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Abstract

The rapid rise of social networks has brought
with it an increase in hate speech, which poses
a significant challenge to society, researchers,
companies, and policymakers. Hate speech
can take the form of text or multimodal con-
tent, such as memes, GIFs, audio, or videos,
and the scientific study of hate speech from a
computer science perspective has gained atten-
tion in recent years. The detection and com-
bating of hate speech is mostly considered a
supervised task, with annotated corpora and
shared resources playing a crucial role. Social
networks are using modern AI tools to com-
bat hate speech, and this survey comprehen-
sively examines the work done to combat hate
in the English language. It delves into state-of-
the-art methodologies for unimodal and multi-
modal hate identification, the role of explain-
able AI, prevention of hate speech through
style transfer, and counternarrative generation,
while also discussing the efficacy and limita-
tions of these methods. Compared with earlier
surveys, this paper offers a well-organized pre-
sentation of methods to combat hate.

1 Introduction

The recent exponential growth of the internet, tech-
nology, and social media has revolutionized com-
munication but also provided a platform to dis-
seminate hateful content. The United Nations
strategy and plan of action on hate speech de-
scribes hate speech as any kind of communica-
tion in speech, writing, or behavior that attacks
or uses pejorative or discriminatory language con-
cerning a person or a group based on who they
are, in other words, based on their religion, eth-
nicity, nationality, race, color, descent, gender, or
identity factor. 1. Hate speech is used as a broad
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1https://www.un.org/en/hate-speech/un-strategy-and-

plan-of-action-on-hate-speech

umbrella term for numerous user-created content
intended to disparage, or dehumanize, any indi-
vidual or any group based on some characteris-
tics such as race, color, gender, nationality, ethnic-
ity, etc. (Nockleby, 2000). With the advancement
of natural language processing (NLP) technology,
substantial research has been conducted on auto-
matic textual hate speech detection in recent years.
There are large-scale publicly available datasets
collected from various social media platforms and
tagged into sub-variants of hate such as aggression
((Kumar et al., 2018),(Bhattacharya et al., 2020)
Hate( (Toraman et al., 2022)(Davidson et al., 2017),
(Mathew et al., 2021), (Mollas et al., 2020)), Of-
fensive ((Davidson et al., 2017), (Zampieri et al.,
2019), (Rosenthal et al., 2021)), Abusive (Nobata
et al., 2016),(Curry et al., 2021), (Caselli et al.,
2020),(Founta et al., 2018)), Harassment((Golbeck
et al., 2017)) Toxic ((Wulczyn et al., 2017),(Sarker
et al., 2023b), (Bhat et al., 2021),(Georgakopou-
los et al., 2018)), Cyberbullying (Dadvar et al.,
2012) (Dinakar et al., 2012), Racism (Waseem
and Hovy, 2016)(Kwok and Wang, 2013), Sexism
(Waseem and Hovy, 2016),Flame (Spertus et al.,
1997) Misogynistic (Fersini et al., 2022). Face-
book reports 510K comments/minute and X re-
ports 350 tweets per minute 2. Recent research has
focused on developing automatic systems to de-
tect hate speech on social media platforms. These
typically employ semantic content analysis tech-
niques built on Natural Language Processing (NLP)
and Machine Learning (ML) methods such as Sup-
port vector machine (SVM) and logistic regression
(LR), Convolutional neural networks (CNN), Long
short-term memory (LSTM), Gated recurrent units
(GRU), Bidirectional encoder representations from
the transformer (BERT), etc. The task typically
involves classifying a comment into non-hate or

2https://bernardmarr.com/how-much-data-do-we-create-
every-day-the-mind-blowing-stats-everyone-should-read/



hateful and measuring in terms of performance met-
rics. Hate speech is disseminated via multimodal
data such as memes (text superimposed within im-
ages), audio, and video. Most of the work revolves
around meme identification with the concepts of
early fusion and late fusion. With the emergence
of the Large Language Model (LLM), the employ-
ment of a vision transformer-based approach for
identification has risen. However, little research
focus is on audio or video identification. Recently,
the model has been aided with the explanability in-
formation for better classification. The multimodal
approach focuses on leveraging the multimodality
features (Gomez et al., 2020), (Suryawanshi et al.,
2020), (Kirk et al., 2022). Recently, the identifi-
cation of hate span, and transforming/rephrasing
the offensive into non-offensive has been in atten-
tion to counter the hate speech. The remainder
of this paper is structured as follows: Section 2
reviews the dataset organized for the different sub-
tasks of hate identification; Section 3 describes
the features related to hate speech detection in the
uni-modal identification. Section 4 introduces the
tasks done to solve multimodal hate prediction, Sec-
tion 5 presents the study to counter hate speech;
and finally, Section 6 is about the implementation
and role of explainable AI, Section 7 reports some
challenges; and Section 8 concludes this work and
discusses future work.

2 Corpus Details

This section covers the dataset collection process,
the annotator’s role, available datasets, and chal-
lenges associated.

