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Abstract

With so much information available online, it’s
more important than ever to have reliable tools
for summarizing text quickly and accurately. In
this paper, we introduce a new way to improve
the popular TextRank algorithm for extractive
summarization. By adding a dynamic damp-
ing factor and using Latent Dirichlet Allocation
(LDA) to enhance how text is represented, our
method creates more meaningful summaries.
We tested it with metrics like Pyramid, ME-
TEOR, and ROUGE, and compared it to the
original TextRank. The results were promis-
ing, showing that our approach produces better
summaries and could be useful for real-world
applications like text mining and information
retrieval.

1 Introduction

There is a gigantic amount of data being gener-
ated on the internet in recent times. The amount
of textual content generated in the form of legal
documents, scripts, news articles, etc., is very vast.
Generating concise summaries of such vast tex-
tual sources manually is a very time-consuming
and tedious task to do. Hence, this gives rise to
various approaches that help in generating auto-
matic summaries through ATS (Automatic Text
Summarization) systems. These ATS systems help
to extract important information from documents.
The main aim of text summarization is to shorten
the length of the source text while preserving all
important sentences and the overall meaning of the
source text. Text summarization is divided into
two types, mainly single-document summarization
and multi-document summarization as mentioned
in (Jalil et al., 2021) and (Tas and Kiyani, 2017)
There are three types of approaches that can be fol-
lowed for generating ATS systems as mentioned in
(El-Kassas et al., 2020). These approaches Extrac-
tive Summarization, Abstractive Summarization
and Hybrid Summarization. The extractive method

aims to extract the most important sentences from
the input document. Abstractive method on the
other hand aims at generating sentences that differ
from the original sentences in the input text and
generate summary that coveys the entire meaning
of the document. The above mentioned paper also
explains the different methodologies that can be
followed to model the ATS systems. Extractive
ATS systems can be modelled by various meth-
ods like Statistical based, Concept based, Graph
based, Semantic based, etc methods. Abstractive
ATS systems are modelled by using Graph based,
Tree based, Ontology based, etc methods including
BERT summarization which outperforms TextRank
summarization as seen in (Harinatha et al., 2021)

Extractive summarizers are less complex and
they preserve the fidelity of the original document.
They are not prone to errors related to text gen-
eration and misinterpretation as they directly ex-
tract the highest-ranked sentences. (Sonawane
et al., 2019) gives a survey of extractive graph-
based summarization and states how it outperforms
other approaches. (Mihalcea and Tarau, 2004) is
a graph-based method for extractive text summa-
rization that aligns with PageRank’s ranking algo-
rithm (Brin and Page, 1998). The advantage of the
TextRank algorithm is that it is an unsupervised
method and does not require any training to gener-
ate the summary. Along with being unsupervised,
TextRank is also a language-independent method
that generates a summary based on the occurrences
of words. Aligning with this graph-based method
of text summarization, our proposed model extends
the TextRank algorithm by integrating LDA topic
modeling ((Issam et al., 2021) and (Jelodar et al.,
2018)) and a dynamic damping factor as parame-
ters to enhance the vector embeddings of the nodes
of the graph and shows the results obtained by
our model using various evaluation metrics like
ROUGE-1, ROUGE-2, and PYRAMID that evalu-
ate the scores based on measures like recall, preci-



sion, and F1 score.

2 Literature Survey

Given the large corpus of data being generated
daily, it has become increasingly important to de-
velop automatic text summarization models that
can produce precise and concise summaries. (Mi-
halcea and Tarau, 2004) initially proposed a graph-
based ranking algorithm, TextRank, which uses an
unsupervised method for sentence extraction. This
technique is an extension of Google’s renowned
PageRank algorithm (Brin and Page, 1998). One
key advantage of this state-of-the-art method is
its language independence, making it easily adapt-
able to different domains, genres, and languages.
Building on this, (Gulati et al., 2023) made further
advancements by analyzing 75 articles extracted
from the Medium site. In their study, they com-
bined a similarity matrix generated through BM25+
with the original TextRank, normalizing the matrix
by dividing it by the maximum similarity score
in a given matrix. Their primary focus was to en-
hance the mean F-score for all ROUGE metrics
compared to both the original TextRank algorithm
and BM25+. Their results showed an improvement
of 1.654% and 0.413%, respectively.

