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to Vulnerability Detection

Abstract

Software (SW) systems experience faults af-001
ter deployment, raising concerns about reliabil-002
ity and leading to financial losses, reputational003
damage, and safety risks. This paper presents004
a novel approach using CodeBERT, a state-of-005
the-art neural code representation model pre-006
trained in multi-programming languages and007
employs various code metrics to predict SW008
faults. The study comprehensively evaluates009
trained models by analyzing publicly available010
codebase and employing diverse machine learn-011
ing (ML) models, feature selection techniques012
(FSTs), and class balancing through Synthetic013
Minority Oversampling Technique (SMOTE).014
The results show that SMOTE significantly015
enhances vulnerability detection performance,016
particularly in accuracy, AUC, sensitivity, and017
specificity. The EXTR classifier consistently018
outperforms others, with an average AUC of019
0.82, and the features selected using the genetic020
algorithm (GA) feature selection technique, de-021
spite achieving a mean AUC of 0.84. Interest-022
ingly, among employed embedding techniques,023
SW metrics combined with CodeBERT (SM-024
CBERT) stand out as top performers, achieving025
the highest mean AUC score of 0.80, making026
models trained on SMCBERT the best for SW027
vulnerability prediction.028

1 Introduction029

Software(SW) vulnerability refers to a flaw arising030

from SW design, development, or configuration031

errors that can be exploited to breach explicit or032

implicit security policies (Ghaffarian and Shahri-033

ari, 2017). SW vulnerability is a particular defect034

that creates security risks and poses a significant035

concern for SW development as it is often used to036

launch attacks. Vulnerabilities, ranging from cod-037

ing errors to design flaws, create entry points for038

attackers to exploit systems, steal data, disrupt ser-039

vices, and cause significant financial or reputational040

damage to businesses and governments. So, the vul-041

nerability detection process is critical mainly due042

to the pervasive nature of SW in modern society 043

and the increasing sophistication of cyber threats. 044

Effective vulnerability detection helps identify and 045

remediate these weaknesses before they can be ex- 046

ploited, reducing the likelihood and impact of the 047

attacks. 048

Recent research in the realm of SW security in- 049

dicates that vulnerability detection is essential in 050

promoting the reliable development of SW and ef- 051

ficiently allows developers to reduce the number of 052

vulnerabilities patched after the production phase 053

(Hanif et al., 2021). In most studies, SW vulnera- 054

bility detection is a data-driven method in SW qual- 055

ity assurance, leveraging historical information on 056

vulnerabilities to predict if specific parts of code 057

(functions, files, or code snippets) are susceptible 058

to security weaknesses. Contemporary methodolo- 059

gies such as the utilization of code reviews can be 060

valuable but also expensive and time-consuming 061

for developers, requiring them to consider potential 062

attack scenarios and solutions (Mäntylä and Lasse- 063

nius, 2008). Additionally, reviewing every file for 064

vulnerabilities might be impractical for massive 065

code repositories. 066

In this context, the utilization of ML offers signif- 067

icant advantages for vulnerability detection by en- 068

abling the analysis of large code bases at scale and 069

identifying known and unknown threats through 070

pattern recognition. Unlike traditional methods 071

that rely on predefined rules, ML models can adapt 072

to emerging vulnerabilities by retraining with new 073

data, ensuring up-to-date protection, and also excel 074

at detecting complex, multi-layered vulnerabilities 075

that might elude manual analysis. This reduces 076

human error while automating the detection pro- 077

cess, making ML a more dynamic, scaleable, and 078

accurate approach to securing SW environments. 079

In this paper, we have comprehensively investi- 080

gated the performance of several commonly used 081

ML and DL techniques for SW vulnerability detec- 082

tion on a codebase extracted from publicly avail- 083
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able datasets, e.g. Drupal, Moodle, and PHPMyAd-084

