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Abstract

Software (SW) systems experience faults af-
ter deployment, raising concerns about reliabil-
ity and leading to financial losses, reputational
damage, and safety risks. This paper presents
a novel approach using CodeBERT, a state-of-
the-art neural code representation model pre-
trained in multi-programming languages and
employs various code metrics to predict SW
faults. The study comprehensively evaluates
trained models by analyzing publicly available
codebase and employing diverse machine learn-
ing (ML) models, feature selection techniques
(FSTs), and class balancing through Synthetic
Minority Oversampling Technique (SMOTE).
The results show that SMOTE significantly
enhances vulnerability detection performance,
particularly in accuracy, AUC, sensitivity, and
specificity. The EXTR classifier consistently
outperforms others, with an average AUC of
0.82, and the features selected using the genetic
algorithm (GA) feature selection technique, de-
spite achieving a mean AUC of 0.84. Interest-
ingly, among employed embedding techniques,
SW metrics combined with CodeBERT (SM-
CBERT) stand out as top performers, achieving
the highest mean AUC score of 0.80, making
models trained on SMCBERT the best for SW
vulnerability prediction.

1 Introduction

Software(SW) vulnerability refers to a flaw arising
from SW design, development, or configuration
errors that can be exploited to breach explicit or
implicit security policies (Ghaffarian and Shahri-
ari, 2017). SW vulnerability is a particular defect
that creates security risks and poses a significant
concern for SW development as it is often used to
launch attacks. Vulnerabilities, ranging from cod-
ing errors to design flaws, create entry points for
attackers to exploit systems, steal data, disrupt ser-
vices, and cause significant financial or reputational
damage to businesses and governments. So, the vul-
nerability detection process is critical mainly due

to the pervasive nature of SW in modern society
and the increasing sophistication of cyber threats.
Effective vulnerability detection helps identify and
remediate these weaknesses before they can be ex-
ploited, reducing the likelihood and impact of the
attacks.

Recent research in the realm of SW security in-
dicates that vulnerability detection is essential in
promoting the reliable development of SW and ef-
ficiently allows developers to reduce the number of
vulnerabilities patched after the production phase
(Hanif et al., 2021). In most studies, SW vulnera-
bility detection is a data-driven method in SW qual-
ity assurance, leveraging historical information on
vulnerabilities to predict if specific parts of code
(functions, files, or code snippets) are susceptible
to security weaknesses. Contemporary methodolo-
gies such as the utilization of code reviews can be
valuable but also expensive and time-consuming
for developers, requiring them to consider potential
attack scenarios and solutions (Méntyld and Lasse-
nius, 2008). Additionally, reviewing every file for
vulnerabilities might be impractical for massive
code repositories.

In this context, the utilization of ML offers signif-
icant advantages for vulnerability detection by en-
abling the analysis of large code bases at scale and
identifying known and unknown threats through
pattern recognition. Unlike traditional methods
that rely on predefined rules, ML models can adapt
to emerging vulnerabilities by retraining with new
data, ensuring up-to-date protection, and also excel
at detecting complex, multi-layered vulnerabilities
that might elude manual analysis. This reduces
human error while automating the detection pro-
cess, making ML a more dynamic, scaleable, and
accurate approach to securing SW environments.

In this paper, we have comprehensively investi-
gated the performance of several commonly used
ML and DL techniques for SW vulnerability detec-
tion on a codebase extracted from publicly avail-



able datasets, e.g. Drupal, Moodle, and PHPMyAd-
min. In this context, the CodeBert source code
embedding technique is utilized to capture code
semantics into comprehensive vectors that may
be sufficiently used by the pipeline, after which
a set of diverse FSTs were employed for the iden-
tification of the most informative features, effec-
tively trimming the data, to enhance ML models in
several ways including improved accuracy, faster
training times, and greater interpretability. Fur-
thermore, a class balancing technique, SMOTE, is
applied due to the inherent imbalance in datasets.
By combining six vectorization techniques, 15 clas-
sification algorithms, 05 FSTs, and a class balanc-
ing technique on the proposed datasets, we aim
to gain insights into how these methods may con-
tribute towards more effective vulnerability detec-
tion pipelines.