(Jelodar et al., 2018) suggested that LDA is an
unsupervised generative probabilistic model for
corpus modeling. They introduced various LDA
parameters such as Gibbs sampling, Expectation-
Maximization (EM), and Variational Bayes infer-
ence (VB). (Onah et al., 2023) evaluated the ex-
tractive summarization method and the efficacy of
LDA using Latent Semantic Analysis (LSA) and
ROUGE metrics to assess its accuracy and reli-
ability.(Gialitsis et al., 2019) focuses on enhanc-
ing extractive text summarization by using topic-
based sentence representation. (Erkan and Radev,
2004) used lexical centrality to determine sentence
salience within a document.

(Shi et al., 2019) proposed DeepChannel, an
attention-based neural network that achieved ro-
bust results using only 1 % of the CNN/DailyMail
dataset. (Niepert et al., 2016) and (Jin et al., 2020)
introduced CNN based approaches to achieve high
accuracy against benchmark datasets. (Basyal
and Sanghvi, 2023) focuses on text summarization
methods using various LLM models. (Syed et al.,
2020) used the Webis-EditorialSum-2020 dataset,
containing 1,330 summaries for 266 articles. Their
approach involved two models for generating ex-

tractive summaries. The first was TextRank, which
employed two similarity functions: lexical overlap
and common named entities. The second model
used BERT-based embeddings and clustered seg-
ments using K-Means, with two variants: ExtSum-
XLNet and ExtSum-DistilBERT (Yang et al., 2020).
(Liu et al., 2024) contributed to the field by em-
ploying the SumSurvey dataset, a long-document
abstractive summarization dataset composed of sci-
entific survey papers. Well-known evaluation met-
rics such as ROUGE and BERT Score were used as
reference-based measures in extractive summariza-
tion. Additionally, their abstractive summarization
made use of UniEval, with large language models
(ChatGPT, Vicuna) serving as reference-based met-
rics. They also applied reference-free metrics, such
as Novel N-Gram, to measure the abstractiveness
of the summaries. In this research, we also use
Pyramid scores to evaluate the generated text sum-
maries, as noted in (Gao et al., 2019). This paper
introduces PyrEval, which outperforms previously
developed automated pyramid methods and sets a
new benchmark for precision and accuracy in text
summarization evaluation.

3 Methodology

3.1 Data Preprocessing
Data preprocessing is the initial stage in this sum-
marization model and is used to make the docu-
ments relevant and targetable using the machine
learning algorithms. We import the dataset of
article-reference summary pairs and carry out the
pre-processing phase on the text corpus of the ar-
ticle. The following steps are taken in the Data
Preprocessing Phase as referred in Figure1:

1. Sentence Tokenization – The entire text cor-
pus is composed of several sentences that form
the article. LDA and TextRank work at a sen-
tence level by creating summaries using the
top ranked sentences. Thus, the first step of
processing involves sentence tokenization of
the text corpus.

2. Word Tokenization – Each of these individ-
ual sentences is then broken down into words
thereby increasing the amount of analysis that
can be carried out, such as using TextRank
to calculate word overlaps and using LDA to
create a document-term matrix where each
topic is represented by a number of frequently
co-occurring words. This function breaks



down each sentence into tokens and removes
the punctuations while expanding the contrac-
tions.

3. Removal of Stopwords – Stopwords are sim-
ple English words used in the article for co-
herence and fluency but do not contribute sig-
nificantly to the importance and meaning of a
sentence. Stopwords include words like ‘is’,
’in’, ’this’, and so on.