min. In this context, the CodeBert source code085

embedding technique is utilized to capture code086

semantics into comprehensive vectors that may087

be sufficiently used by the pipeline, after which088

a set of diverse FSTs were employed for the iden-089

tification of the most informative features, effec-090

tively trimming the data, to enhance ML models in091

several ways including improved accuracy, faster092

training times, and greater interpretability. Fur-093

thermore, a class balancing technique, SMOTE, is094

applied due to the inherent imbalance in datasets.095

By combining six vectorization techniques, 15 clas-096

sification algorithms, 05 FSTs, and a class balanc-097

ing technique on the proposed datasets, we aim098

to gain insights into how these methods may con-099

tribute towards more effective vulnerability detec-100

tion pipelines.101

2 Related Work102

The existing research efforts on SW vulnerabilities103

fall under two broad categories: traditional ML and104

deep learning (DL) approaches. Both categories105

make use of various data preprocessing techniques,106

often relying on traditional metrics and tests. The107

potential research work is briefly discussed below:108

2.1 Traditional ML-based models109

Chernis (2018) (Chernis and Verma, 2018) pre-110

sented a methodology for analyzing features ex-111

tracted from C source code. They defined func-112

tions to extract both trivial and non-trivial features.113

Finally, they considered various classifiers, such114

as Naive Bayes, k-nearest neighbors, and Ran-115

dom Forests to classify the test samples. Medeiros116

(2020) (Medeiros et al., 2020) conducted a com-117

prehensive experiment to assess the effectiveness118

of SW metrics using ML algorithms. The study119

extracted vulnerability-related insights from SW120

metrics of notable C/C++ projects such as Mozilla121

Firefox, Linux Kernel, Apache HTTPd, Xen, and122

Glibc. The main finding is that ML algorithms,123

combined with SW metrics, can identify vulnerable124

code units with high confidence in security-critical125

systems. However, this approach is less effective126

for low-critical or non-critical systems due to a127

high number of false positives.128

Pereiraetal.(Pereira et al., 2021) used static anal-129

ysis tool (SAT) alerts and SW metrics (SMs) as130

inputs for ML algorithms to predict vulnerabili-131

ties. Data from the Mozilla project, supplemented132

with static analysis alerts from CPP check and 133

Flawfinder, are used. Results show that models us- 134

ing SMs outperform those using SAT alerts alone, 135

but neither approach achieves satisfactory precision 136

and recall simultaneously. Notably, Napier et al. 137

(Napier et al., 2023) evaluated the text-based ML 138

model’s effectiveness using seven ML models, five 139

natural language processing techniques, and three 140

data processing methods are employed in experi- 141

ments. Results indicate that condensed functions 142

with fewer features often yield better prediction 143

results within the same model, but overall, text- 144

based ML models struggle to detect vulnerabilities 145

consistently across different projects and types. 146

Similarly, Bilgin et al. (Bilgin et al., 2020) 147

introduced an ML-based vulnerability prediction 148

method and present a technique for vectorial source 149

code representation. The experimental analysis 150

demonstrated the utility of partial Abstract Syn- 151

tax Tree (AST) representations for vulnerability 152

prediction. Jabeenetal. (Jabeen et al., 2022) empiri- 153

cally studied various ML techniques and statistical 154

methods to predict SW vulnerabilities across differ- 155

ent datasets. The ML techniques include cascade- 156

forward and feed-forward backpropagation neural 157

networks, ANFIS, multi-layer perceptron, SVM, 158

and bagging. Statistical methods like the Alhazmi- 159

Malaiya model, linear regression, and logistic re- 160

gression are also evaluated. Results show that ML 161

techniques significantly outperform statistical mod- 162

els. 163

Munonye and Péter (Munonye and Péter, 2022) 164

presented an ML-based approach for detecting 165

potential vulnerabilities in the OAuth authentica- 166

tion and authorization flow. The study treated the 167

OAuth protocol as a supervised learning problem, 168

developing, tuning, and evaluating seven classifi- 169

cation models. Exploratory Data Analytics (EDA) 170

techniques were utilized to extract and analyze spe- 171

cific OAuth features. The developed models un- 172

derwent training, tuning, and testing, resulting in a 173

performance accuracy exceeding 90% for vulner- 174

ability detection in the OAuth authentication and 175

authorization flow. When compared with known 176

vulnerabilities, the model achieves a match rate of 177

54%. 178

2.2 Deep learning-based prediction models 179

Chakraborty et al.(Chakraborty et al., 2022) uti- 180

lized the FFMPeg+Qemu dataset proposed by Zhou 181

et al. to assess the technique’s performance in 182
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real-world settings. The authors curated a new183

