the 2014 ACM
SIGMOD international conference on Management
of data, pages 709–712.

Liyao Li, Haobo Wang, Liangyu Zha, Qingyi Huang,
Sai Wu, Gang Chen, and Junbo Zhao. 2023. Learn-
ing a data-driven policy network for pre-training au-
tomated feature engineering. In The Eleventh Inter-
national Conference on Learning Representations.

Shilong Li, Yancheng He, Hangyu Guo, Xingyuan Bu,
Ge Bai, Jie Liu, Jiaheng Liu, Xingwei Qu, Yang-
guang Li, Wanli Ouyang, et al. 2024. Graphreader:
Building graph-based agent to enhance long-context
abilities of large language models. arXiv preprint
arXiv:2406.14550.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
alphacode. Science, 378(6624):1092–1097.

Qian Liu, Bei Chen, Jiaqi Guo, Jian-Guang Lou, Bin
Zhou, and Dongmei Zhang. 2020. How far are we
from effective context modeling? an exploratory
study on semantic parsing in context. arXiv preprint
arXiv:2002.00652.

Christopher D Manning. 2009. An introduction to infor-
mation retrieval.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a theory of natural language inter-
faces to databases. In Proceedings of the 8th interna-
tional conference on Intelligent user interfaces, pages
149–157.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and ef-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Gokhan Tur and Renato De Mori. 2011. Spoken lan-
guage understanding: Systems for extracting seman-
tic information from speech. John Wiley & Sons.

Kartikay Tushir. 2019. Autoai using ibm watson.

Michel Wermelinger. 2023. Using github copilot to
solve simple programming problems. In Proceedings
of the 54th ACM Technical Symposium on Computer
Science Education V. 1, pages 172–178.

Zhenli Zhang, Xiangyu Zhang, Chao Peng, Xiangyang
Xue, and Jian Sun. 2018. Exfuse: Enhancing feature
fusion for semantic segmentation. In Proceedings of
the European conference on computer vision (ECCV),
pages 269–284.

A Prompts and their output

Query Description and Analysis determination prompt (Step 1)

As an Intelligent assistant, your objective is to, given a problem statement for a voice assistant
product, You have to understand the type of analysis required to address the issue. Describe the
issue in technical term and identify the important keywords.
***Output format:

{
"analysis_name ": <analysis_name >,
"description ": <description >,
"keywords ": [list],

}

Now, generate the analysis details for the given problem statement:
user_requirement: I have a voice assistant product for smartphone. Identify users who use our
product a lot and really know how to make the most of its fancy features. We want to nd such
users.
The output should be strictly in JSON format.

Query Description and Analysis determination Output (Step 1)

{
"Problem_statement ": "I have a voice assistant product for smartphone.

Identify users who use our product a lot and really know how to make
the most of its fancy features. We want to find such users.",

"Analysis ": {
"analysis_name ": "User Engagement and Feature Utilization Analysis",
"description ": "This analysis aims to identify highly engaged users of

the voice assistant product who not only use the product
frequently but also leverage its advanced features effectively. It
involves examining user interaction data to quantify usage

frequency , diversity of feature usage , and proficiency in
utilizing complex features .",

"keywords ": ["user engagement", "feature utilization", "voice
assistant", "advanced features", "user interaction data", "usage
frequency "]

},
}

Plan Generation and Mapping prompt (Step 2)

As an Intelligent assistant, given the problem statement and analysis details, your objective is to
dene a plan. You should associate every given keyword to a part of the plan to solve the problem
statement.
Strategy: ****
1. You can choose to modify the keywords if you feel it ts the plan more appropriately. ****

***Output format:
{

"Problem_statement ": <problem statement >
"Analysis ": <analysis details >,
"keyword_plan_mapping ": <mapping >

}

Now map every keyword to a part of the plan to solve the given problem statement:
Problem_statement: I have a voice assistant product for smartphone. Identify users who use our
product a lot and really know how to make the most of its fancy features. We want to nd such
users.
"Analysis ": {

"analysis_name ": "User Engagement and Feature Utilization Analysis",
"description ": "This analysis aims to identify highly engaged users of

the voice assistant product who not only use the product
frequently but also leverage its advanced features effectively. It
involves examining user interaction data to quantify usage

frequency , diversity of feature usage , and proficiency in
utilizing complex features .",

"keywords ": ["user engagement", "feature utilization", "voice
assistant", "advanced features", "user interaction data", "usage
frequency "]

}

The output should be strictly in JSON format.

Plan Generation and Mapping Output (Step 2)

{
"Problem_statement ": "I have a voice assistant product for smartphone.

Identify users who use our product a lot and really know how to make
the most of its fancy features. We want to find such users.",

"Analysis ": <same as previous step >,
"keyword_plan_mapping ": {

"user engagement ": "Measure how often users interact with the voice
assistant to identify high engagement .",

"feature utilization ": "Analyze the variety of features used by
individuals to gauge their ability to leverage the product 's
capabilities .",

"voice assistant ": "Focus of the analysis; the product being examined
for user engagement and feature utilization .",

"advanced features ": "Identify specific complex features of the
product and measure how proficiently these are used by individuals
.",

"user interaction data": "Collect and analyze data on how users
interact with the voice assistant , including command types ,
frequency , and feature usage.",

"usage frequency ": "Quantify how often users engage with the voice
assistant to identify the most active users ."

