

Abstract

In the past decade, significant progress has

been made in digitizing Sanskrit texts and

advancing computational analysis of the

language. However, efforts to advance NLP

for complex semantic downstream tasks

like Semantic Analogy Prediction, Named

Entity Recognition, and others remain

limited. This gap is mainly due to the

absence of a robust, pre-trained Sanskrit

model built on large-scale Sanskrit text data

since this demands considerable

computational resources and data

preparation. In this paper, we introduce

SansGPT, a generative pre-trained model

that has been trained on a large corpus of

Sanskrit texts and is designed to facilitate

fine-tuning and development for

downstream NLP tasks. We aim for this

model to serve as a catalyst for advancing

NLP research in Sanskrit. Additionally, we

developed a custom tokenizer specifically

optimized for Sanskrit text, enabling

effective tokenization of compound words

and making it better suited for generative

tasks. Our data collection and cleaning

process encompassed a wide array of

available Sanskrit literature, ensuring

comprehensive representation for training.

We further demonstrate the model’s

efficacy by fine-tuning it on Semantic

Analogy Prediction and Simile Element

Extraction, achieving an impressive

accuracy of approximately 95.8% and

92.8%, respectively.

1 Introduction

Sanskrit, one of the most ancient and highly

structured natural languages, consists of a vast and

1 By conservative estimate the time period of the oldest text

in Sanskrit i.e., Ṛgveda is considered as 1000 B.C.

diverse corpus of literature, with domains spanning

from foundational texts on Vyākaraṇa (grammar),

Śikṣā (phonetics), and Nirukta (etymology), to

critical works on Mīmāmsā (exegesis), Nyāya

(logic), Kāvyaśāstra (poetics), Sāhitya (literature),

Nāṭyaśāstra (dramaturgy), Dharmaśāstra

(jurisprudence), etc. With origins tracing back to

approximately 1000 BCE1, Sanskrit remains in use

today, not only as a language of traditional

knowledge but also as a subject of modern

linguistic and computational studies.

In recent years, significant efforts have been

directed towards the digitization of Sanskrit texts

and the advancement of natural language

processing (NLP) techniques tailored to process

this classical language. Notable progress has been

made in tasks such as word segmentation (Hellwig

& Nehrdich, 2018) (Krishna et al., 2018),

dependency parsing (Sandhan, Krishna, et al.,

2021), and word-order linearization (Krishna et al.,

2019) (Krishna et al., 2021). These advancements

have been pivotal in addressing some of the unique

challenges posed by Sanskrit's intricate

grammatical and syntactic structures.

Despite these strides, there remains a notable

gap in developing NLP models capable of handling

more complex semantic tasks such as Semantic

Analogy Prediction, Named Entity Recognition,

and other sophisticated downstream applications.

The lack of a robust Sanskrit model trained on

diverse, large-scale data is a significant barrier to

advancing complex NLP tasks in the language.

Models pre-trained on extensive datasets are

critical for evaluating downstream tasks. To

address this, we introduce SansGPT, a pre-trained

Sanskrit language model aimed at advancing NLP

capabilities, particularly for semantic tasks,

SansGPT: Advancing Generative Pre-Training in Sanskrit

Rhugved Chaudhari1, Bhakti Jadhav2, Pushpak Bhattacharyya3, Malhar Kulkarni4

1College of Engineering Pune,
2,3,4 Indian Institute of Technology Bombay

chaudharirp22.extc@coeptech.ac.in, bhakti.sj@iitb.ac.in, pb@cse.iitb.ac.in,

malhar@hss.iitb.ac.in

mailto:chaudharirp22.extc@coeptech.ac.in
mailto:bhakti.sj@iitb.ac.in
mailto:pb@cse.iitb.ac.in
mailto:malhar@hss.iitb.ac.in

thereby simplifying the research and development

of downstream tasks.

Our contributions are:

1) Release of a Cleaned Pre-Training Sanskrit

Corpus 2 : We provide a large, meticulously

cleaned, and pre-processed Sanskrit corpus

consisting of approximately 51 million tokens.

This corpus has been cleaned and prepared

specifically for use in GPT-based pre-training.

2) Development of a Custom Sanskrit

Tokenizer: We developed a lightweight and

efficient tokenizer using Byte Pair Encoding

tailored for Sanskrit. It breaks long compound

words while preserving the syntactic structure

(e.g., Sandhi) for coherent text generation,

ensuring that the tokenization maintains word

integrity and natural flow.

3) Pre-training and Release2 of SansGPT: We

pre-train and release SansGPT, a generative

model designed for the Sanskrit language. This

model sets the foundation for advancements in

generative pre-training and fine-tuning within

the Sanskrit NLP domain which would help to

advance the development of complex semantic

down-stream tasks.

4) High Performance in Semantic Analogy

Prediction, Simile Element Extraction, and

release2 of Simile (Upamā) Element

Extraction Dataset: Demonstrating the

efficacy of SansGPT, we achieved a

remarkable validation accuracy of

approximately 95.8% on the Semantic

Analogy Prediction task. We also evaluate and

release the Simile (Upamā) Element

Extraction dataset, achieving a validation

accuracy of 92.8% on the task.

2 Methodology

2.1 Data Collection and Preprocessing

2.1.1 Data Sources

Our corpus draws data from two major sources

1) Digital Corpus of Sanskrit3 and 2) GRETIL4 .

The details of the corpus and the texts that it covers

are mentioned in Appendix A.