vulnerability dataset from two large-scale popular184

projects (Chromium and Debian). Directly employ-185

ing pre-trained models for real-world vulnerabil-186

ity detection results in an average performance de-187

crease of approximately 73% , and retraining these188

models with real-world data, their performance189

dips by roughly 54% compared to the reported re-190

sults. Similarly, Zhuang et al. (Zhuang et al., 2021)191

introduced 3GNN. 3GNN improved vulnerability192

detection by analyzing source code graph compo-193

nents (AST, CFG, DFG) separately, using CGCN194

and SAG Pooling for initial vector representations.195

These representations were refined through hierar-196

chical modules and merged into an MLP for clas-197

sification. Evaluations on C/C++ datasets (Draper,198

QEMU+FFmpeg) show that 3GNN outperforms199

baselines, achieving a 6.9%.200

Ban et al. (Ban et al., 2019) proposed a perfor-201

mance evaluation of SW vulnerability detection202

based on deep-learn features. The author used deep203

learning algorithms (i.e., BiLSTM) to extract fea-204

tures. Even if it is possible to show results using205

ML techniques, they suffer poor performance on206

cross-project and class imbalance problems in SW207

vulnerability detection.208

Similarly, Tang et al. (Tang et al., 2020) con-209

ducted experiments to test the performance of Bi-210

LSTM and RVFL on SW vulnerability detection211

problems using data preprocessing methods (i.e.,212

the vector representation and the program symbol-213

ization methods) and found that RVFL trains faster,214

but Bi-LSTM is more accurate. Doc2vec enhances215

training speed and generalization over word2vec,216

while multi-level symbolization improves model217

precision.218

Liu et al. (Liu et al., 2020) proposed a DL-based219

method using BiLSTM for AST representation that220

tackles cross-project feature extraction and class221

imbalance in vulnerability detection. It employs222

fuzzy-based oversampling (FOS) to generate syn-223

thetic vulnerable samples, rebalancing the dataset224

and improving the identification of vulnerable pro-225

gramming patterns. Wartschinski et al. (Wartschin-226

ski et al., 2022) introduced VUDENC (Vulnera-227

bility Detection with Deep Learning on a Natural228

Codebase), a deep learning-based vulnerability de-229

tection system for automatically learning features230

of vulnerable code from a large, real-world code-231

base. Trained on a dataset of security fixes, VU-232

DENC achieves 78%–87% recall and 82%-96%233

precision, outperforming competitors. 234

The proposed framework offers key advance- 235

ments over traditional approaches. While ML mod- 236

els using software metrics or static analysis tools 237

often rely on hand-crafted features and struggle 238

with high false positive rates and class imbalances, 239

the hybrid approach combining CodeBERT em- 240

beddings with software metrics provides a more 241

effective feature representation. This enhances the 242

capture of both semantic and structural aspects of 243

code, improving model robustness and adaptability 244

across different software projects as compared to 245

using single-dimensional embeddings or metrics.. 246

Deep learning models, though promising for vul- 247

nerability detection, often face performance issues 248

like overfitting, cross-project inconsistencies, and 249

class imbalance in real-world datasets. The use 250

of SMOTE and feature selection in this frame- 251

work addresses these, improving generalization 252

and accuracy. Additionally, ML-based methods 253

are more flexible for real-time applications, being 254

less resource-intensive and deployable in environ- 255

ments with limited computational power, making 256

them ideal for industries with stringent resource 257

constraints, as is the general case in vulnerability- 258

centric frameworks. 259

3 Proposed SW Vulnerability Prediction 260

framework 261

Figure 1 illustrates an overview of the proposed 262

research study, which aims to design a range of SW 263

vulnerability prediction pipelines in conjunction 264

with different data preprocessing techniques and 265

ML/ DL techniques. The investigation begins with 266

a public dataset, leveraging data from three distinct 267

SW projects. The first step of the proposed solu- 268

tion is to extract semantics from the source code. 269

So, we have applied three approaches to represent 270

source code as a vector: SW metrics and two em- 271

bedding like TF-IDF and CodeBert. These vectors 272

are applied as input, both individually and com- 273