}
}

Plan Verication prompt (Step 3)

As an Intelligent assistant, your objective is to verify a plan generated for a problem statement and
remove any redundant step if any. Given the "Problem_statement" and "keyword_plan_mapping",
evaluate the plan and give the veried plan “veried_keyword_plan_mapping".
Strategy:

1. Sub-task mapped to a keyword should be actionable in codied format. 2. Remove redundant
keyword if other keywords already cover the subtask.

*** Output format:
{

"Problem_statement ": <problem statement >
"Analysis ": <analysis details >,
"keyword_plan_mapping ": <given plan >,
"verified_keyword_plan_mapping ": <modified plan >,
"Rationale ": <answer >

}

Now verify the below plan and give the output in specied format:
<Plan Generation and Mapping Output>
The output should be strictly in JSON format.

Plan Verication Output (Step 3)

{
<same as previous step >,
"verified_keyword_plan_mapping ": {

"user engagement ": "Measure how often users interact with the voice
assistant to identify high engagement .",

"feature utilization ": "Analyze the variety of features used by
individuals to gauge their ability to leverage the product 's
capabilities .",

"advanced features ": "Identify specific complex features of the
product and measure how proficiently these are used by individuals
.",

"user interaction data": "Collect and analyze data on how users
interact with the voice assistant , including command types ,
frequency , and feature usage ."

},
"Rationale ": "The steps 'voice assistant ' and 'usage frequency ' were

removed from the plan. 'Voice assistant ' is not an actionable step but
rather the focus of the analysis , making it redundant in the context

of a plan. 'Usage frequency ' is effectively covered under both 'user
engagement ' and 'user interaction data ', making it redundant to list
separately. The modified plan streamlines the approach by focusing on
actionable steps without repetition ."

}

Initial Node Selection prompt (Step 4)

As an Intelligent assistant given a problem statement for a voice assistant product, your objective
is to provide solution by selecting analytics features from a graph. To achieve that, your current
task is to identify relevant keywords from keyword nodes of graph with a given query keyword.
Strategy:

1) Results should be ordered by relevance-score. Relevance-Score should be strictly between 0 and
1. 2) Results should have at max 5 relevant keywords. 3) The output should be strictly in JSON
format. 4) STRICTLY use the keywords from the given reference-keyword-list. Do not create new
keywords apart from reference-keyword-list.

*** Output format:
{

"query keyword ": [{" keyword_name ": "keyword1", "relevance_score ": float(
score1)}, {" keyword_name ": "keyword2", "relevance_score ": float(
score1)},

...]
}

Your current task is to identify relevant keywords for below query-keyword:
"user engagement"

The **reference-keyword-list** to match from is given below:
<Graph_keyword_node_list>

The output should be strictly in JSON format.

Initial Node Selection Output (Step 4)

{
"user engagement ": [

{" keyword_name ": "user_engagement", "relevance_score ": 0.95} ,
{" keyword_name ": "maintaining_user_interest", "relevance_score ": 0.75} ,
{" keyword_name ": "user_interaction", "relevance_score ": 0.85} ,
{" keyword_name ": "user_experience", "relevance_score ": 0.80} ,
{" keyword_name ": "user_behavior", "relevance_score ": 0.70}

]
}

Feature Exploration prompt (Step 5)

As an Intelligent assistant, your objective is to identify relevant features useful for a sub-task of the plan to achieve the
Plan generated to address the Problem Statement. You should score the feature relevance using the relation and the
sub-task. The relation offers, what insight can be gained by the feature towards the sub-task.
Your current task is to check a lists of features, with the objective of determining whether to proceed with reviewing the
code chunk corresponding to these features.
Given the task you have the following Action Options:

1. Selected_feature(List[feature_name chosen]): Choose this action if you believe that the code chunk corresponding to
the features may hold the necessary information to gain insight related to the sub-task. This will allow you to access
more complete information and detailed code. 2. return_to_relevance_list: Choose this action if you ascertain that
relevance_score for all features is less than 0.75. ****

Strategy:

1. relevance_score should be strictly between 0 and 1. 2. You can choose to select multiple features at the same
time. 3. Relation only reect part of the insight that can be gain by the code, so even if you feel that the features are
slightly relevant to the keyword, please try to score more leniently and get more complete information. 4. Choose
return_to_relevance_list if you ascertain that relevance_score for none of the features is more than 0.75. ****

*** Output format:

{
'Rationale ': <answer >,
'Score_list ' [{'feature_name ': 'feature1 ', 'relevance_score ': float(score1)},

{'feature_name ': 'feature2 ', 'relevance_score ': float(score2)},
...],

'Chosen Action ': <action option chosen >
}

Now identify relevant features for below sub-task:
"Measure how often users interact with the voice assistant to identify high engagement."