2.1.2 Data Cleaning Methods

2 https://github.com/rhugvedd/SansGPT-
Advancing-Generative-Pre-Training-in-

Sanskrit

We have applied several data cleaning

techniques to prepare the Sanskrit corpus suitable

for pre-training. The goal was to remove noise,

standardize formatting, and ensure the integrity of

the text for pre-training. Below is a summary of the

data cleaning methods used:

1) Removal of Special Characters and Unwanted

Symbols: The text was cleaned by removing

special characters like period, asterisk, and

others that do not contribute meaningfully to

the content. Additionally, we replaced slashes

‘/’ and pipes ‘|’ with daṇḍa (।), the punctuation

symbol in Sanskrit, to maintain consistency in

the corpus.

2) Handling Numerical References Between

Daṇḍas: Custom functions were employed to

handle text between double daṇḍas and single

daṇḍa. These functions identify the text

enclosed by these symbols. If the enclosed text

is shorter than a threshold number (likely

numerical references or irrelevant content), it

is replaced with a single daṇḍa or double

daṇḍa accordingly.

3) Removal of HTML Tags and Annotations:

HTML tags and inline annotations (e.g., %%,

, or numbers in square brackets [0-9])

were removed using regular expressions to

ensure that only the textual content remained.

4) Whitespace and Line Break Normalization:

Excessive whitespaces, such as multiple

spaces between words and unnecessary

numerous line breaks, were removed and

normalized. This ensured that the text adhered

to a clean and consistent structure.

5) Parentheses and Unwanted Punctuation:

Parentheses containing citations or

supplementary information were removed to

focus on the main text, while unnecessary

punctuation such as colons, underscores, and

equal signs were stripped for uniformity.

Additionally, numeric and hyphenated

patterns, like digits followed by letters (e.g., [0-

9][a-z]), were cleaned to eliminate irrelevant

numeric references and artifacts, ensuring a

smoother text flow.

6) Manual Inspection: To ensure the highest

quality of the corpus, each file was manually

3 http://www.sanskrit-
linguistics.org/dcs/index.php
4 https://gretil.sub.uni-
goettingen.de/gretil.html

https://github.com/rhugvedd/SansGPT-Advancing-Generative-Pre-Training-in-Sanskrit
https://github.com/rhugvedd/SansGPT-Advancing-Generative-Pre-Training-in-Sanskrit
https://github.com/rhugvedd/SansGPT-Advancing-Generative-Pre-Training-in-Sanskrit
http://www.sanskrit-linguistics.org/dcs/index.php
http://www.sanskrit-linguistics.org/dcs/index.php
https://gretil.sub.uni-goettingen.de/gretil.html
https://gretil.sub.uni-goettingen.de/gretil.html

inspected. This step allowed us to identify and

make exceptions where necessary, addressing

any specific issues that the automated

processes might have missed.

The final pre-training corpus consists of 51

million tokens (with vocab size = 12000) for

training and 1 million tokens for validation. This

comprehensive approach to data cleaning and

validation ensured that the corpus was well-

prepared for effective model training, enhancing

the accuracy and performance of SansGPT.

2.2 Tokenization

Sanskrit, with its complex inflectional

morphology and extensive compound word

formation due to processes like Sandhi (euphonic

combination), poses unique challenges for

tokenization in NLP. Traditional methods struggle

with Sanskrit’s long, multi-unit words. For

effective text generation and semantic analysis, it's

essential to break these compound words into

smaller, meaningful sub-words or tokens.

Assigning a single vector to long words, such as

‘śaśikeśarikaranakharavidāryamāṇatamaḥkariku

mbhasambhavena’, can result in over-compression

of semantic information. Also, for effective

computational processing and semantic

representation in transformer models, it's essential

to break down compound words into meaningful

sub-words or tokens. This prevents over-

compression of information and ensures each token

contributes to a nuanced understanding. To achieve

this, we developed a custom tokenizer using Byte

Pair Encoding (BPE) (Sennrich et al., 2016), which

breaks complex Sanskrit words into smaller tokens

for more efficient neural network processing and

improved model performance.

2.2.1 Tokenizer Training Details

BPE is a statistical method for tokenizing

sequences of characters or bytes. The process

involves iteratively merging the most frequent

pairs of tokens in a corpus. This iterative merging

continues until a desired vocabulary size is

achieved or no further pairs are found. The core

idea is to replace the most frequent pairs of

characters (or sub-words) with a single new token,

thus reducing the overall number of tokens while

capturing common patterns and structures. The

details of tokenizer training is mentioned in

Appendix B.

2.2.2 Deciding Vocabulary Size

Before training the tokenizer, we split the entire

text into meaningful segments. This process

involves using ‘space’ and ‘newline’ characters as

delimiters to split the text into segments and then

feeding the segmented text for tokenizer training.

Choosing an appropriate vocabulary size for

tokenization is a balancing act. A large vocabulary

size can lead to fewer tokens per word, potentially

resulting in over-compression of semantic

information into a single vector, which can be

detrimental to the model's ability to learn nuanced

meanings. Conversely, a small vocabulary size can

split words into too many tokens, increasing the

token count and potentially challenging the self-

attention mechanism of transformers, which has a

limited context length (Vaswani et al., 2023).

In our approach, we set the vocabulary size to

12,000 tokens. This decision was based on the

monitoring and analysis of the frequency of the

appearance of every new token being created in the

entire corpus. As the vocabulary size increases the

frequency of appearance of the new tokens in the

corpus decreases, as rarer tokens are added to the

corpus. Hence, it becomes harder for the model to

learn to predict tokens occurring rarely in the

corpus, as is evident in Figure 1. We also manually

inspected the tokenized text of the entire corpus for

different vocabulary sizes. We identified a balance

that maximizes semantic preservation while

keeping tokenization manageable. This carefully

chosen vocabulary size helps ensure that the GPT

model can efficiently process the Sanskrit text,

maintaining the richness of the language while

fitting within computational constraints.