2.1 Data Set Collection and Preparations

Most of the work done in hate speech detection
for unimodal and multimodal relies on the labeled
data. These corpus are mainly crawled through
Twitter (Wijesiriwardene et al., 2020) (Jha and
Mamidi, 2017) (Fersini et al., 2018), Facebook (Ku-
mar et al., 2018), Reddit (Mollas et al., 2020), Gab
(Kennedy et al., 2018), Wikipedia comments (Wul-
czyn et al., 2017) (Pavlopoulos et al., 2020). Nearly
all the user-generated content has been crawled us-
ing a keyword-based approach (Waseem and Hovy,
2016) (de Gibert et al., 2018) with words being in
negative polarity. Most of the datasets are topical
focus (Kumar et al., 2018) (Founta et al., 2018)
i.e the specific topics and abusive phenomena ad-
dressed The preprocessing is performed depending

on the data quality and structure. This typically in-
volves filtering and normalizing textual inputs, such
as tokenization, stopword removal, misspelling cor-
rection, noise reduction, stemming, and lemmatiza-
tion.

2.2 Annotations
The preprocessed data requires a manual review
of the post/meme/audio to tag it into further gran-
ularity of hate. The data annotation is a relevant
source of variability. There are various annota-
tion frameworks (Founta et al., 2018)(Bhattacharya
et al., 2020) (Zampieri et al., 2019). Typically
the annotations are performed by hiring the ex-
perts, amateur/non-experts, or on crowdsourcing
platforms such as Crowdflower (Davidson et al.,
2017), and Amazon Mechanical Turk (Zampieri
et al., 2019) (Founta et al., 2018). The annotators
are generally pre-informed about the task. As per
the annotation scheme, there are three main strate-
gies. The first is a binary scheme: two mutually-
exclusive values (typically yes/no) to mark the pres-
ence or absence of a given phenomenon. The sec-
ond is a non-binary scheme: more than two mutu-
ally exclusive values. The third strategy features
multi-level annotation, with finer-grained schemes
accounting for different phenomena. The quality of
annotated data is measured by the Inter Annotators
agreement score. Most of the authors did not give
much about the annotation process and only pro-
vided an Inter-annotator agreement score. Fleiss
Kappa (Zampieri et al., 2019), Cohen Kappa (Gol-
beck et al., 2017) (de Gibert et al., 2018), Kripen-
drof’s Kappa (Kumar et al., 2018) (Bhattacharya
et al., 2020)

2.3 Available Datasets
The most common binary annotated corpus is
(Golbeck et al., 2017) (de Gibert et al., 2018),
(Bretschneider and Peters, 2016), (Ghosh et al.,
2022) (Gao and Huang, 2017). To have bet-
ter coverage of the hate variants, the binary task
shifted to the single-layer 3-class (Davidson et al.,
2017)(Waseem and Hovy, 2016)(Toraman et al.,
2022)(Mathew et al., 2021) or multi-class (Founta
et al., 2018)(Waseem, 2016)annotated data. There
is an issue of imbalance in the number of hate
and non-hate instances. (Davidson et al., 2017),
(de Gibert et al., 2018), (Curry et al., 2021) con-
stitutes 6%-20% hateful instances. (Kurrek et al.,
2020) (Mathew et al., 2021) (Pavlopoulos et al.,
2021) constitute 50%-60% of the abusive instances.



(Röttger et al., 2021), (Borkan et al., 2019) consists
of around 70%-80% hate instances. The single
layer tagging is shifted towards the creation of a
hierarchical annotation schema (Zampieri et al.,
2019) (Basile et al., 2019) (Mandl et al., 2021)
covering the targets associated with hate in the
subsequent layers. The targets are trans people
(Röttger et al., 2021), religion (Mathew et al.,
2021)(Kennedy et al., 2020), misogyny (Fersini
et al., 2018). The tagging is also done at the
multinomial level (Mollas et al., 2020), on a scale
(Wulczyn et al., 2017), multi-task multi-tagging
(Vidgen et al., 2020). The recent shift in marking
the toxic span is also gaining pace. (Pavlopoulos
et al., 2021) proposed annotated data for toxic span.
(Sarker et al., 2023a) released ≈ 20K comments
marked for toxic phrases. The shift in data creation
from unimodal to multimodal is slow. The creation
of multimodal data has recently gained pace with
datasets like (Kiela et al., 2020), (Gomez et al.,
2020), (Suryawanshi et al., 2020), (Fersini et al.,
2022), (Ramamoorthy et al., 2022), (Aprosio et al.,
2020), (Yang et al., 2019) (Tekiroglu et al., 2022)
(Qian et al., 2019a). To combat the hate and gener-
ate counter-narrative statements, some datasets are
created such as (Chung et al., 2019)(Fanton et al.,
2021)(Qian et al., 2019a).