2 Related Work

The existing research efforts on SW vulnerabilities
fall under two broad categories: traditional ML and
deep learning (DL) approaches. Both categories
make use of various data preprocessing techniques,
often relying on traditional metrics and tests. The
potential research work is briefly discussed below:

2.1 Traditional ML-based models

Chernis (2018) (Chernis and Verma, 2018) pre-
sented a methodology for analyzing features ex-
tracted from C source code. They defined func-
tions to extract both trivial and non-trivial features.
Finally, they considered various classifiers, such
as Naive Bayes, k-nearest neighbors, and Ran-
dom Forests to classify the test samples. Medeiros
(2020) (Medeiros et al., 2020) conducted a com-
prehensive experiment to assess the effectiveness
of SW metrics using ML algorithms. The study
extracted vulnerability-related insights from SW
metrics of notable C/C++ projects such as Mozilla
Firefox, Linux Kernel, Apache HTTPd, Xen, and
Glibc. The main finding is that ML algorithms,
combined with SW metrics, can identify vulnerable
code units with high confidence in security-critical
systems. However, this approach is less effective
for low-critical or non-critical systems due to a
high number of false positives.

Pereiraetal.(Pereira et al., 2021) used static anal-
ysis tool (SAT) alerts and SW metrics (SMs) as
inputs for ML algorithms to predict vulnerabili-
ties. Data from the Mozilla project, supplemented

with static analysis alerts from CPP check and
Flawfinder, are used. Results show that models us-
ing SMs outperform those using SAT alerts alone,
but neither approach achieves satisfactory precision
and recall simultaneously. Notably, Napier et al.
(Napier et al., 2023) evaluated the text-based ML
model’s effectiveness using seven ML models, five
natural language processing techniques, and three
data processing methods are employed in experi-
ments. Results indicate that condensed functions
with fewer features often yield better prediction
results within the same model, but overall, text-
based ML models struggle to detect vulnerabilities
consistently across different projects and types.

Similarly, Bilgin et al. (Bilgin et al., 2020)
introduced an ML-based vulnerability prediction
method and present a technique for vectorial source
code representation. The experimental analysis
demonstrated the utility of partial Abstract Syn-
tax Tree (AST) representations for vulnerability
prediction. Jabeenetal. (Jabeen et al., 2022) empiri-
cally studied various ML techniques and statistical
methods to predict SW vulnerabilities across differ-
ent datasets. The ML techniques include cascade-
forward and feed-forward backpropagation neural
networks, ANFIS, multi-layer perceptron, SVM,
and bagging. Statistical methods like the Alhazmi-
Malaiya model, linear regression, and logistic re-
gression are also evaluated. Results show that ML
techniques significantly outperform statistical mod-
els.

Munonye and Péter (Munonye and Péter, 2022)
presented an ML-based approach for detecting
potential vulnerabilities in the OAuth authentica-
tion and authorization flow. The study treated the
OAuth protocol as a supervised learning problem,
developing, tuning, and evaluating seven classifi-
cation models. Exploratory Data Analytics (EDA)
techniques were utilized to extract and analyze spe-
cific OAuth features. The developed models un-
derwent training, tuning, and testing, resulting in a
performance accuracy exceeding 90% for vulner-
ability detection in the OAuth authentication and
authorization flow. When compared with known
vulnerabilities, the model achieves a match rate of
54%.

2.2 Deep learning-based prediction models

Chakraborty et al.(Chakraborty et al., 2022) uti-
lized the FFMPeg+Qemu dataset proposed by Zhou
et al. to assess the technique’s performance in



real-world settings. The authors curated a new
vulnerability dataset from two large-scale popular
projects (Chromium and Debian). Directly employ-
ing pre-trained models for real-world vulnerabil-
ity detection results in an average performance de-
crease of approximately 73% , and retraining these
models with real-world data, their performance
dips by roughly 54% compared to the reported re-
sults. Similarly, Zhuang et al. (Zhuang et al., 2021)
introduced 3GNN. 3GNN improved vulnerability
detection by analyzing source code graph compo-
nents (AST, CFG, DFG) separately, using CGCN
and SAG Pooling for initial vector representations.
These representations were refined through hierar-
chical modules and merged into an MLP for clas-
sification. Evaluations on C/C++ datasets (Draper,
QEMU+FFmpeg) show that 3GNN outperforms
baselines, achieving a 6.9%.

Ban et al. (Ban et al., 2019) proposed a perfor-
mance evaluation of SW vulnerability detection
based on deep-learn features. The author used deep
learning algorithms (i.e., BILSTM) to extract fea-
tures. Even if it is possible to show results using
ML techniques, they suffer poor performance on
cross-project and class imbalance problems in SW
vulnerability detection.

Similarly, Tang et al. (Tang et al., 2020) con-
ducted experiments to test the performance of Bi-
LSTM and RVFL on SW vulnerability detection
problems using data preprocessing methods (i.e.,
the vector representation and the program symbol-
ization methods) and found that RVFL trains faster,
but Bi-LSTM is more accurate. Doc2vec enhances
training speed and generalization over word2vec,
while multi-level symbolization improves model
precision.