Figure 1: Impact of Vocab Size on Train Loss

2.3 Pre-Training

We developed and pre-trained our own GPT-

75M model from scratch on the Sanskrit corpus

which we have collected and cleaned. The pre-

training process for our model utilized the

generative autoregressive language modeling

approach, which has been proven effective for

improving language understanding (Radford et al.,

2018). For details on autoregressive language

modelling, refer to Appendix C.

2.3.1 Pre-Training Setup

We employed sequential batching for training to

preserve the continuity and sequential nature of the

Sanskrit text. This approach ensures that the order

of tokens in the text is respected, which is essential

for a model like GPT that relies heavily on context.

Sequential batching maintains the coherence of the

sequences during training, which aids in preserving

the structural dependencies in the text and results

in better predictions during autoregressive

generation.

We opted for a batch size of 8 and a context size

of 512 tokens to balance between computational

efficiency and model generalization. In the training

process, the choice of batch size directly influences

the behaviour of gradient noise and model

generalization. Smaller batch sizes, like the one

used (batch size = 8), introduce higher noise in the

gradient estimates during training (Jastrzębski et

al., 2018). This increased noise can act as a form of

regularization, preventing the model from

overfitting to the training data and helping it escape

local minima in the loss landscape. The frequent

parameter updates associated with smaller batch

sizes lead to more iterations per epoch, which can

aid in achieving better generalization but at the cost

of noisier and potentially less stable training

(Keskar et al., 2017).

Conversely, larger batch sizes tend to produce

smoother gradients, leading to more stable updates

but also increasing the risk of poor generalization.

By using a batch size of 8, we strike a balance

between frequent updates and manageable noise

levels, allowing the model to generalize well

without requiring excessive computational

resources. We conduct experiments with batch

sizes of 8, 16, 32, 64, and 128 and plot the

validation loss for 15 epochs over the entire dataset.

We use a scaled higher learning rate for larger batch

sizes, starting from 2e-4 (batch size =8) to 9e-4

(batch size =128).

Results obtained shown in Figure 2 demonstrate

that larger batch sizes lead to poor generalization,

with batch size = 128, even leading to overfitting.

2.3.2 Optimization Setup

We set a starting learning rate of 2e-4 and

applied a cosine learning rate decay schedule to

gradually decay the learning rate to 2e-5 by the end

of the pre-training phase. A linear warm-up phase

was employed for the initial 5000 iterations, during

which the learning rate ramped up from 0 to 2e-4.

This warm-up strategy helps prevent instabilities

that can arise from using large learning rates early

in training when the model is still adjusting its

parameters.

The relationship between batch size and

learning rate is crucial: smaller batch sizes

necessitate smaller learning rates to maintain stable

updates (Jastrzębski et al., 2018). With smaller

batches, the gradient estimates are more variable,

and smaller learning rates help prevent

overshooting during optimization. We monitored

the training loss in the initial stages of training and

fine-tuned the learning rate accordingly to ensure a

smooth training process. We train the model for a

longer duration, specifically for a total of 300,000

iterations with a small batch size (=8) (~24 epochs

over the entire dataset) (where one iteration

corresponds to one batch), since longer training

with smaller batch sizes helps generalization

(Hoffer et al., 2018). We save model checkpoints

every 50,000 iterations. The validation loss was

evaluated every 1000 iterations for over 100

iterations on the validation set (again batch size =

8). Using a batch size of 8, we achieve a train loss

Figure 2: Impact of Batch Size on Generalization

of ~3 and a validation loss of ~5. The complete

architecture details can be found in Appendix D.

2.4 Fine-Tuning

In the fine-tuning phase, we maintain the same

architectural configuration that was used during the

pre-training of our GPT model. This consistency

ensures that the model's foundational capabilities,

developed through extensive pre-training, are

preserved while adapting the model to specific

tasks or datasets. During fine-tuning, we utilize five

special tokens to facilitate various aspects of

sequence processing and task evaluation. These

five tokens are the beginning of the sequence

(<bos>), end of the sequence (<eos>), separator

tokens (<sep1> and <sep2>), and the padding

token (<pad>). We use decoder layer freezing

(Howard & Ruder, 2018) of 6 layers and we pad

the sequences to the context size of the GPT

(=512). We also create an attention mask to ensure

that the GPT only attends to meaningful tokens

during fine-tuning and we exclude the pad tokens

from the loss calculation. We discuss these aspects

of fine-tuning in detail in Appendix E.

3 Evaluation

In this section, we evaluate SansGPT's

performance on two tasks. We design the tasks,

fine-tune the pre-trained model checkpoint, and

report the results obtained.

3.1 Semantic Analogy Prediction

3.1.1 Testing Relational Understanding

The Semantic Analogy Prediction task evaluates a

model's ability to predict the “word d” in an

analogy of the form “word a : word b :: word c :

word d”, given the words only till word c. We chose

the semantic analogy task because it directly

assesses the model’s understanding of relational

semantics. In languages like Sanskrit, where

inflection and morphology play crucial roles, the

ability to predict the correct relational word

requires the model to have a strong grasp of

syntactic and semantic dependencies. The analogy-

based evaluation forces the model to extrapolate

the relationship between word pairs from one

analogy and apply it to another.