3.2 LDA for Topic Modelling

LDA is a generative probabilistic statistical model
that aims to discover latent topics within a docu-
ment. It assigns a set of topics to each sentence
based on the words it contains, where each topic
is identified by a group of words that occur fre-
quently together. LDA is used to find the topical
distribution of the document and identifies the top-
ics or themes encapsulated by the text by looking
for groups of words that frequently occur together
across sentences and modelling them into a topic.

Before LDA modelling, preprocessing of the raw
text is performed to convert it into a numerical rep-
resentation known as a document-term matrix that
captures the frequency of words in every sentence.
The columns of the document-term matrix corre-
spond to unique words, and the rows correspond to
sentences.

LDA Modelling calculates the word-topic distri-
butions based on how likely a word is to belong
to a topic given the other words in the sentence
and determines how much each topic contributes
to the overall content of a sentence as well as the
importance of the sentence in the entire corpus of
text.

The LDA model creates a Topic Matrix that
maps sentences to the topics. Each row corresponds
to a sentence, and each column corresponds to a
topic. Thus, each sentence is mapped to various
topics it encapsulates. The values in the matrix
represent the probability that the sentence belongs
to a particular topic.

Sentences that have higher topic scores are more
likely to be about the key topics of the document
and thus are more likely to be included in the final
summary. More weight is to be given to sentences
that are central to the main ideas or topics, im-
proving the quality and coherence of the generated
summary.

3.3 TextRank
TextRank is a graph-based algorithm used for ex-
tractive summarization of text. It is a sentence-
based approach that computes the similarity be-
tween sentences based on word overlap. In the Tex-
tRank algorithm, each sentence represents a node
in a graph, and the edges between the nodes rep-
resent the similarity score between the sentences.
A similarity matrix stores the similarity scores be-
tween all sentences and is used for summarization.

The similarity score between two sentences, A
and B, is calculated as:

Similarity(A,B) =
|A ∩B|

log(len(A) + 1) + log(len(B) + 1)

After computing the similarity matrix, the
PageRank algorithm is applied to rank sentences ac-
cording to their centrality, based on the assumption
that the more overlaps a sentence has, the greater
its importance. The algorithm updates the rank (im-
portance) of each sentence based on its connections
to other sentences.

The PageRank algorithm is expressed as:

PR(i) =
1− α

N
+ α

∑
j

Wji · PRt(j)

Where α is the damping factor, ideally set to
0.85.

After ranking the sentences, we selected the
length of the summary to be generated in terms of
the number of sentences (n), where the top-ranked
n sentences are joined to form the required sum-
mary.

3.4 Damping Factor
In the PageRank formula, α is the damping fac-
tor used to control how the algorithm navigates
through the connected nodes. With probability α,
the rank of a sentence is determined by its similarity
to other sentences (i.e., the structure of the graph),
and with probability 1 − α, the algorithm allows
random jumps to any other sentence, preventing
rank accumulation from being too dependent on
just a few influential nodes. With a damping fac-
tor of 0.85, the algorithm jumps to a connected
node with 85% probability but, in 15% of cases,
makes random jumps to avoid a thread of sentences
monopolizing the summary.

A higher damping factor gives more weight to
sentence connectivity, ensuring sentence similar-
ity is emphasized. A lower damping factor places



Figure 1: System Architecture Diagram

more emphasis on random jumps, making the sys-
tem less reliant on sentence similarity. Hardcod-
ing a value of 0.85 may lead to inefficient summa-
rization in articles with lesser overlaps due to the
diversified nature of content. In this model, we
dynamically calculate the value for the damping
factor using the following approach:

• Node Connectivity – A higher node connec-
tivity factor means the sentences are very simi-
lar, positively contributing to the damping fac-
tor. Higher node connectivity indicates more
coherence in the text corpus.

Connectivity Factor =
node connectivity factor

5

• Entropy Factor – Entropy measures the dis-
tribution of topics throughout the document.
High entropy indicates diverse topical spread
and reduced similarity scores, suggesting a
need to lower the damping factor.