3 Unimodal: Textual Identification

The distinguishing approach in the classification
tasks is the usage of features. This section covers
the various approaches utilized to compute the fea-
tures and various methods employed to improve the
performance of the classifier. The encoded features
are generally applied to the machine learning or
deep neural network to get the probability distribu-
tion of the classes.

3.1 Simple Surface Features

Traditional Machine learning algorithms utilize sur-
face features such as word n-gram and character
n-grams features (Nobata et al., 2016) (Waseem
and Hovy, 2016) (Zhang et al., 2018) (Chen et al.,
2012) (Xu et al., 2012). These features were fed
into Support vector machine (SVM) (Kapil and
Ekbal, 2020)(Zhang et al., 2018), Logistic Re-
gression (LR) (Waseem and Hovy, 2016)(Qian
et al., 2018), Random Forest (RF) (Davidson et al.,
2017). The other linguistic features such as Part-
of-Speech (PoS) tag unigrams, bigrams, and tri-
grams, weighted by their TF-IDF and removing

any candidates with a document frequency lower
than 5; number of syllables; Flesch-Kincaid Grade
Level and Flesch Reading Ease scores that to mea-
sure the ‘readability’ of a document (Zhang et al.,
2018), (Davidson et al., 2017). (Gambäck and Sik-
dar, 2017), (Kapil and Ekbal, 2020) (Gambäck and
Sikdar, 2017) used CNN with n-gram approach.
Character n-grams provide the model to capture the
obfuscation such as fck, kll, a$$hole. It is found
to be more predictive than token n-grams (Mehdad
and Tetreault, 2016)

3.2 Word Embeddings
With time, distributed word representations (based
on neural networks), also referred to as word em-
beddings, are developed. These are Word2vec
(Mikolov et al., 2013), FastText (Bojanowski et al.,
2017), and Glove (Pennington et al., 2014). Word
embedding is based on distributed assumptions and
mapped words into a high-dimension feature space
and maintains the semantic information. For each
target sentence S = w1, w2, , wN , each token wi is
substituted into a real-valued vector xi using word
embedding, where xi ∈Rd is the word vector and
d is the dimensions of word vectors. These word
embeddings were used with CNN (Badjatiya et al.,
2017)(Kapil and Ekbal, 2020), LSTM (Zhou et al.,
2021a) (Pitsilis et al., 2018), GRU (Zhang et al.,
2018), (Zhou et al., 2021a)

3.3 Transformer-Based Approaches
The inclusion of transformer-encoder-based fea-
tures outperformed the traditional machine learn-
ing and deep neural network techniques. It is
leveraging the concept of multi-head self-attention
(Vaswani et al., 2017). These models have emerged
as the preferred approach for a variety of NLP
tasks, owing to their capacity for effectively han-
dling long-range dependencies while processing
text in parallel. This parallel processing makes
them more efficient and scalable than standard
RNNs and CNNs. Transformer-based models’ ba-
sic notion is their attention mechanism, which al-
lows the model to focus on relevant areas of the
input text while making predictions. More than
60% of the models submitted in the shared task
(Bhattacharya et al., 2020)(Mandl et al., 2021) were
based on transformer encoder embeddings (Curry
et al., 2021)(Basile et al., 2019) (Fersini et al.,
2022). Specifically, BERT is used by (Mozafari
et al., 2020a)(Zhou et al., 2021a)(Mathew et al.,
2021).



3.4 Lexical Resources
To make use of the general assumption that hateful
posts contain negative words, these words can be
used as the feature. There are many publicly avail-
able hate-related lexicons. The domain-specific lex-
icons are created by (Davidson et al., 2017) of size
179; (Bassignana et al., 2018) created HurtLeX, a
multilingual lexicon of ¡100,000 hate words in 53
languages,(Olteanu et al., 2018) created 163 hate
words; (Qian et al., 2019b) collected 2105 lexi-
cons; and (Wiegand et al., 2018) proposed 1651
words. (Gitari et al., 2015) created a lexicon us-
ing subjectivity and syntactic features related to
hate speech. (Xiang et al., 2012), (Nobata et al.,
2016) (Burnap and Williams, 2016), (Burnap and
Williams, 2015) employed lexicon lists; recently,
BERT-based methods (Koufakou et al., 2020) lever-
aged from the lexicon. The recent development
in encoding has seen a lesser creation of lexicons
to capture standardized vocabulary and semantic
information.