bined, to the SW vulnerability prediction models. 274

Furthermore, four distinct FSTs are applied to the 275

extracted features, resulting in a total of 75 datasets 276

(5 sets of features * 3 projects * (All features +4 277

FSTs)). 278

Next, our objective is to ensure a balanced rep- 279

resentation within each dataset. A unique data bal- 280

ancing technique is integrated with each of the 75 281

datasets obtained from the feature selection phase, 282

effectively doubling the data. Finally, to compre- 283
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Figure 1: Schematic view of proposed Vulnerability
Detection framework

hensively assess the predictive power of various284

algorithms, we evaluate the performance of 15 clas-285

sification techniques on each of the 150 culminated286

datasets. This comprehensive evaluation yields287

valuable insights into the most effective classifi-288

cation pipelines for vulnerability detection tasks.289

The details of each participating entity, highlighted290

through Figure 1, are provided below:291

3.1 Dataset Details292

The study conducted in this paper adapts three293

public datasets: Drupal, Moodle and PHPMyAd-294

min (Riccardo Scandariato, 2008), in which data is295

stored in the form of text mining and SW metrics,296

with two columns in the text mining datasets. The297

first column is the token column, which contains in-298

dividual lexical tokens derived from the code snip-299

pets. The second column ’lab’ consists of binary300

values, (0 or 1) 0 representing non-vulnerability301

and 1 for vulnerability; hence, the computational302

task is that of binary classification. For Moodle,303

the data source was the National Vulnerability304

Database (NVD) (of Standards and Technology,305

2008), while for Drupal and PHPMyAdmin, we306

used the security reports managed by those projects.307

Applications can be vulnerable to different types308

of vulnerabilities. The semantics of each adapted309

dataset is as follows:310

• Drupal, a widely used content management311

system, consists of 202 files, 62 of which312

are labelled as vulnerable. The most preva-313

lent type of vulnerabilities are authorization314

vulnerabilities, due to it’s design as a multi- 315

user application since initialization, leading to 316

more opportunities for improper authorization 317

implementation. 318

• Moodle is an open-source learning manage- 319

ment system with 2,942 files, 24 of which are 320

marked as vulnerable. The predominant vul- 321

nerabilities are related to authorization, simi- 322

lar to Drupal, due to its multi-user nature. 323

• PHPMyAdmin is a web-based management 324

tool for the MySQL database. There are 322 325

total files, of which 27 are marked vulnerable. 326

In contrast, the cominant vulnerability in this 327

dataset is cross-site scripting (XSS) vulnera- 328

bilities, as the dataset is focused less on user 329

interactions compared to Moodle and Drupal. 330

3.2 Embedding Techniques 331

After data collection, we mainly aim to convert the 332

source code into vectorized notations and make it 333

a suitable format for easy classification. To find 334

the vectorized notations, we used the pre-trained 335

model CodeBERT, a multi-programming-lingual 336

model pre-trained on NL-PL, i.e. Natural language 337

and Programming language, pairs in six program- 338

ming languages (Python, Java, JavaScript, PHP, 339

Ruby, Go). We have also used TF-IDF to find the 340

vectorized notations and source code metrics to 341

measure quantifiable or countable SW character- 342

istics. So, in this study, 05 sets of input features, 343

namely SW metrics (SOFT), TFIDF, CBERT, SW 344

metrics with TF-IDF (SMFIDF), and SW metrics 345

with SMCBERT, are utilized for predictions. 346

3.3 Feature Extraction Techniques 347

To reduce data complexity and improve the effi- 348

ciency and performance of ML algorithms, we em- 349

ploy a total of 05 FSTs, including AF (the consider- 350

ation of all features as important), specifically RST, 351

CCRA, PCA, and GA. 352

3.4 Data Balancing Techniques 353

This study uses SMOTE to generate synthetic sam- 354

ples for the minority class. This process increases 355

the number of minority-class samples, aiming to 356

create a more balanced dataset. 357

3.5 Classification Techniques 358

Finally, we have applied different classification 359

models, namely Multinomial Naive Bayes (MNB), 360
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Table 1: Accuracy and AUC values for SW vulnerability Prediction models