Entropy Adjust =
entropy factor

5

• Variance Factor – The variance of the inte-
grated matrix represents values from the Topic
Matrix formed by LDA modeling and the sim-
ilarity score. A higher value denotes signifi-
cant differences in sentence scores, indicating
that some sentences are much more impor-
tant than others, thus increasing the damping
factor.

Variance Factor =
lda variance + textrank variance

2

• Length Factor – This is based on the length
of a document. If a document is too long,
then more randomness in sentence selection is
efficient. This factor has a lower weight and is
inversely proportional to the damping factor.

Variance Factor =
lda variance + textrank variance

2

• Number of Topics – This measures the di-
versity in the article. A higher number of
topics typically correlates with reduced sim-
ilarity scores due to topical spread. Thus, an
increase in the number of topics should reduce
the damping factor.

Topic Factor =
50

Num topics

Thus, we calculate the dynamic damping factor
as:

Damping Factor = 0.5 + 0.25× Cf − 0.35× EA
− 0.2× Lf − 0.3× Tf + 0.15× Vf

Where:

• Cf is Connectivity factor

• EA is Entropy Adjust



• Lf is Length factor

• Tf is Topic factor

• Vf is Variance factor

Note: Weights for each factor can be calculated
by iterating over from 0 to 1 with a 0.05 increment
and choosing the best-performing weights. They
may vary from dataset to dataset.

3.5 Integration Model
We integrate the Topic Matrix and Similarity Ma-
trix in our model to generate more contextually
relevant summaries. The weights for the LDA Ma-
trix and Similarity Matrix are adjusted based on the
document’s structure and diversity. For instance,
the CNN-Daily Mail dataset performs best with an
LDA weight of 0.1 and a Similarity Matrix weight
of 0.9, while BBC Extractive summarization bene-
fits from an LDA weight of 0.8. These weights are
determined through variance analysis of the matri-
ces or brute-force and trial-and-error techniques.
The Integrated Matrix for ranking sentences and
summarization is computed using:

Combined Score(i) = LDA Weight × LDA Score(i)
+ TextRank Weight × Similarity Score(i).

The final Combined Score leverages both top-
ical modeling (via LDA) and word overlap (via
TextRank), enabling a more balanced and efficient
summary.

3.6 Computational Cost
The integrated summarization system combines
TextRank and LDA-TextRank for topic-aware sum-
maries. TextRank computes sentence importance
using a similarity matrix and PageRank, with a
computational complexity of O(N2), where N is
the number of sentences. This involves construct-
ing a similarity graph and iteratively calculating
sentence scores.

LDA-TextRank, on the other hand, introduces
Latent Dirichlet Allocation (LDA) for topic model-
ing, which adds significant computational overhead
with a complexity of O(I × T × V ), where I is
the number of iterations, T is the number of topics,
and V is the vocabulary size.

Additionally, the dynamic damping factor incor-
porates LDA-derived metrics such as topic entropy
and variance, improving summary coherence at the
expense of increased computational cost.

4 Evaluation

The summary generated is evaluated against the
reference summary from the dataset. Various sum-
mary evaluation methods are available, such as
the ROUGE Metric (ROUGE-N and ROUGE-L
Scores), Pyramid Evaluation Metric, and METEOR
(Metric for Evaluation of Translation with Explicit
Ordering). The evaluation is performed for multi-
ple articles.

4.1 Dataset 1: CNN/Daily Mail

The CNN/Daily Mail dataset is an English-
language dataset containing just over 300k unique
news articles written by journalists at CNN and
the Daily Mail. Each instance includes a string
for the article, a string for the highlights, and a
string for the ID. Token Count for CNN/Daily Mail
Dataset can be seen in Table 1.This dataset is pri-
marily used for abstractive summarization; there-
fore, the articles generated through our model may
exhibit lower ROUGE scores. However, the pro-
posed model still outperforms the general TextRank
implementation across ROUGE, Pyramid, and ME-
TEOR scores.