3.5 Knowledge-Enriched Features
The creation of a large number of annotated data
poses a great challenge. It is therefore a wise idea
to transfer this knowledge via multi-task learning
(MTL), transfer learning, zero-shot learning, few-
shot learning, etc. Given m learning tasks

{Ti}mi=1 (1)

where all the tasks or subsets of them are related,
multi-task learning aims to help improve the learn-
ing of a model for classification task Ti by us-
ing the knowledge in some or all of the m tasks.
(Kapil and Ekbal, 2020) experimented with CNN-
based MTL on five hate datasets. (Ghosh et al.,
2023a) transformer-based multi-task network to
address (a) aggression identification, (b) misogy-
nistic aggression identification, (c) identifying hate-
offensive and non-hate-offensive content, (d) iden-
tifying hate, profane, and offensive posts, and (e)
type of offense. The other forms of MTL were
employed, such as fuzzy-based (Liu et al., 2019),
multi-task multilingual (Mishra et al., 2021). The
empirical analysis showed the approaches follow-
ing MTL outperformed the other classifier with
the (Maity et al., 2023) analyzing the efficacy of
MTL over single task learning (STL). Transfer
learning aims to transfer the learned knowledge
in one domain or application to another domain for
which no data exists. (Mozafari et al., 2020a) fine-

tuning BERT-based transfer learning, and (Yuan
et al., 2023) explored deep transfer learning by
projecting multiple datasets in a common space.
(Qian et al., 2021) proposed Variational Represen-
tation Learning (VRL) along with a memory mod-
ule based on LB-SOINN (Load-Balancing Self-
Organizing Incremental Neural Network) to life-
long data learning without forgetting the previously
learned knowledge. There are some other learning
methods, such as Few-shot learning (FSL), i.e gen-
erally as n-shot learning, a category of artificial
intelligence that also includes one-shot learning
(in which there is only one labeled example of
each class to be learned) and zero-shot learning (in
which there are no labeled examples at all). Several
work involved the usage of these learning (Moza-
fari et al., 2022), (Awal et al., 2023), (Pamungkas
et al., 2021)

3.6 Relation with Sentiment Analysis and
Emotion

Hate speech data is closely related to sentiment and
emotion analysis, as understanding the underlying
negative sentiments and intense emotions is crucial
for accurate detection and effective intervention.
(Gitari et al., 2015) (Dinakar et al., 2012) followed
the approach where a classifier dedicated to detect-
ing negative polarity is applied prior to the classifier
specifically checking for evidence of hate speech.
(Van Hee et al., 2015) uses sentiment lexicon to
identify the number of positive, negative, and neu-
tral words in a comment text. The BERT-based
models have also leveraged the sentiment and emo-
tion data in the training. (Min et al., 2023) validate
the correlations between hate speech and certain
negative emotion states and propose an emotion-
correlated hate speech detector. (Rajamanickam
et al., 2020) advantage of the affective features to
gain auxiliary knowledge through a hard-sharing
double encoder model and gated double encoder
based on Bi-LSTM. (Zhou et al., 2021a) use mul-
tiple feature extraction units to share multi-task
parameters to better share sentiment knowledge,
and then gated attention is used to fuse features for
hate speech detection. (Kapil and Ekbal, 2021) pro-
posed CNN-based MTL sharing sentiment analysis
data. (Kapil and Ekbal, 2022) (Ghosh et al., 2023a)
make use of sentiment and emotion recognition
data in the BERT-based MTL.



3.7 Augmentation

As the neural networks are data-specific, the perfor-
mance of the model can be enhanced by increasing
the training data by augmentation and solving the
problem of data scarcity and data imbalance. Most
researchers have employed pre-trained transform-
ers to generate synthetic posts. (Wullach et al.,
2021) utilized GPT LLM (BERT, RoBERTa, AL-
BERT) for generating synthetic data (Ilan and Vi-
lenchik, 2022) applied data augmentation using
real, unlabelled data, selected from the online plat-
form. Unlike other data augmentation approaches
that generate synthetic data, HARALD (Hate Aug-
mentation with ReAL Data) generates a continuous
stream of relevant real data authored by multiple
authors with diverse stylistic, grammatical, and se-
mantic forms. (Hartvigsen et al., 2022) created
machine-generated datasets TOXIGEN by develop-
ing a demonstration-based prompting framework
and an adversarial classifier-in-the-loop decoding
method to generate subtly toxic and benign text
with a massively trained language model. (Kim
et al., 2023) proposed TOXIGEN-CONPROMPT, a
pretraining strategy to leverage machine-generated
data via contrastive learning. (Cao and Lee, 2020)
deep generative reinforcement learning adversarial-
generated-based data augmentation to enhance the
performance by 5%.

3.8 Impliciteness

The detection method mainly works well for hate
expressed explicitly. One of the challenging aspects
is to detect hate expressed in an implicit manner
(Kumar et al., 2018)(Kim et al., 2022) (Hartvigsen
et al., 2022). Previous research has mostly ad-
dressed overt or explicit hate speech in an accurate
way, neglecting the more prevalent type of coded or
indirect language. (ElSherief et al., 2021) proposed
benchmark corpus. In (Wiegand et al., 2021), Wie-
gand discusses the challenges of learning implicit
abuse in existing datasets and suggests improve-
ments to their design. (Qian et al., 2019b) deci-
phered hate symbols using a sequence-to-sequence
model using Urban Dictionary. (Ocampo et al.,
2023a) generated adversarial implicit hate mes-
sages leveraging auto-regressive models. (Ghosh
et al., 2023b) explicitly incorporates user- and con-
versational context to detect implicit hate (Wiegand
et al., 2023) proposed new data set generated from
GPT-3 to identify euphemistic abuse. (Cooper et al.,
2023) designed Hate speech detection models in-

oculated against real-world homoglyphs. (Ocampo
et al., 2023b) investigate implicit and explicit em-
bedding representations. (Kim et al., 2022) lever-
aged contrastive learning to learn implicit posts.