3.1.2 Handling Low-Resource Settings:

The dataset used for this task consists of six

categories: husband-wife, son-father, daughter-

father, charioteer-warrior, defeated-victorious, and

son-mother. The dataset contains a total of 6,415

examples, with 5,773 examples used for training

and 642 examples reserved for validation. This

dataset is derived from (Sandhan, Adideva, et al.,

2021). Sanskrit is a low-resource language, and the

dataset described (6,415 examples) reflects this

limitation. Our task design tests the model to work

within such constraints, where robust pre-training

and fine-tuning are required to generalize well on

tasks with limited data. Our approach towards the

task formulation, execution and the results show

the essential steps that researchers can take for

handling fine-tuning for low-resource settings and

languages.

3.1.3 Token Separation and Sequence Structuring

for Enhanced Analogy Learning

We formulate this analogy prediction task as

follows: for each training example, we construct

input sequences by tokenizing the analogy into the

following structured format:

<bos> <tokens of word a> <sep1> <tokens of word

b> <sep1> <sep1> <sep1> <tokens of word c>

<sep1> <tokens of word d> <eos> <pad till end>.

The <bos> token indicates the start of the sequence,

and the <eos> token marks the end. Each word is

split using <sep1> token(s), with two additional

<sep1> separators inserted between the two

analogy pairs to ensure clear differentiation

between them. The deliberate use of multiple

<sep1> tokens between these pairs plays a crucial

role in preserving the structural integrity of the

analogy. By inserting these extra separators, we

make sure that the model doesn’t conflate or blur

the boundaries between the two analogy

relationships—ensuring that “word A is to word B”

remains distinct from “word C is to word D.” This

separation is important for preventing semantic

bleed between the analogy pairs, which can lead to

confusion in the model’s understanding of how the

words relate to each other. In transformer-based

models, such delineation is vital for accurate

learning, as the model relies on positional and

contextual clues to process the relationships

between tokens. The use of multiple <sep1> tokens

helps the model maintain this distinction,

improving its ability to correctly predict and

generate analogies. Furthermore, padding tokens

(<pad>) are applied to standardize sequence

lengths to 512 tokens, ensuring uniformity in batch

processing and making sure that shorter sequences

do not affect the model's attention span or

computational efficiency. The combination of

multiple <sep1> tokens and proper padding

optimizes both the semantic clarity and training

efficiency of the model.

3.1.4 Masking and Self-Attention Modification

For each example, a mask is created, where all

tokens until the <eos> token are assigned a value

of 1, while all tokens after <eos> are assigned a

value of 0. Padding tokens are introduced to

standardize sequence lengths, but they do not carry

any semantic value and are only placeholders. In a

self-attention mechanism, if padding tokens were

not masked, the model could waste computational

resources by attending to these irrelevant tokens,

leading to suboptimal learning. By masking, we

prevent the model from incorporating padding into

its predictions and gradient updates, ensuring that

only valid tokens influence the attention

distribution and the overall training process. This

improves both the efficiency and accuracy of the

model. We feed this input sequence into the GPT

model, and the target sequence is the same as the

input just left-shifted by one token. The model is

trained with self-attention with the mask, as

mentioned, and a loss function that ignores padding

tokens, ensuring that the model learns to predict

tokens while ignoring irrelevant padding.

3.1.5 Top-k Sampling

During the generation and evaluation of the

validation set, we input tokens up to the <sep1>

token following the word C (the second analogy).

To predict word D, we employ top-k sampling

(Fan et al., 2018) with a value of k = 50. Top-k

sampling restricts the model's output to the top 50

most likely tokens based on the model's predicted

probability distribution. From these top 50 tokens,

we perform multinomial sampling, selecting a

token based on its probability within this reduced

set. This approach allows for more diversity in

generation while ensuring that the output remains

plausible, as it limits the choice to high-probability

tokens while still allowing some flexibility in the

prediction process.

3.1.6 Results

Our model achieves an impressive validation

accuracy of 95%, significantly outperforming the

accuracy of 32.7% reported by (Sandhan, Adideva,

et al., 2021). We also calculate and report the

Precision, Recall, and F1 scores, all of which come

out to be ~95% (0.95). The graph of the evaluation

metrics versus the training Epochs is shown in

Figure 3. Following are some of the analogies

generated by the fine-tuned model:

1) Input: Bhīṣma : Śantanu :: Jatāyu :

Output: Aruṇa

Bhīṣma and Śantanu have a son-father

relationship. Similarly, Jatāyu and Aruṇa have

a son-father relationship.

Category: Son – Father

2) Input: Nakula : Draupadī :: Pururavā :

Output: Urvaśī

Nakula and Draupadī are husband-wife, just as

Pururavā and Urvaśī.

Category: Husband - Wife

3) Input: Kumbhakarṇa : Rāma :: Vṛṣaketu :

Output: Vabhruvāhana

In the battle, Rāma defeats Kumbhkarṇa,

which mirrors Vṛṣaketu’s relationship with

Vabhruvāhana, who is victorious over him.

Category: Defeated – Victorious

4) Input: Janamejaya: Īrāvati :: Bhīṣma :

Output: Gaṅgā

Janamejaya is the son of Īrāvati, which mirrors

the relationship between Bhīṣma and Gaṅgā.

Category: Son – Mother

3.2 Simile Element Extraction

3.2.1 Data Description

For this task, we have developed a new dataset

specifically curated for Simile Element Extraction

in Sanskrit texts. Our data was based on instances

from Vālmīkīya Rāmāyaṇa. This annotated dataset

contains sentences where a simile (Upamā)

relation exists between two words. The goal is to

extract the two words that form the simile along

with the word that signals the similarity between

them. The initial dataset consists of 400 manually

annotated examples. To enhance the dataset, we

employed data augmentation techniques,

increasing the size to approximately 17,000

examples. The data was augmented with the help

of the traditional Sanskrit lexicon 'Amarakośā.' The

augmentation involved replacing the words

involved in the simile with their synonyms or other

suitable words, preserving the simile relation while

generating new instances for training.