Feature Mean Token Count
Article 781
Highlights 56 (2 Sentences)

Table 1: Token Count for CNN/Daily Mail Dataset

4.2 Dataset 2: Webis Corpus

The Webis Editorial Sum Corpus consists of 1330
manually curated extractive summaries for 266
news editorials spanning three diverse portals: Al-
Jazeera, Guardian, and Fox News. Each article
has five summaries, each labeled for overall qual-
ity and fine-grained properties such as thesis rel-
evance, persuasiveness, reasonableness, and self-
containedness. The summary statistics for Webis
Corpus is shown in Table2.

Feature Count
Number of Words in Article 913
Number of Words in Summaries 200
Average Length of Summary 20% to 22%

Table 2: Summary Statistics for Webis Corpus



4.3 Dataset 3: BBC Summary Extractive
This dataset for extractive text summarization in-
cludes 417 political news articles from BBC, cover-
ing the years 2004 to 2005. Each article is accom-
panied by five summaries, stored in the Summaries
folder. The first clause of the text of each article
serves as the respective title. The summary statis-
tics for the same is shown in Table3.

Feature Count
Number of Words in Article 380
Number of Words in Summaries 160

Table 3: Summary Statistics for BBC Summary Extrac-
tive Dataset

4.4 Metrics Used for Evaluation
ROUGE (Recall-Oriented Understudy for Gisting
Evaluation) is a commonly used metric for compar-
ing a reference summary (Expert summary) with
the generated summary. It focuses on n-gram over-
laps and other similarity measures. The variants of
ROUGE are:

• ROUGE N: Measures the overlap of N-grams
(e.g., Unigrams, Bigrams, Trigrams).

• ROUGE L: Measures the longest common
subsequence (LCS) between the reference
and generated summaries, capturing sentence-
level structure similarity.

• ROUGE S: Measures skip-bigram overlap,
allowing gaps between words in the sequence.
The Algorithm for computing ROUGE-S is
given in Algorithm 1

Each ROUGE metric is computed in three as-
pects:

• Recall: The proportion of overlap in the ref-
erence summary that is also in the generated
summary.

• Precision: The proportion of overlap in the
generated summary that is also in the refer-
ence summary.

• F1-score: The harmonic mean of Recall and
Precision, calculated as:

F1 =
2× Recall × Precision

Recall + Precision

Pyramids: The Pyramids Evaluation method as-
sesses the content coverage and relevance of a sum-
mary, determining how well the essential content

is represented. Each reference summary is broken
down into atomic information units (SCUs), which
represent important pieces of information. The
system-generated summary is evaluated by iden-
tifying which SCUs it contains, with each SCU
assigned a weight based on how many reference
summaries include it.
METEOR Scores: This metric improves on
precision-recall metrics like BLEU by incorporat-
ing semantic features such as synonymy and stem-
ming. It compares exact matches between words
in the reference and generated summaries, apply-
ing stemming and matching synonyms, as well
as phrase and paraphrase matching. A penalty is
applied for how well-ordered and contiguous the
matched words are, encouraging proper word order
in summaries. The METEOR score reflects recall,
precision, F1, and penalty scores.

4.4.1 Algorithm for ROUGE-S Calculation

Algorithm 1: ROUGE-S Calculation
Data: A list of words from the reference

and generated summaries, and a
maximum skip value

Result: Precision, Recall, and F1 score
Function
generate_skip_bigrams(words,
max_skip)

begin
Initialize skip_bigrams
for each word i in words do

for each word j within max_skip of
i do

Add (words[i],words[j]) to
skip_bigrams

return skip_bigrams
Function
compute_skip_bigram_score(ref_summary,
gen_summary, max_skip)

begin
Tokenize ref_summary, gen_summary
Set ref_bigrams as skip-bigrams from
ref_summary