AUC Accuracy
BNB KNN LOGR DT SVCL BAGKN RF EXTR BNB KNN LOGR DT SVCL BAGKN RF EXTR

ORG Data
All Features

SOFT 0.51 0.61 0.79 0.75 0.77 0.79 0.77 0.77 68.81 71.78 77.72 71.29 74.26 72.28 76.24 75.74
TFIDF 0.79 0.68 0.80 0.64 0.77 0.75 0.83 0.83 70.79 70.30 73.27 71.78 70.79 70.30 79.21 78.71
CBERT 0.69 0.60 0.79 0.79 0.74 0.79 0.77 0.78 54.46 71.78 80.69 74.75 78.22 75.74 77.23 74.26
SMFIDF 0.81 0.69 0.81 0.72 0.74 0.78 0.83 0.81 74.75 76.24 79.21 76.73 74.26 72.77 77.23 79.70
SMCBRT 0.70 0.65 0.81 0.80 0.75 0.79 0.76 0.78 54.95 78.22 77.23 77.23 72.28 77.23 74.26 73.27

GA
SOFT 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 69.31 70.79 75.25 77.23 73.76 78.71 73.27 77.23
TFIDF 0.77 0.71 0.80 0.77 0.72 0.77 0.82 0.81 93.56 100.00 100.00 95.54 100.00 93.56 88.61 99.01
CBERT 0.88 1.00 1.00 0.90 1.00 0.88 0.96 0.97 58.42 100.00 100.00 88.61 100.00 86.14 74.75 89.11
SMFIDF 0.69 0.67 0.84 0.77 0.80 0.77 0.86 0.85 90.10 100.00 100.00 97.52 100.00 95.54 86.14 93.56
SMCBRT 0.92 1.00 1.00 0.94 1.00 0.95 0.92 0.95 59.90 100.00 99.51 88.61 100.00 83.66 83.17 88.12

SMOTE
All Features

SOFT 0.53 0.78 0.78 0.84 0.78 0.83 0.87 0.87 52.14 75.36 70.00 77.86 72.14 75.71 80.36 81.79
TFIDF 0.91 0.83 0.92 0.88 0.91 0.88 0.93 0.93 79.64 79.64 80.00 78.93 80.36 78.57 80.71 84.64
CBERT 0.65 0.77 0.91 0.86 0.88 0.84 0.88 0.90 63.57 73.93 81.07 74.64 82.50 74.64 79.64 81.07
SMFIDF 0.91 0.79 0.93 0.87 0.93 0.89 0.92 0.94 83.57 80.71 85.00 80.00 85.71 77.50 85.36 82.14
SMCBRT 0.72 0.79 0.93 0.89 0.91 0.88 0.92 0.95 62.50 76.07 81.43 74.29 83.21 73.21 84.29 80.71

GA
SOFT 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 54.64 80.00 71.07 78.57 73.57 76.79 79.64 80.36
TFIDF 0.88 0.76 0.88 0.84 0.88 0.85 0.92 0.91 87.14 100.00 100.00 99.64 100.00 96.79 93.57 97.86
CBERT 0.91 1.00 1.00 0.97 1.00 0.92 0.97 0.99 64.29 100.00 100.00 86.07 100.00 79.64 91.79 97.50
SMFIDF 0.89 0.79 0.91 0.86 0.91 0.89 0.92 0.93 81.79 100.00 100.00 98.21 100.00 98.21 96.07 98.57
SMCBRT 0.90 1.00 1.00 0.97 1.00 0.98 0.95 0.98 65.71 100.00 100.00 87.14 100.00 90.00 93.57 92.50