3.2.2 Task Design

We design this task by structuring each example

into a formal tokenized sequence, allowing the

model to predict the simile elements efficiently. For

each training example, we tokenize and format the

input in the following manner:

1. in_sen: Tokenized input sentence.

2. sp_word_sim: Tokenized “similarity-

indicating word prefixed by a space”.

3. word_sim: Tokenized similarity-indicating

word.

4. sp_OoC: Tokenized “Object of Comparison

(Upameya) prefixed by a space”

5. OoC: Tokenized Object of Comparison

(Upameya).

6. sp_SoC: Tokenized “Standard of Comparison

(Upamāna) prefixed by a space”.

7. SoC: Tokenized Standard of Comparison

(Upamāna).

The structured input sequence for fine-tuning takes

the following form:

<bos> <in_sen> <sep_1> <sep_1> <sep_1>

<sp_word_sim> <sep_2> <word_sim> <sep_2>

<sp_OoC> <sep_2> <OoC> <sep_2> <sp_SoC>

<sep_2> <SoC> <eos>

3.2.3 Dual Separator Tokenization

The use of two distinct separator tokens, <sep_1>

and <sep_2>, is critical in this task design to guide

the model in effectively handling different parts of

the sequence. The <sep_1> tokens delineate the

input sentence from the output simile elements,

ensuring that the model treats these as two distinct

stages: first processing the input context and then

focusing on extracting the simile components. This

separation is crucial because it prevents the model

from confusing the general sentence structure with

the specific task of simile extraction, improving the

clarity of the task during training and inference.

On the other hand, the <sep_2> tokens serve to

distinguish between the different simile

components: the word indicating similarity, the

Object of Comparison (Upameya), and the

Standard of Comparison (Upamāna). This

differentiation is vital for the model to learn the

hierarchical structure within the simile, ensuring

that each element is correctly identified and

mapped. The dual usage of <sep_1> and <sep_2>

tokens ensures that both the contextual boundaries

(input vs. output) and the internal structure

(different simile components) are clearly

differentiated, leading to more accurate predictions

and better generalization across varied sentence

structures. Padding and masking are applied as per

our standard fine-tuning process described in task

3.1.

3.2.4 Dual-Form Token Handling for Space-

Sensitive Tokenization

While formulating the Simile Element Extraction

task, we include both forms of the output tokens—

one with a leading space (e.g., <sp_word_sim>,

<sp_OoC>, <sp_SoC>) and one without (e.g.,

<word_sim>, <OoC>, <SoC>). This design choice

is essential because, in our tokenizer, tokens with

and without leading spaces are treated as distinct

entities. By training the model to predict both

forms, we ensure that the model learns to handle

variations in tokenization that arise due to spacing

Figure 4: Simile Element Extraction Eval Metrics Figure 3: Semantic Analogy Prediction Eval Metrics

differences. This approach helps the model

generalize better, as it becomes capable of

predicting the correct output regardless of whether

a token with a leading space or without one,

appears in the input. In real-world text, spacing can

vary based on context, and this formulation ensures

that the model can handle such inconsistencies

robustly. By incorporating both forms during

training, the model becomes more adaptable and

better equipped to extract simile components under

different formatting or tokenization conditions,

ensuring higher accuracy and resilience.

3.2.5 Simile-Aware Tokenization

For the Simile Element Extraction task, we employ

a specialized Simile-Aware Tokenization method

designed to handle the unique challenges of

compound words and sandhi in Sanskrit. In this

method, the system segments the input sentence by

identifying key similarity-indicating words (e.g.,

iva, ābham, and others). For e.g.:

bṛhaspatisamo –> bṛhaspati + samo

This ensures that these words, which play a crucial

role in similes, are tokenized as distinct, complete

units rather than a possibility of being broken down

unevenly by traditional tokenization. By

preserving the integrity of these words and

generating separate tokens for them, the model is

able to more effectively recognize and predict the

elements of a simile, as it receives a clear and

coherent representation of the similarity

relationship. This approach significantly enhances

the model’s ability to process similes within the

complex morphological structure of Sanskrit text.

3.2.6 Results

The model demonstrates robust performance,

achieving an accuracy of 92.8% on the Simile

Element Extraction task. We also evaluate the

Precision, Recall, and F1 Score, all of which come

out to be ~87% (0.87). The graph of the evaluation

metrics versus the training Epochs is shown in

Figure 4. Following are some of the similes

extracted by the fine-tuned model:

1) Input: ayodhyānātha kṣamayā pṛthvīsamaḥ

5 This verse is an augmented version of the verse 2.15.47

from Valmīkīya Rāmāyaṇā.

https://www.valmiki.iitk.ac.in/content?field_kanda_tid=2&l
anguage=dv&field_sarga_value=15&field_sloka_value=47

&

Translation- The king of Ayodhyā is like Earth

in terms of forgivingness.