Set gen_bigrams as skip-bigrams from
gen_summary

Set overlap as intersection of
ref_bigrams, gen_bigrams

if no bigrams then
return (0, 0, 0)

Compute precision, recall, f1
return (precision, recall, f1)



4.5 Result Analysis

The evaluation of the models was performed using
various ROUGE metrics across different dataset
splits. Table 4 demonstrates that the Integrated
Model surpasses the TextRank model in terms of
ROUGE Recall and F1 scores, while exhibiting
lower precision. The reduction in precision is at-
tributed to the incorporation of LDA, which en-
hances topic coverage but leads to the inclusion
of less informative sentences, thereby sacrificing
precision for improved recall. The given can be
easily visualized using Figure 2 and Figure 3.

Table 5 and Table 7 contains the Pyramid
and METEOR metrics for the TextRank and
Integrated Models of The Webis Corpus and BBC
Summarization datatset which are Extractive
datasets. Figure 4 visualizes the Pyramid and
METEOR Scores for CCN Daily Mail Dateset.

Table 6 contains the various evaluation met-
rics for the TextRank and Integrated Models of
The BBC Summarization datatset which is an
Extractive dataset. Figure ?? visualizes various
ROUGE metrics for the BBC Dataset.

Table 8 shows comparison between the pro-
posed model and various LLM models. The
proposed model demonstrates a significant
increase in recall across all other listed models,
accompanied by improved F1 scores, indicating
enhanced overall performance.

Articles Metric Recall Precision F1 Articles Metric Recall Precision F1
TextRank Scores Integrated Model Scores

50 ROUGE-1 0.5460 0.5270 0.5282 50 ROUGE-1 0.6519 0.5183 0.5710
ROUGE-2 0.3368 0.3247 0.3259 ROUGE-2 0.4511 0.3639 0.3986
ROUGE-L 0.3143 0.3015 0.3031 ROUGE-L 0.3877 0.3070 0.3389
ROUGE-3 0.2860 0.2766 0.2773 ROUGE-3 0.4150 0.3355 0.3673
ROUGE-4 0.2999 0.2899 0.2907 ROUGE-4 0.3997 0.3231 0.3537
ROUGE-S 0.3148 0.2902 0.2972 ROUGE-S 0.4336 0.3333 0.3725

100 ROUGE-1 0.5723 0.5373 0.5461 100 ROUGE-1 0.6548 0.5006 0.5607
ROUGE-2 0.3703 0.3489 0.3541 ROUGE-2 0.4473 0.3482 0.3872
ROUGE-L 0.3288 0.3071 0.3129 ROUGE-L 0.3848 0.2931 0.3290
ROUGE-3 0.3183 0.3009 0.3050 ROUGE-3 0.4093 0.3198 0.3551
ROUGE-4 0.3334 0.3149 0.3192 ROUGE-4 0.3940 0.3079 0.3418
ROUGE-S 0.3444 0.3101 0.3213 ROUGE-S 0.4261 0.3163 0.3589

200 ROUGE-1 0.5724 0.5397 0.5482 200 ROUGE-1 0.6512 0.5014 0.5597
ROUGE-2 0.3709 0.3507 0.3557 ROUGE-2 0.4423 0.3473 0.3846
ROUGE-L 0.3325 0.3132 0.3182 ROUGE-L 0.3851 0.2956 0.3305
ROUGE-3 0.3174 0.3008 0.3047 ROUGE-3 0.4035 0.3183 0.3519
ROUGE-4 0.3330 0.3153 0.3196 ROUGE-4 0.3879 0.3061 0.3383
ROUGE-S 0.3457 0.3129 0.3238 ROUGE-S 0.4208 0.3159 0.3565

266 ROUGE-1 0.5681 0.5372 0.5451 266 ROUGE-1 0.6544 0.5032 0.5622
ROUGE-2 0.3612 0.3426 0.3471 ROUGE-2 0.4458 0.3497 0.3876
ROUGE-L 0.3263 0.3077 0.3126 ROUGE-L 0.3834 0.2942 0.3291
ROUGE-3 0.3064 0.2912 0.2948 ROUGE-3 0.4065 0.3204 0.3543
ROUGE-4 0.3222 0.3060 0.3099 ROUGE-4 0.3903 0.3077 0.3403
ROUGE-S 0.3358 0.3052 0.3153 ROUGE-S 0.4232 0.3177 0.3586

Table 4: ROUGE Scores Comparison Between TextRank and Integrated Model on Webis Corpus Dataset.