4 Multi-modal

The early works of multimodal hate identification
involve the usage of meta-tweet features aided to
the main tweet (Founta et al., 2018), (Qian et al.,
2018). (Pitsilis et al., 2018) proposed an ensem-
ble of recurrent neural network (RNN) classifiers,
incorporating various features associated with user-
related information, such as users’ tendency to-
wards racism or sexism. (Founta et al., 2019)
(Chatzakou et al., 2017) utilizes a wide variety
of metadata, such as tweet-based, user-based, and
network-based features. The properties of bullies
and aggressors were studied. (Rajadesingan et al.,
2015) derived 10 features grouped into text-based
features, emotion-based features, familiarity-based
features, contrast-based features, and complexity-
based features (Waseem and Hovy, 2016) leveraged
the gender and demographic information, (Unsvåg
and Gambäck, 2018) investigates the potential ef-
fects of users’ features such as gender, network
(number of followers and friends), activity (num-
ber of statuses and favorites), and profile informa-
tion (geo-enabled, default profile, default image,
and number of public lists). (Chaudhry and Lease,
2022) investigate profiling users by their past utter-
ances as an informative prior. But in the current
scenario, social media has also seen an upsurge in
memes, GIFs, audio, and video to propagate hate.
However, most of the data are available for mul-
timodal meme identification. Memes—that have
recently emerged as popular engagement tools and
which, in their usual form, are image macros shared
through social media platforms mainly for amuse-
ment—are also being increasingly used to spread
hate and/or instigate social unrest and therefore
seem to be a new form of expression of hate speech
on online platforms (Fersini et al., 2022)(Suryawan-
shi et al., 2020). Some of these multimodal publi-
cations are only hate speech because of the combi-
nation of the text with a certain image (Kiela et al.,
2020). Multimodal hate speech detection integrates
various data types, such as text, images, audio, and
video, to enhance the accuracy and robustness of
identifying hate speech. The next part covers the
feature extractor and usage of a multimodal pre-
trained transformer.



4.1 Feature Extraction

The text superimposed is generally extracted
through optical character recognition (OCR).
Unimodal feature extraction: The textual feature is
extracted by using pre-trained word embedding
(Mikolov et al., 2013)(Pennington et al., 2014)
through LSTM ((Gomez et al., 2020), (Botelho
et al., 2021), (Aman et al., 2021) RF ((Gomez et al.,
2020) CNN (Suryawanshi et al., 2020). The trans-
former encoder BERT ((Sabat et al., 2019), (Kiela
et al., 2020), (Hossain et al., 2022), (Prasad et al.,
2021)), to get encoded text representations. Sev-
eral pre-trained CNN architectures have been used.
These are Imagenet used by (Gomez et al., 2020)
(Sabat et al., 2019)(Hossain et al., 2022) Xcep-
tion (Botelho et al., 2021) VGG 16 (Suryawanshi
et al., 2020) (Aman et al., 2021) (Lee et al., 2021)
ResNET (Ma et al., 2022) (Zhang et al., 2023a).
Early multimodal identification work generally in-
volves merging the unimodal features through fu-
sion. To have better representations, unimodal fea-
tures were fused based on concatenation (Kumar
et al., 2021) (Kiela et al., 2020) (Hossain et al.,
2022)(Kumar and Nandakumar, 2022). The fusion
based on summation (Kumar et al., 2021),(Zhou
et al., 2021b). The transformer architecture serves
as the foundation for today’s cutting-edge vision
language learning models. There are two main
approaches: Single-stream models/early fusion,
such as VisualBERT (Kiela et al., 2020), UNITER
(Zhang and Wang, 2022) (Lippe et al., 2020), OS-
CAR (Lippe et al., 2020) (Kiela et al., 2020), use
a single transformer to process the image and lan-
guage input at the same time. Dual-stream mod-
els/late fusion, such as LXMERT (Lippe et al.,
2020), CLIP (Kumar and Nandakumar, 2022), De-
VLBERT, and VilBERT (Lee et al., 2021), rely
on separate transformers for vision and language,
which are then combined towards the end of the
model. New approaches leveraging the multi-
modal techniques to enhance the performance have
been proposed.

4.2 Context Aware Information

(Zhou et al., 2021b) utilizes image captioning
process (Xu et al., 2022) proposed MET-Meme
rich in metaphors . (Cao et al., 2022) proposed
PromptHATE to prompt pre-trained language mod-
els (PLMs) for multimodal classification. (Shang
et al., 2021) developed GNN-based KnowMeme
to enrich from human commonsense knowledge.