Output: Word Indicating Similarity: samaḥ

Upameya: ayodhyānātha (lord of Ayodhya)

Upamāna: pṛthvī (earth)

2) Input:

tato mahājīmūtamahīdhara ābhaṃ

prabhinnamatyaṅkuśamatyasahyam ।

rāmaupavāhyaṃ ruciraṃ dadarśa

śatruñjayaṃ vāraṇaudagrakāyam ।।

Translation- He beheld a beautiful elephant

named Śatruñjayaṃ with a huge body on

which Rama was to mount. It looked like a vast

mountain or a huge cloud. With ichor flowing

from his temples and without caring for the

goad, the elephant was intolerant.5

Output: Word Indicating Similarity: ābhaṃ

Upameya: vāraṇa (Elephant)

Upamāna: mahājīmūta (Huge cloud)

3) Input:

ucitaṃ ca mahābāhuḥ na jahau harṣaṃ

ātmanaḥ ।

śāradaḥ samudīrṇāṃśuḥ kṣapākara teja iva

ātmajam ।।

Translation- The mighty-armed i.e., Rāma did

not leave his habitual cheerfulness like the

autumnal Moon his own brightness.6

Output: Word Indicating Similarity: iva

Upameya: mahābāhuḥ (mighty-armed Rāma)

Upamāna: kṣapākara (Moon)

4 Conclusion and Future Scope

SansGPT represents a significant step in the

field of Sanskrit natural language processing. By

providing a robust, pre-trained model, it addresses

the critical gap in the development of advanced

tools for analysing and understanding Sanskrit

texts. The model's ability to effectively handle

complex semantic tasks, as demonstrated by its

evaluation performance, highlights its potential to

facilitate a wide range of applications. SansGPT

offers a solid starting point for various downstream

tasks, including Named Entity Recognition, Text

Summarization, and Sentiment Analysis.

6 This verse is an augmented version of the verse 2.19.37
from Valmīkīya Rāmāyaṇā.

https://www.valmiki.iitk.ac.in/content?language=dv&field_

kanda_tid=2&field_sarga_value=19&field_sloka_value=37

https://www.valmiki.iitk.ac.in/content?field_kanda_tid=2&language=dv&field_sarga_value=15&field_sloka_value=47&
https://www.valmiki.iitk.ac.in/content?field_kanda_tid=2&language=dv&field_sarga_value=15&field_sloka_value=47&
https://www.valmiki.iitk.ac.in/content?field_kanda_tid=2&language=dv&field_sarga_value=15&field_sloka_value=47&
https://www.valmiki.iitk.ac.in/content?language=dv&field_kanda_tid=2&field_sarga_value=19&field_sloka_value=37
https://www.valmiki.iitk.ac.in/content?language=dv&field_kanda_tid=2&field_sarga_value=19&field_sloka_value=37

References

Amarakośa of Amarasinha:

https://sanskrit.uohyd.ac.in/scl/amarakosha/frame.h

tml

Göttingen Register of Electronic Texts in Indian

Languages (GRETIL). (n.d.). Sanskrit Texts.

Retrieved from https://gretil.sub.uni-

goettingen.de/gretil.html#Sanskrit

Sanskrit Linguistic Database (DCS). (n.d.). Digital

Corpus of Sanskrit. Retrieved from

http://www.sanskrit-linguistics.org/dcs/index.php

Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer

Normalization (No. arXiv:1607.06450). arXiv.

http://arxiv.org/abs/1607.06450

Fan, A., Lewis, M., & Dauphin, Y. (2018). Hierarchical

Neural Story Generation (No. arXiv:1805.04833).

arXiv. http://arxiv.org/abs/1805.04833

Hellwig, O., & Nehrdich, S. (2018). Sanskrit Word

Segmentation Using Character-level Recurrent and

Convolutional Neural Networks. Proceedings of the

2018 Conference on Empirical Methods in Natural

Language Processing, 2754–2763.

https://doi.org/10.18653/v1/D18-1295

Hoffer, E., Hubara, I., & Soudry, D. (2018). Train

longer, generalize better: Closing the generalization

gap in large batch training of neural networks (No.

arXiv:1705.08741). arXiv.

http://arxiv.org/abs/1705.08741

Howard, J., & Ruder, S. (2018). Universal Language

Model Fine-tuning for Text Classification (No.

arXiv:1801.06146). arXiv.

http://arxiv.org/abs/1801.06146

Jastrzębski, S., Kenton, Z., Arpit, D., Ballas, N.,

Fischer, A., Bengio, Y., & Storkey, A. (2018). Three

Factors Influencing Minima in SGD (No.

arXiv:1711.04623). arXiv.

http://arxiv.org/abs/1711.04623

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy,

M., & Tang, P. T. P. (2017). On Large-Batch

Training for Deep Learning: Generalization Gap

and Sharp Minima (No. arXiv:1609.04836). arXiv.

http://arxiv.org/abs/1609.04836

Krishna, A., Santra, B., Bandaru, S. P., Sahu, G.,

Sharma, V. D., Satuluri, P., & Goyal, P. (2018). Free

as in Free Word Order: An Energy Based Model for

Word Segmentation and Morphological Tagging in

Sanskrit. Proceedings of the 2018 Conference on

Empirical Methods in Natural Language

Processing, 2550–2561.

https://doi.org/10.18653/v1/D18-1276

Krishna, A., Santra, B., Gupta, A., Satuluri, P., &

Goyal, P. (2021). A Graph-Based Framework for

Structured Prediction Tasks in Sanskrit.

Computational Linguistics, 46(4), 785–845.

https://doi.org/10.1162/coli_a_00390

Krishna, A., Sharma, V., Santra, B., Chakraborty, A.,

Satuluri, P., & Goyal, P. (2019). Poetry to Prose

Conversion in Sanskrit as a Linearisation Task: A

Case for Low-Resource Languages. Proceedings of

the 57th Annual Meeting of the Association for

Computational Linguistics, 1160–1166.

https://doi.org/10.18653/v1/P19-1111

Radford, A., Narasimhan, K., Salimans, T., &

Sutskever, I. (2018). Improving Language

Understanding by Generative Pre-Training.