Figure 2: ROUGE Scores for Webis Corpus Dataset

Figure 3: ROUGE-4, ROUGE-S, Pyramid and ME-
TEOR Scores for Webis Corpus Dataset

Articles TextRank Model Integrated Model
Pyramid
Score

METEOR
Score

Pyramid
Score

METEOR
Score

50 0.8126 0.4018 0.9186 0.4750
100 0.8367 0.4194 0.9130 0.4718
200 0.8364 0.4212 0.9175 0.4708
266 0.8321 0.4158 0.9204 0.4748

Table 5: Pyramid and METEOR Scores on Webis Cor-
pus Dataset



Figure 4: Pyramid and METEOR Scores for CNN
Daily Mail dataset

Articles Metric Recall Precision F1-Score Articles Metric Recall Precision F1-Score
ROUGE Scores for TextRank on BBC Dataset Integrated Scores for BBC Dataset

50 ROUGE-1 0.4968 0.8477 0.6170 50 ROUGE-1 0.5337 0.7676 0.6189
ROUGE-2 0.4253 0.7354 0.5302 ROUGE-2 0.4359 0.6258 0.5051
ROUGE-L 0.3198 0.5585 0.3992 ROUGE-L 0.3550 0.5106 0.4118
ROUGE-4 0.3840 0.6719 0.4801 ROUGE-4 0.3927 0.5656 0.4555
ROUGE-3 0.4015 0.6987 0.5014 ROUGE-3 0.4094 0.5884 0.4745
ROUGE-S 0.4008 0.6428 0.4853 ROUGE-S 0.4151 0.5477 0.4643

100 ROUGE-1 0.5102 0.8508 0.6287 100 ROUGE-1 0.5616 0.7572 0.6261
ROUGE-2 0.4385 0.7400 0.5421 ROUGE-2 0.4624 0.6185 0.5130
ROUGE-L 0.3466 0.5900 0.4291 ROUGE-L 0.3782 0.5045 0.4192
ROUGE-4 0.3983 0.6801 0.4938 ROUGE-4 0.4183 0.5594 0.4637
ROUGE-3 0.4155 0.7054 0.5144 ROUGE-3 0.4358 0.5820 0.4830
ROUGE-S 0.4150 0.6472 0.4978 ROUGE-S 0.4365 0.5402 0.4683

200 ROUGE-1 0.4982 0.8431 0.6171 200 ROUGE-1 0.5659 0.7469 0.6268
ROUGE-2 0.4268 0.7326 0.5310 ROUGE-2 0.4640 0.6098 0.5123
ROUGE-L 0.3431 0.5939 0.4276 ROUGE-L 0.3779 0.4952 0.4168
ROUGE-4 0.3878 0.6744 0.4842 ROUGE-4 0.4188 0.5506 0.4621
ROUGE-3 0.4041 0.6985 0.5038 ROUGE-3 0.4363 0.5729 0.4814
ROUGE-S 0.4059 0.6458 0.4908 ROUGE-S 0.4417 0.5382 0.4720