(Hossain et al., 2024) developed context-aware
framework; (Pramanick et al., 2021) proposed MO-
MENTA that leverages local and global perspec-
tives to detect memes. (Botelho et al., 2021) deci-
pher implicit hate (Yang et al., 2022) uses cross-
domain knowledge transfer (Chhabra and Vish-
wakarma, 2023) leverages knowledge distillation
architecture

4.3 Audio and Video Detection

(Rana and Jha, 2022) proposed new video hate de-
tection data and combined the auditory features
representing emotion and the semantic features to
detect hateful content. (Das et al., 2023) curate 43
hours of videos from BitChute and manually anno-
tate them as hate or non-hate, along with the frame
spans, which could explain the labeling decision.
They showed that models having multiple modali-
ties surpass the performance obtained by uni-modal
variants. (Gupta et al., 2023) explore the context
for hate detection for video pages by using like de-
scription, transcript, and visual input. (Ibañez et al.,
2021) develop a hate speech classifier from online
short-form TikTok videos (Bhesra et al.) collected
audio-based hate speech data; (Prasad et al., 2023)
video frame features in the multimodal identifica-
tion.

5 Dehatify

This section mainly deals with the advancement in
the style transfer and counter-narrative response.
Preventing hate speech through style transfer en-
tails rephrasing toxic information in neutral or pos-
itive language and using advanced NLP techniques
to change the tone while preserving content. In
NLP, style transfer involves adding certain stylistic
attributes to text while maintaining its basic struc-
ture and meaning. It follows the concept of encoder
and decoder. The model is trained using unsuper-
vised (no parallel data) or in a supervised manner
(parallel data).

5.1 Span Prediction

Span prediction refers to identifying the start and
end positions of a relevant text segment within a
larger document. The inclusion of shared task
(Pavlopoulos et al., 2021) To ease the modera-
tors, this part will predict the toxic span. There
were 36 system submission, with winners em-
ploying BERT with CRF. The results were com-
puted using character-based F1. (Ranasinghe and



Zampieri, 2021) presents MUDES, a multilingual
system to detect offensive spans in texts. It features
pre-trained models, a Python API for developers,
and a user-friendly web-based interface. (Pouran
Ben Veyseh et al., 2022) proposed multi-task set-
ting for toxic span prediction, and (Nouri, 2022)
developed data augmentation with dual training for
Offensive Span Detection

5.2 Style Transfer
(Mangal and Jindal) filters out hate words based
on a lexicon. The void is predicted by using
Google with the CBOW model. The second ap-
proach uses back translation to lose the original
style but preserves content; it is then regenerated
using desired styles. (Santos et al., 2018) trained
a GRU-based encoder-decoder using non-parallel
data. The framework combines collaborative classi-
fiers, attention, and cycle consistency loss. (Ahmad
et al., 2022) proposed a decoding technique follow-
ing lexical constraints over the zero-shot style trans-
fer method. (Masud et al., 2022) curated a parallel
corpus of hate texts and their counterpart. A model
NACL, a hate speech normalization operating in
three stages: identifying the hate posts, identifying
the toxic span, and then rephrasing it to non-hate.
(Tran et al., 2020) designed a retrieve, generate,
and edit unsupervised style transfer pipeline. The
part of Speech (POS) tag sequences is identified,
followed by the generation of suitable candidates,
and corrected by the edit module. (Atwell et al.,
2022) released a parallel corpus of comments with
its style-transferred counterparts. The proposed
model leverages discourse frameworks and parsing
to preserve content.

5.3 Counter Narratives
The counter-narrative data is prepared with the in-
tervention of humans. These data will be trained,
and the output is to generate counternarratives con-
cerning the post. (Bonaldi et al., 2022)presented
generated dialogue data aided by the intervention
of human expert annotators to automate counter-
narrative writing. (Hong et al., 2024) proposed
constrained generation of counter speech by in-
corporating two conversation outcomes in the text
generation by prompt with instructions, prompt
and select, LLM finetune, and LLM Transformer
reinforcement learning. (Tekiroglu et al., 2020) em-
ployed a generative pre-trained transformer (GPT)-
2 to generate silver counter-narratives, followed
by expert validation/post-editing. (Chung et al.,

2019) described the creation of the first large-scale
multilingual hate speech/counter-narrative pairs by
experts. (Fanton et al., 2021) presented a HITL
framework for data collection based on an author-
reviewer paradigm. (Chung et al., 2021) presented
a knowledge-bound counter-narrative incorporat-
ing external knowledge retrieved through extracted
and generated keyphrases. The process of de-
hatification needs to be more researched with the
SOTA methods.