Sandhan, J., Adideva, O., Komal, D., Behera, L., &

Goyal, P. (2021). Evaluating Neural Word

Embeddings for Sanskrit (No. arXiv:2104.00270).

arXiv. http://arxiv.org/abs/2104.00270

Sandhan, J., Krishna, A., Gupta, A., Behera, L., &

Goyal, P. (2021). A Little Pretraining Goes a Long

Way: A Case Study on Dependency Parsing Task for

Low-resource Morphologically Rich Languages

(No. arXiv:2102.06551). arXiv.

http://arxiv.org/abs/2102.06551

Sennrich, R., Haddow, B., & Birch, A. (2016). Neural

Machine Translation of Rare Words with Subword

Units (No. arXiv:1508.07909). arXiv.

http://arxiv.org/abs/1508.07909

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,

Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin,

I. (2023). Attention Is All You Need (No.

arXiv:1706.03762). arXiv.

http://arxiv.org/abs/1706.03762

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S.,

Xing, C., Zhang, H., Lan, Y., Wang, L., & Liu, T.-Y.

(2020). On Layer Normalization in the Transformer

Architecture (No. arXiv:2002.04745). arXiv.

http://arxiv.org/abs/2002.04745

Kṛishnamohana Shastri (Ed.&Tr.) 2020. Kādambarī.

Chaukhamba Surbharati Prakashan. Varanasi.

Valmiki Ramayanam "https://www.valmiki.iitk.ac.in-

/content?language=dv&field_kanda_tid=1&field_s

arga_value=1&field_sloka_value=1"

Śrimadvālmīkīya Rāmāyaṇā, Gita Press, Gorakhpur.

MANI, V. (1975). Puranic encyclopedia: a

comprehensive dictionary with special reference to

the epic and Puranic literature. Delhi, Motilal

Banarsidass. https://www.sanskrit-lexicon.uni-

koeln.de/scans/PEScan/2020/web/webtc1/index.ph

p

G.H. Bhatt (Ed.) 1958 The Valmiki Ramayana Vol.1

.Maharaja Sayajirao University of Baroda. Baroda

https://sanskrit.uohyd.ac.in/scl/amarakosha/frame.html
https://sanskrit.uohyd.ac.in/scl/amarakosha/frame.html
https://gretil.sub.uni-goettingen.de/gretil.html#Sanskrit
https://gretil.sub.uni-goettingen.de/gretil.html#Sanskrit
http://www.sanskrit-linguistics.org/dcs/index.php

Appendices

A. Corpus Details

The gathered extensive corpus encompasses a

diverse range of literature, including epics such as

the Rāmāyaṇa and Mahābhārata, the

Bhagavadgīta with its various commentaries. It

also features Purāṇa literature, religious texts

spanning Śaiva, Vaiṣṇava, Āgama, Tantra,

Buddhist traditions, and others. In addition, our

corpus includes works on Alaṅkāraśastra

(poetics), Nāṭyaśastra (dramaturgy),

Chandaśśastra (prosody), as well as drama,

narrative literature, and Subhāṣitas. We have also

included texts related to various philosophical

traditions, including Mīmāṃsā, Vedānta, Sāṅkhya,

Yoga, Nyāya, Vaiśeṣika, Śaiva, Buddhist

philosophies, Dharmaśastra, and others.

We have excluded Vedic texts, such as the

Veda[s], Brahmaṇa[s], Āraṇyaka[s], and

Upaniṣad[s], from our corpus. The Vedic language

differs significantly from classical Sanskrit in its

morphological features. For instance, words

declined in classical Sanskrit as ‘devāḥ’ are

rendered as ‘devāsaḥ’ in Vedic texts. Additionally,

in the Vedic texts, prefixes or ‘upasarga’, can be

dissociated from verbs in a sentence, unlike in

classical Sanskrit language where they are

connected with the verb. To avoid incorporating

these distinctive linguistic features that could affect

the training results, we chose not to include Vedic

data in our corpus.

B. Tokenizer Training

Let 𝐷 represent the corpus of Sanskrit text, initially

tokenized into byte-level tokens (0-255):

𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛}

Given 𝑇 we define a function to compute the

frequency of adjacent token pairs:

δ(ti, ti+1, a, b) = {
1
0

𝑖𝑓𝑡𝑖 = 𝑎 𝑎𝑛𝑑 𝑡𝑖+1 = 𝑏

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓(𝑎, 𝑏) = ∑ 𝛿(𝑡𝑖, 𝑡𝑖+1, a, b)

𝑛−1

𝑖=1

To find the most frequent pair (a*, b*), we

maximize the frequency over all consecutive token

pairs (a, b) appearing in the corpus:

(𝑎 ∗, 𝑏 ∗) = arg max
(𝑎,𝑏)

𝑓(𝑎, 𝑏)

Once the most frequent pair (a*, b*) is identified,

we merge it into a new token a*b*, and the token

sequence 𝑇 is updated by replacing all occurrences

of (a*, b*) with the new token a*b*. We repeat the

process of counting pairs, identifying the most

frequent one, and merging it until the desired

vocabulary size 𝑉 is reached, or no more pairs can

be merged.

C. Auto-regressive Language Modelling

Auto-regressive language modelling is a

fundamental approach used in the pre-training of

generative models like GPT, where the task

involves predicting the next token in a sequence

given the previous tokens. The objective of

autoregressive language modelling is to maximize

the probability of a token sequence, where the

model learns to predict each token by leveraging

the preceding tokens as context. The model

generates tokens sequentially, with each predicted

token fed back into the model to form part of the

context for the next prediction. This method

models language in a sequential manner, allowing

the model to generate coherent text by learning to

predict each word based on prior context. Below,

we delve into the mathematical formulation and

process that defines this approach.