Bernoulli Naive Bayes (BNB), Gaussian Naive361

Bayes (GNB), Decision Trees (DT), K Nearest362

Neighbors (KNN), SVM with linear (SVML), poly-363

nomial (SVMP), RBF kernel (RBFK), Bagging364

Classifier with base estimator as K Neighbors Clas-365

sifier, MultinomialNB, Logistic Regression, Deci-366

sion Tree Classifier, Random Forest Classifier, Ex-367

traTrees Classifier, AdaBoost Classifier, and Gradi-368

ent Boosting Classifier for SW vulnerability detec-369

tion. MLP classifiers with optimization algorithms370

blogs, Adam and SD, have also been adapted for371

SW vulnerability detection. These models are vali-372

dated using 5-fold cross-validations, and the effec-373

tiveness of developed prediction models is assessed374

using a variety of performance metrics, including375

accuracy and area under the ROC curve. We fur-376

ther utilized box plots for visual representation and377

the Wilcoxon rank-sum test to detect significant378

differences among the models.379

4 Experimental Results380

The overall predictive ability assessment of the381

proposed research framework is shown in Figure 1,382

described in this section. Table 1 lists the predictive383

ability of the selected combination of word embed-384

ding, data sampling, feature selection, and classi-385

fication techniques on public datasets. The results386

for other combinations are of similar type. The387

models are validated using 5-fold cross-validation 388

(CV). The key inferences from Table 1 are as fol- 389

lows: 390

• High AUC scores confirm that the developed 391

prediction models correctly predict the source 392

code containing SW vulnerability. 393

• Prediction models trained on embedding with 394

source code metrics have a high predictive 395

ability. In contrast, those models trained on an 396

individual, either embedding or source code 397

metrics, have low predictive ability. 398

• Models trained on SMOTE balanced data are 399

better than those trained on the original dataset 400

(ORGD). 401

• Models trained after feature selection using 402

GA have a very high predictive ability. 403

4.1 Comparative evaluation of Embedding 404

techniques 405

Understanding Contextual Cues using Word 406

Clouds: Figure 2(a) and Figure 2(b) illustrate word- 407

cloud of both non-vulnerable and vulnerable source 408

code, respectively. These visuals reveal the con- 409

text in which vulnerabilities arise, highlight key 410

features, functions, variables, or words that dom- 411

inate the non-vulnerable data, and establish key 412
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differences in programming practices or patterns413

between the two datasets.414

((a)) Non-Vulnerability

((b)) Vulnerability

Figure 2: Word-level contextual overlapping among
Vulnerable and Non-vulnerable source code datasets

Comparative analysis of Code Embedding Tech-415

niques Performance through Box-Plot Analysis:416

Figure 3 illustrates a detailed analysis of the perfor-417

mance differences of sets of features for prediction.418

Upon investigation, it is evident that SMCBERT419

stands out as a top performer, achieving the highest420

mean AUC score of 0.80. CBERT alone closely421

trails behind its soft-metrics-enhanced counterpart,422

with a median AUC of 0.78. TF-IDF exhibits the423

same AUC value, indicating the importance of tex-424

tual frequency across the word embedding land-425

scape for the datasets at hand. It is interesting to426

observe that while the combination of soft met-427

rics and CBERT causes a boost in accuracy, the428

same combination with TFIDF achieves marginally429

lower scores, stressing the importance of careful430

integration with soft metrics and the additional con-431

text it provides. The simple use of SW metrics432

alone delivers the lowest degree of accurate perfor-433

mance, highlighting the importance of developing434

cohesive combination techniques.435

Exploring Code Embedding Techniques436

through Friedman Mean Rank: We have used437

the Friedman Mean Rank test with a confidence438

interval of 95% (0.05 significance level), meaning439

the null hypothesis is accepted if p≥0.05 to find440
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Figure 3: Performance box-plots of Code-Embedding
techniques

the significant impact of the feature sets extracted 441

from the source code. The obtained p-value after 442

applying the Friedman Mean Rank test is less 443

than 0.05, confirming that the model’s prediction 444

power depends on the methods used to find the 445

features from the source code. A model with a 446

lower mean rank value performs better than the 447

one with a higher mean rank value. The models 448

trained on a combination of SW metrics with 449

CodeBERT(SMCBERT) lower mean rank, as 450

shown in Table 2, represent the best models for SW 451

vulnerability prediction. The results of Table 2 also 452

confirm that the models trained on an individual, 453

either embedding or source code metrics, have low 454

performance for SW vulnerability prediction. 455

Table 2: Friedman Mean Rank statistics of Code-
Embedding Techniques at p-value 0.05