6 Model Implementation and
Explainable AI

6.1 Model Parameters and Evaluation Metric

The experiments were performed using a 5-fold
cross-validation (Zampieri et al., 2019)(Ghosh
et al., 2022) (Kapil and Ekbal, 2020) approach.
The 4-fold training set is split into 15% validation
and 85% training, while the last fold is treated
as the test set to evaluate the model. Most of
the deep learning models were implemented us-
ing Keras (Zhang et al., 2018) (Pitsilis et al., 2018)
with Tensorflow as the backend. Evaluation of
the performance of hate speech (and also other
related content) detection typically adopts the clas-
sic Precision, Recall, and F1 metrics. Precision
measures the percentage of true positives among
the set of hate speech messages identified by a
system. The model employs precision (Badjatiya
et al., 2017) (Dinakar et al., 2012)(Wiegand et al.,
2018), recall (Burnap and Williams, 2015)(Gitari
et al., 2015)(Waseem and Hovy, 2016) The model
performance for unimodal is measured by F1 (har-
monic mean of precision and recall) (Kapil and Ek-
bal, 2020)(Waseem and Hovy, 2016)(Zhang et al.,
2018)(Badjatiya et al., 2017). Most of the multi-
modal models employ AUC-ROC (Kumar et al.,
2021)(Kiela et al., 2020) (Shome and Kar, 2021) as
its metric. The F1 score also used (Hossain et al.,
2022)(Aman et al., 2021)(Lee et al., 2021) The
quantitative metrics generally used in the genera-
tive task are consistency preservation (Santos et al.,
2018), perplexity (Santos et al., 2018) (Masud et al.,
2022), BLEU (Bilingual Evaluation Understand-
ing) (Ahmad et al., 2022) (Masud et al., 2022)(Tran
et al., 2020)(Atwell et al., 2022), ROGUE (Tran
et al., 2020), METEOR (Tran et al., 2020) The nov-
elty of generated text is also measured using rele-
vance and effectiveness (Hong et al., 2024)(Bonaldi
et al., 2022)



6.2 Mitigating Bias

Annotator bias refers to the systematic errors or ten-
dencies introduced by individuals who label or an-
notate data used in machine learning and other data-
driven applications. (Wich et al., 2021)(Al Kuwatly
et al., 2020) This bias can affect the quality, reli-
ability, and generalizability of the annotated data,
leading to skewed or misleading results in mod-
els trained on such data. (Waseem, 2016) con-
cluded that annotator bias can stem from various
sources, including personal biases, unclear tagging
details, task complexity, social bias, etc. Several
bias mitigation methods are proposed to make the
model more efficient. (Cheng et al., 2021) pro-
posed debiasing strategy based on Reinforcement
learning (RL), (Sahoo et al., 2022) extracted social
bias data, and (Zhang et al., 2023b) introduced two
mitigation approaches, such as multi-task interven-
tion and data-specific intervention. (Mun et al.,
2023)(Elsafoury et al., 2022) investigated counter-
ing of stereotypical bias, (Badjatiya et al., 2019)
(Maity et al., 2019) mitigated internal stereotypical
bias through knowledge representations, (Davidson
et al., 2019) studied racial bias (Xia et al., 2020)
proposed demoting racial bias by adversarial train-
ing; (Mozafari et al., 2020b) mitigated racial bias
(Ahmed et al., 2022) tackled racial bias using ge-
ometric learning, (Halevy et al., 2021) mitigated
racial bias using ensemble; and (Shah et al., 2021)
studied reducing target group bias.

6.3 Explainable AI

The performance of the model can be enhanced by
making the model learn the human rationale of the
input in an explainable form. (Lin et al., 2024)
explainable approach through reasoning. (Lin
et al., 2024) model is empowered to perform di-
alectical reasoning over intricate and implicit harm-
indicative patterns, utilizing multimodal explana-
tions originating from both harmless and harmful
arguments. (Clarke et al., 2023) introduced rule
By example, an exemplar-based contrastive learn-
ing framework to explainable hate speech detec-
tion. (Yang et al., 2023) introduced the framework
HARE, harnessing the reasoning capabilities of
LLMs.

7 Challenges

Degradation of datasets, non-uniform definitions of
hate, non-disclosure of the annotation guidelines,
annotators’ bias, time-consuming annotation, men-

tal illness, etc. The mental health of hate victims
has also been studied.

7.1 Effect on Mental Health

Cyberbullying and other subhate can be detrimen-
tal causes in mental health. The computational ap-
proach has not solved it; rather, a string of surveys
based on questionnaires and responses, the degree
of scale of depression is studied. (Bucur et al.,
2021) analyzed the relationship between mental
depression and online postings. (Saha et al., 2019)
studied the psychological effects of hateful speech
in relation to depression. (Wachs et al., 2022) ex-
plored the relationship between online hate speech
victimization and adolescents’ mental well-being
through the use of questionnaires assessing online
hate speech victimization, depressive symptoms,
and resilience. (Torres et al., 2020) examined the
effect of social, verbal, physical, and cyberbullying
victimizations on academic performance.