Mathematical Formulation:

The goal of the language modeling task is to

maximize the likelihood of a sequence of tokens

𝑤1, 𝑤2, … , 𝑤𝑁, where the model learns to predict

each token based on the context provided by the

preceding tokens. This can be mathematically

represented as:

𝑃(𝑤1, 𝑤2, … , 𝑤𝑁) = ∏ 𝑃(𝑤𝑖|𝑤1, 𝑤2, … , 𝑤𝑖−1)

𝑁

𝑖=1

Here, 𝑃(𝑤𝑖|𝑤1, 𝑤2, … , 𝑤𝑖−1) denotes the

probability of token 𝑤𝑖 given the preceding

sequence 𝑤1, 𝑤2, … , 𝑤𝑖−1. The training objective

is to maximize this conditional probability,

enabling the model to generate coherent sequences

by predicting each token based on its preceding

context. During pre-training, we create batches by

selecting a sequence of tokens up to a predefined

context size. The target sequence for the batch is

generated by shifting these tokens to the left by one

position. This setup allows the model to predict the

next token based on all preceding tokens.

Specifically, the model learns to predict each

subsequent token in a sequence by leveraging the

context of prior tokens.

At each time step 𝑡 , the model computes a

probability distribution over the entire vocabulary

to determine the most likely next token 𝑤𝑡, given

the previous tokens 𝑤1, 𝑤2, … , 𝑤𝑡−1. This

prediction process can be mathematically

described as:

𝑃(𝑤𝑡|𝑤1, … , 𝑤𝑡−1)

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓(𝑤1, … , 𝑤𝑡−1))

Where:

• 𝑃(𝑤𝑡|𝑤1, … , 𝑤𝑡−1) represents the conditional

probability of predicting token 𝑤𝑡, given the

previous tokens.

• 𝑓(𝑤1, … , 𝑤𝑡−1) is the function learned by the

model, which processes the input tokens

through multiple transformer layers and

computes logits for the softmax function.

The average loss (to be minimized) in language

modeling is the negative log-likelihood of the

predicted probability distribution over the target

sequence. Formally, if the sequence of tokens is

𝑤1, 𝑤2, … , 𝑤𝑁, the average loss 𝐿 is given by:

𝐿 = −
1

𝑁
 ∑ 𝑙𝑜𝑔 𝑃(𝑤𝑖|𝑤1, 𝑤2, … , 𝑤𝑖−1)

𝑁

𝑖=1

D. Complete Architecture Details

The final SansGPT model has 75M parameters and

the architecture used the following configuration:

1. Vocabulary Size: 12,000

2. Model Dimension (d_model): 768

3. Number of Decoder Blocks: 12

4. Number of Attention Heads: 12

5. Feedforward Dimension: 2048

6. Model Dropout Probability: 0

7. Positional Encoding Dropout: 0

8. Weight Decay: 1e-2

9. Gradient Clipping Norm: 1.0

10. Optimizer Betas: (0.9, 0.95)

11. Mask Attention: True

12. Pre-Norm: True

13. Batch Overlap: None

14. Gradient Accumulation: None

In contrast to the original transformer model, which

applies the Post-Layer Normalization (Post-LN)

formulation, our model uses the Pre-Norm

formulation (Xiong et al., 2020) for Layer

Normalization (Ba et al., 2016) between sublayers

in both the encoder and decoder. This deviation is

crucial because Post-LN can result in larger

gradients for parameters near the output layer,

which, when combined with a large learning rate,

leads to training instability and requires a longer

warm-up phase. Pre-Norm, on the other hand,

stabilizes gradients during initialization, enabling

faster convergence by reducing the warm-up phase

while speeding up training and minimizing the loss

early on.

E. Fine-Tuning Details

During fine-tuning, we utilize five special tokens to

facilitate various aspects of sequence processing

and task evaluation.

1. Beginning of Sequence Token (<bos>): Marks

the start of a new sequence, enabling the model

to understand where each sequence begins.

2. End of Sequence Token (<eos>): Signals the

end of a sequence, helping the model to

determine when to stop generating or

processing tokens.

3. Separator Tokens (<sep1> and <sep2>): Used

to separate distinct segments within the same

input, such as different sentences or

contextually relevant segments.

4. Padding Token (<pad>): Utilized to pad

sequences to a uniform length, ensuring

consistent input sizes across batches.

To enhance fine-tuning effectiveness, we

implement decoder layer freezing. We freeze the

weights of the initial 6 decoder layers, meaning that

during training, these layers' gradients are not

computed, and their weights remain unchanged.

This method preserves the foundational knowledge

and representations learned by these initial layers

during pre-training. The later 6 decoder layers,

which are not frozen, are updated during fine-

tuning to tailor the model's features and parameters

to the specific tasks at hand. Freezing the earlier

layers has several benefits: it reduces the

computational cost of training, minimizes the risk

of overfitting, and ensures that the model’s general

knowledge is retained while adapting the model to

new, task-specific patterns.

Sequences of varying lengths are padded to a

standard length of 512 tokens using the <pad>

token. This padding facilitates efficient batch

processing by ensuring uniform input sizes. In the

self-attention mechanism of SansGPT, padding

tokens are masked using an attention mask. This

mask ensures that the model does not attend to or

generate output based on these padding tokens,

which are non-informative. This helps the model

focus solely on meaningful tokens within the

sequence.

Additionally, during the loss calculation,

contributions from padding tokens are excluded to

prevent skewing the loss metric. This ensures that

the model’s training focuses on the meaningful

portions of the data. The generation process is

designed to stop as soon as an <eos> token is

encountered, aligning the model's output with the

expected sequence length and content and ensuring

that the generated results are coherent and relevant

to the given task.