SOFT TFIDF CBERT SMFIDF SMCBRT
Accuracy 3.39 2.86 3.01 2.94 2.79
AUC 3.78 2.77 3.11 2.77 2.57

4.2 Evaluation of Feature Selection 456

Methodologies 457

We employed four diverse FSTs to identify and 458

retain the most informative characteristics of the 459

data while discarding irrelevant ones, ultimately 460

leading to simpler and potentially more effective 461

prediction models. We compared the original fea- 462

ture set with four additional sets generated by the 463

selection procedures. 464

Comparative analysis of FST performance 465

through Box-Plots: Figure 4 illustrates assess- 466

ment metrics accuracy and AUC across the original 467

dataset and four feature selection methods. An im- 468

portant observation drawn from this analysis is that 469

CCRA shows marginally higher performance than 470

AF, with an 85% accuracy score, with RST only 471

marginally behind with a mean of 84%. For com- 472
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Figure 4: Performance Box-plots of FS Techniques

parison, AF results in a mean accuracy score of473

83%, and in terms of AUC, all the aforementioned474

features along with AF show identical scores of475

0.77. This highlights that certain features make up476

for most of the interpretation of the dataset in the477

context of the vulnerability prediction task at hand,478

and the use of FSTs allows for a reduction in the479

complexity of the data without compromising over-480

all performance. It is apparent that the GA model481

displays the highest mean accuracy at 88% as well482

as mean AUC at 0.84 and the smallest interquar-483

tile range (IQR). This may highlight the superior484

predictive capabilities of the GA model compared485

to other FSTs. In contrast, PCA shows the low-486

est degree of accurate performance, significantly487

lower than AF. This suggests that dimensionality488

reduction primarily based on variance might not489

align with the features most relevant to the fault490

prediction task.491

Exploring FST Techniques through Friedman492

Mean Rank: We have applied the Friedman Mean493

Rank test with a confidence interval of 95% (0.05494

significance level), meaning the null hypothesis is495

accepted if p≥0.05 to find the significant impact496

of the features used as an input of the models. The497

Friedman Mean Rank test return p-value <=0.05498

confirms that the models trained by changing the499

input features significantly impact the prediction500

power of the models. From Table 3, we can con-501

clude that the models trained using selected sets of502

features derived by GA as input give the best results503

and perform significantly better than all features.504

This finding confirms that the models’ performance505

will not be degraded after removing irrelevant fea-506

tures.507

4.3 Feasibility analysis of Class balancing508

Optimizing data distribution in classes is crucial509

for classification model performance. This study510

uses the data-balancing technique SMOTE to ad-511

Table 3: Friedman Mean Rank of FST, at p-value 0.05

AF RST CCRA PCA GA
Accuracy 2.95 3.01 2.92 3.78 2.35
AUC 2.67 2.92 2.92 4.24 2.25
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Figure 5: Performance Box-plots of Class Balancing
techniques