The list of tuple (feature, relation) with keyword to match from is given below:
<List_of_tuples>

The output should be strictly in JSON format.

Feature Exploration Output (Step 5)

{
"user engagement ": {

"Rationale ": "All provided features are directly related to the keyword 'user engagement '. The '
user_engagement_score ' quantifies interaction level , which is a direct measure of user
engagement. The 'feature_utilization_score ' serves as a baseline for engagement , indicating
how features contribute to overall engagement. The 'session_engagement_score ' measures
session engagement , providing insight into user engagement within specific sessions. Given
the direct relevance of these features to the keyword , it is reasonable to explore the
corresponding code chunks for more detailed insights .",

"Score_list ": [
{

"feature_name ": "user_engagement_score",
"relevance_score ": 0.95

},
{

"feature_name ": "feature_utilization_score",
"relevance_score ": 0.85

},
{

"feature_name ": "session_engagement_score",
"relevance_score ": 0.9

}
],
"Chosen Action ": "Selected_feature['user_engagement_score ', 'feature_utilization_score ', '

session_engagement_score ']"
}

}

B Example of Feature Code and Unied
Code

B.1 Example Feature Code 1 - User
Engagement

def user_engagement(total_utterances_in_conversation
, utterance_type , responseDisplayed ,
responseSpoken):

Initialize the base score with the total
number of utterances

base_score = total_utterances_in_conversation

Define score multipliers for different
utterance types

utterance_type_multiplier = {
'none': 0.5, # Assuming 'none' has the

least impact
'root': 1.5, # Root utterances have more

impact
'request_input ': 1.0, # Request input is

standard engagement
'next_step ': 1.2, # Next steps indicate

continued engagement
}

Check if utterance type is valid and apply
multiplier

if utterance_type in utterance_type_multiplier:
base_score *= utterance_type_multiplier[

utterance_type]
else:

raise ValueError("Invalid␣utterance␣type␣
provided.")

Add bonus points for response types
response_bonus = 0
if responseSpoken:

response_bonus += 2 # Assuming spoken
responses add more value

if responseDisplayed:
response_bonus += 1 # Displayed responses

also contribute but less than spoken

Calculate the final engagement score
user_engagement_score = base_score +

response_bonus

return user_engagement_score

B.2 Example Feature Code 2 - Feature
Utilization

def feature_utilization(
total_utterances_in_conversation , action_ids ,
domain_ids):
"""
Calculate the feature utilization score based on

the total number of utterances ,
the variety of action_ids , and the diversity of

domain_ids used in a conversation.

Parameters:
- total_utterances_in_conversation: int , total

number of utterances in the conversation.
- action_ids: list , a list of action IDs used in

the conversation.
- domain_ids: list , a list of domain IDs

interacted with in the conversation.

Returns:
- score: float , the calculated feature

utilization score.
"""
Ensure action_ids and domain_ids are unique to

count the diversity
unique_action_ids = set(action_ids)
unique_domain_ids = set(domain_ids)

Calculate the diversity scores
action_diversity_score = len(unique_action_ids)

/ len(action_ids) if action_ids else 0
domain_diversity_score = len(unique_domain_ids)

/ len(domain_ids) if domain_ids else 0

Combine the scores with total utterances to
get the final score with the weights based
on importance

score = (0.4 * total_utterances_in_conversation)
+ (0.3 * action_diversity_score * 100) +

(0.3 * domain_diversity_score * 100)

return score

B.3 Unied Code - Python Code for User
Scores Calculation

The CSV file is named 'user_interactions.csv' and
is located in the same directory as this script

file_path = 'user_interactions.csv'

Read the CSV file into a DataFrame
import pandas as pd
df = pd.read_csv(file_path)

Placeholder for user_engagement function
definition

def user_engagement(
total_number_of_utterances_in_conversation ,
utterance_type , responseDisplayed ,
responseSpoken):

Function body as provided
pass

Placeholder for feature_utilization function
definition

def feature_utilization(total_utterances , action_ids
, domain_ids):
Function body as provided
pass

def aggregate_user_scores(df):
user_scores = {}
for userid , group in df.groupby('userid '):

total_utterances = len(group)
engagement_score = user_engagement(

total_utterances , group['utterance_type
'].iloc[0], responseDisplayed ,
responseSpoken)

feature_score = feature_utilization(
total_utterances , action_ids ,
domain_ids)

user_scores[userid] = {
'user_engagement_score ':

engagement_score ,
'feature_utilization_score ':

feature_score
}

return user_scores

Calculate scores
user_scores = aggregate_user_scores(df)

Identify highly engaged and proficient users
thresholds = {

'user_engagement_score ': pd.Series ([score['
user_engagement_score '] for score in
user_scores.values ()]).quantile (0.95) ,

'feature_utilization_score ': pd.Series ([score['
feature_utilization_score '] for score in
user_scores.values ()]).quantile (0.95)

}
highly_engaged_users = [

userid for userid , scores in user_scores.items ()
if scores['user_engagement_score '] >= thresholds

['user_engagement_score ']
and scores['feature_utilization_score '] >=

thresholds['feature_utilization_score ']
]