1000 ROUGE-1 0.4875 0.8197 0.6012 1000 ROUGE-1 0.6001 0.7284 0.6370
ROUGE-2 0.4178 0.7125 0.5173 ROUGE-2 0.5047 0.6082 0.5335
ROUGE-L 0.3426 0.5913 0.4258 ROUGE-L 0.4121 0.4922 0.4339
ROUGE-4 0.3799 0.6584 0.4725 ROUGE-4 0.4596 0.5534 0.4852
ROUGE-3 0.3960 0.6810 0.4914 ROUGE-3 0.4779 0.5752 0.5047
ROUGE-S 0.3987 0.6347 0.4808 ROUGE-S 0.4807 0.5430 0.4941

2000 ROUGE-1 0.4878 0.8194 0.6011 2000 ROUGE-1 0.6135 0.7216 0.6420
ROUGE-2 0.4163 0.7088 0.5150 ROUGE-2 0.5140 0.6004 0.5360
ROUGE-L 0.3433 0.5918 0.4263 ROUGE-L 0.4192 0.4869 0.4359
ROUGE-4 0.3778 0.6532 0.4691 ROUGE-4 0.4673 0.5453 0.4867
ROUGE-3 0.3938 0.6759 0.4881 ROUGE-3 0.4860 0.5669 0.5063
ROUGE-S 0.3969 0.6275 0.4772 ROUGE-S 0.4890 0.5334 0.4944

Table 6: ROUGE Scores Comparison Between TextRank and Integrated Model on BBC Dataset

Articles TextRank Model Integrated Model
Pyramid
Score

METEOR
Score

Pyramid
Score

METEOR
Score

50 0.8248 0.4117 0.8906 0.4533
100 0.8301 0.4303 0.9153 0.4703
200 0.8114 0.4206 0.9204 0.4727
1000 0.7570 0.4169 0.9271 0.5068
2000 0.7602 0.4168 0.9506 0.5151

Table 7: Pyramid and METEOR Scores Comparison Be-
tween TextRank and Integrated Model on BBC Dataset

Figure 5: Various ROUGE Metrics for BBC dataset

Model Metric Recall Precision F1-Score

Integrated Model
ROUGE-1 0.4698 0.1797 0.2575
ROUGE-2 0.1825 0.0675 0.0973
ROUGE-L 0.2989 0.1122 0.1615

Falcon-7b-instruct
ROUGE-1 0.3002 0.1945 0.2270
ROUGE-2 0.0786 0.0442 0.0538
ROUGE-L 0.2635 0.1688 0.1980

MPT-7b-instruct
ROUGE-1 0.3213 0.1991 0.2370
ROUGE-2 0.0883 0.0490 0.0604
ROUGE-L 0.2906 0.1787 0.2132

OpenAI ChatGPT
ROUGE-1 0.4246 0.1928 0.2616
ROUGE-2 0.1661 0.0618 0.0884
ROUGE-L 0.3885 0.1761 0.2390

Table 8: ROUGE Scores Comparison Across Models



5 Conclusion

We explored a new approach to text summariza-
tion by integrating TextRank with Latent Dirichlet
Allocation (LDA) to perform Topical Modelling
and using a dynamically calculated damping factor.
This approach demonstrated significant improve-
ments over traditional TextRank method. In this
model we are using the semantic information ex-
tracted through LDA topic modelling to capture the
themes within a document. From the results sum-
marized in the earlier section, it is clear that the
proposed model works well with multi-sentence
summaries (around 20% of Original length). When
we tried the model to generate smaller summaries
(2 or 3 sentences long), the results were inferior to
general textrank due topic relevance shifts are in-
fluenced by the damping factor. Longer documents
tend to have better results due to better captured
topical coherence through LDA.

The dynamic damping factor can be adapted for
abstractive summarization by guiding content se-
lection, attention mechanisms, and counter decoder
biases. In transformer-based models, it can scale
attention scores, prioritize context-based more rele-
vant input, and refine reward function during fine-
tuning (if using reinforcement learning). This en-
hances topic relevance and coherence in abstrac-
tive summaries.

The dynamic damping factor adapts to the nature
of the input text and ensures a balanced represen-
tation of all important concepts. We can also try
various embedding methods to further improve the
accuracy of summarization.
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