dress the essential problem of the underrepresented 512

minority class, which may be prevalent in SW vul- 513

nerability prediction tasks. 514

Comparative analysis of Data Balancing Tech- 515

niques performance through Box-Plot: Figure 5 516

showcases the evaluation metrics for both the origi- 517

nal datasets and the datasets that have undergone 518

balancing techniques. In terms of accuracy, the 519

mean value for the original data is 86%, whereas 520

the balanced data exhibits a slightly lower mean 521

accuracy of 81%. This suggests a potential de- 522

crease in accuracy when utilizing data balancing 523

techniques. However, a different trend emerges 524

when we consider the AUC metric. The original 525

data boasts an AUC of 0.67, while the balanced 526

data demonstrates a significantly higher AUC of 527

0.87. This substantial improvement in AUC com- 528

pared to the marginal difference in accuracy leads 529

to the conclusion that the model can differentiate 530

between classes when using balanced data. 531

Exploring Data Balancing Techniques through 532

Friedman Mean Rank: This work also uses the 533

Friedman Mean Rank test with a confidence inter- 534

val of 95% (0.05 significance level), meaning the 535

null hypothesis is accepted if p≥0.05 to find the sig- 536

nificant impact of the models trained on balanced 537

data using SMOTE. The calculated p-value <=0.05 538

of the Friedman Mean Rank test confirms that the 539

models trained on balanced data significantly im- 540

pact the performance of the models. A model with 541

a lower mean rank value performs better than the 542

one with a higher mean rank value. Hence, from 543

Table 4, we can conclude that the models trained on 544

balanced data give the best results and perform sig- 545

7



nificantly better than the original data. The above546

finding is based on the AUC value because of the547

imbalanced nature of the data.548

Table 4: Friedman Mean Rank of Data Balancing Tech-
niques, at p-value 0.05

ORGD SMOTE
Accuracy 1.45 1.55
AUC 1.94 1.06

4.4 Evaluation of Classification techniques549

We analyzed the performance of nine different ML550

classifiers and six ensemble Techniques based on551

accuracy performance metrics. Our primary objec-552

tive was to gain insights into the effectiveness of553

these classifiers in the predictive model.554

Exploring ML techniques performance555

through Box-Plot: Figure 6 reveals a range556

of mean accuracy values from 75% to 90% ,557

indicating significant variations in predictive558

capabilities among classifiers. In the ML-based559

classification, vulnerability detection models560

demonstrate a slight variation in performance is561

noticed when the focus is shifted from accuracy562

score to AUC score and vice versa. However, it is563

clear that the EXTR Classifier demonstrated the564

highest mean accuracy and AUC score at 90.87%565

and 0.82, respectively, followed by LOGR and RF566

classifiers - yielding values only marginally lower.567

Consequently, the consistently higher performance568

of ensemble classifiers like Extra Trees highlights569

their superior ability to manage the intricate570

patterns and interactions inherent in the dataset.571

Exploring ML techniques through Friedman572

Mean Rank: This work also uses the Friedman573

Mean Rank test with a confidence interval of 95%574

(0.05 significance level), meaning the null hypothe-575

sis is accepted if p≥0.05 to find the significant im-576

pact of the models. The calculated p-value <=0.05577

of the Friedman Mean Rank test confirms that the578

models trained by using different ML algorithms579

significantly impact the performance of the models.580

From Table 5, we can conclude that the models581

trained using EXTR classifiers give the best results582

and perform significantly better than other classi-583

fiers.584

5 Conclusion585

The role of code embedding techniques in design-586

ing a reliable and accurate SW vulnerability detec-587

tion model, alongside various ML/DL techniques, 588

feature selection, and data balancing methods, re- 589

mains an open and hypothetical area of research. In 590

this context, we systematically evaluated different 591

classifiers and ensemble methods, alongside ad- 592

vanced embedding techniques like CodeBERT. In- 593

terestingly, the feasibility of embedding techniques, 594

SOFT, TFIDF, CBERT, SMFIDF, and SMCBERT 595

is explored for the intended task. Upon investiga- 596

tion, it is evident that SW metrics combined with 597

CodeBERT (SMCBERT) stand out as top perform- 598

ers, achieving the highest mean AUC score of 0.80, 599

making models trained on SMCBERT the best for 600

SW vulnerability prediction. The proposed frame- 601

work delivers 150 vulnerability prediction pipelines 602

and is evaluated on publicly available datasets from 603

Drupal, Moodle, and PHPMyAdmin. The experi- 604

mental findings show that FSTs, particularly GA, 605

significantly enhance model performance by iden- 606

tifying the most informative features. Data balanc- 607

ing methods like SMOTE further improve model 608

generalization, as seen in higher AUC scores. Ad- 609

ditionally, among classifiers, EXTR demonstrates 610

a superior ability to manage the intricate patterns 611

and interactions in the vulnerability datasets. 612

The future scope of this work includes explor- 613

ing advanced FSTs, more sophisticated data bal- 614

ancing and adaptive learning methods could en- 615

hance model generalization. Expanding to di- 616

verse, modern datasets will ensure scalability, while 617

real-time detection and cross-platform evaluations 618

can demonstrate effectiveness in dynamic environ- 619

ments. The approach could also automate vul- 620

nerability detection within continuous integration 621

pipelines, providing developers with timely feed- 622

back on code security. 623
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