8 Conclusion and Future Work

In this survey, we provided a critical assessment
of how the automatic identification of hate speech
in text has advanced over the last several years.
Other realms of hate speech that we examined in-
cluded cyberbullying, abusive language, discrimi-
nation, sexism, extremism, and radicalization. The
work done in the unimodal text identification, mul-
timodal hate identification, style transfer, counter-
narrative generation, and discussion on mental
health is done. The future work should focus more
on fine-grained hate detection, a more mathemat-
ically efficient fusion approach, adding more ex-
plainability, and the continuous learning paradigm.

Limitations

Hate speech detection is a very vast domain cov-
ering multiple languages. This survey covers only
the research done so far for the English language.
The number of open repositories is very few, and
the inconsistent guidelines and differences in anno-
tator expertise further complicate the reliability of
the data, impacting the effectiveness and accuracy
of detection models. The data is, in most cases,
very difficult to share because of privacy issues.
Most of the work completed is not deployed, and
if deployed, released by very few. The multimodal
audio and video identification are in the very pre-
liminary stage.



Acknowledgement

The authors gratefully acknowledge the project
”HELIOS: Hate, Hyperpartisan, and Hyperplural-
ism Elicitation and Observer System” sponsored
by Wipro Ltd. Prashant Kapil acknowledges the
University Grant Commission (UGC) of the Gov-
ernment of India for UGC NET-JRF/SRF fellow-
ship.

References
Zishan Ahmad, Vinnakota Sai Sujeeth, and Asif Ekbal.

2022. Zero-shot hate to non-hate text conversion us-
ing lexical constraints. IEEE Transactions on Com-
putational Social Systems.

Zo Ahmed, Bertie Vidgen, and Scott A Hale. 2022.
Tackling racial bias in automated online hate detec-
tion: Towards fair and accurate detection of hateful
users with geometric deep learning. EPJ Data Sci-
ence, 11(1):8.

Hala Al Kuwatly, Maximilian Wich, and Georg Groh.
2020. Identifying and measuring annotator bias
based on annotators’ demographic characteristics.
In Proceedings of the fourth workshop on online
abuse and harms, pages 184–190.

Aayush Aman, Gopal Krishna, Tushar Anand, and
Anubhaw Lal. 2021. Identification of offensive con-
tent in memes. In Data Science and Security: Pro-
ceedings of IDSCS 2021, pages 438–445. Springer.

Alessio Palmero Aprosio, Stefano Menini, and Sara
Tonelli. 2020. Creating a multimodal dataset of
images and text to study abusive language. arXiv
preprint arXiv:2005.02235.

Katherine Atwell, Sabit Hassan, and Malihe Alikhani.
2022. Appdia: A discourse-aware transformer-
based style transfer model for offensive social media
conversations. arXiv preprint arXiv:2209.08207.

Md Rabiul Awal, Roy Ka-Wei Lee, Eshaan Tan-
war, Tanmay Garg, and Tanmoy Chakraborty. 2023.
Model-agnostic meta-learning for multilingual hate
speech detection. IEEE Transactions on Computa-
tional Social Systems.

Pinkesh Badjatiya, Manish Gupta, and Vasudeva
Varma. 2019. Stereotypical bias removal for hate
speech detection task using knowledge-based gener-
alizations. In The world wide web conference, pages
49–59.

Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,
and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In Proceedings of the
26th International Conference on World Wide Web
Companion, pages 759–760.

Valerio Basile, Cristina Bosco, Elisabetta Fersini,
Nozza Debora, Viviana Patti, Francisco
Manuel Rangel Pardo, Paolo Rosso, Manuela
Sanguinetti, et al. 2019. Semeval-2019 task 5:
Multilingual detection of hate speech against immi-
grants and women in twitter. In 13th International
Workshop on Semantic Evaluation, pages 54–63.
Association for Computational Linguistics.

Elisa Bassignana, Valerio Basile, Viviana Patti, et al.
2018. Hurtlex: A multilingual lexicon of words to
hurt. In CEUR Workshop proceedings, volume 2253,
pages 1–6. CEUR-WS.

Meghana Moorthy Bhat, Saghar Hosseini, Ahmed Has-
san, Paul Bennett, and Weisheng Li. 2021. Say
‘yes’to positivity: Detecting toxic language in work-
place communications. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2021,
pages 2017–2029.

Shiladitya Bhattacharya, Siddharth Singh, Ritesh Ku-
mar, Akanksha Bansal, Akash Bhagat, Yogesh
Dawer, Bornini Lahiri, and Atul Kr Ojha. 2020. De-
veloping a multilingual annotated corpus of misog-
yny and aggression. In Proceedings of the Second
Workshop on Trolling, Aggression and Cyberbully-
ing, pages 158–168.

Kirtilekha Bhesra, Shivam Ashok Shukla, and Akshay
Agarwal. Audio vs. text: Identify a powerful modal-
ity for effective hate speech detection. In The Sec-
ond Tiny Papers Track at ICLR 2024.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Helena Bonaldi, Sara Dellantonio, Serra Sinem
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