Liu et al. (Liu et al., 2020) proposed a DL-based
method using BiLSTM for AST representation that
tackles cross-project feature extraction and class
imbalance in vulnerability detection. It employs
fuzzy-based oversampling (FOS) to generate syn-
thetic vulnerable samples, rebalancing the dataset
and improving the identification of vulnerable pro-
gramming patterns. Wartschinski et al. (Wartschin-
ski et al., 2022) introduced VUDENC (Vulnera-
bility Detection with Deep Learning on a Natural
Codebase), a deep learning-based vulnerability de-
tection system for automatically learning features
of vulnerable code from a large, real-world code-
base. Trained on a dataset of security fixes, VU-
DENC achieves 78%—87% recall and 82%-96%

precision, outperforming competitors.

The proposed framework offers key advance-
ments over traditional approaches. While ML mod-
els using software metrics or static analysis tools
often rely on hand-crafted features and struggle
with high false positive rates and class imbalances,
the hybrid approach combining CodeBERT em-
beddings with software metrics provides a more
effective feature representation. This enhances the
capture of both semantic and structural aspects of
code, improving model robustness and adaptability
across different software projects as compared to
using single-dimensional embeddings or metrics..

Deep learning models, though promising for vul-
nerability detection, often face performance issues
like overfitting, cross-project inconsistencies, and
class imbalance in real-world datasets. The use
of SMOTE and feature selection in this frame-
work addresses these, improving generalization
and accuracy. Additionally, ML-based methods
are more flexible for real-time applications, being
less resource-intensive and deployable in environ-
ments with limited computational power, making
them ideal for industries with stringent resource
constraints, as is the general case in vulnerability-
centric frameworks.

3 Proposed SW Vulnerability Prediction
framework

Figure 1 illustrates an overview of the proposed
research study, which aims to design a range of SW
vulnerability prediction pipelines in conjunction
with different data preprocessing techniques and
ML/ DL techniques. The investigation begins with
a public dataset, leveraging data from three distinct
SW projects. The first step of the proposed solu-
tion is to extract semantics from the source code.
So, we have applied three approaches to represent
source code as a vector: SW metrics and two em-
bedding like TF-IDF and CodeBert. These vectors
are applied as input, both individually and com-
bined, to the SW vulnerability prediction models.
Furthermore, four distinct FSTs are applied to the
extracted features, resulting in a total of 75 datasets
(5 sets of features * 3 projects * (All features +4
FSTs)).

Next, our objective is to ensure a balanced rep-
resentation within each dataset. A unique data bal-
ancing technique is integrated with each of the 75
datasets obtained from the feature selection phase,
effectively doubling the data. Finally, to compre-
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Figure 1: Schematic view of proposed Vulnerability
Detection framework

hensively assess the predictive power of various
algorithms, we evaluate the performance of 15 clas-
sification techniques on each of the 150 culminated
datasets. This comprehensive evaluation yields
valuable insights into the most effective classifi-
cation pipelines for vulnerability detection tasks.
The details of each participating entity, highlighted
through Figure 1, are provided below:

3.1 Dataset Details

The study conducted in this paper adapts three
public datasets: Drupal, Moodle and PHPMyAd-
min (Riccardo Scandariato, 2008), in which data is
stored in the form of text mining and SW metrics,
with two columns in the text mining datasets. The
first column is the token column, which contains in-
dividual lexical tokens derived from the code snip-
pets. The second column ’lab’ consists of binary
values, (0 or 1) O representing non-vulnerability
and 1 for vulnerability; hence, the computational
task is that of binary classification. For Moodle,
the data source was the National Vulnerability
Database (NVD) (of Standards and Technology,
2008), while for Drupal and PHPMyAdmin, we
used the security reports managed by those projects.
Applications can be vulnerable to different types
of vulnerabilities. The semantics of each adapted
dataset is as follows:

* Drupal, a widely used content management
system, consists of 202 files, 62 of which
are labelled as vulnerable. The most preva-
lent type of vulnerabilities are authorization

vulnerabilities, due to it’s design as a multi-
user application since initialization, leading to
more opportunities for improper authorization
implementation.

* Moodle is an open-source learning manage-
ment system with 2,942 files, 24 of which are
marked as vulnerable. The predominant vul-
nerabilities are related to authorization, simi-
lar to Drupal, due to its multi-user nature.

* PHPMyAdmin is a web-based management
tool for the MySQL database. There are 322
total files, of which 27 are marked vulnerable.
In contrast, the cominant vulnerability in this
dataset is cross-site scripting (XSS) vulnera-
bilities, as the dataset is focused less on user
interactions compared to Moodle and Drupal.

3.2 Embedding Techniques

After data collection, we mainly aim to convert the
source code into vectorized notations and make it
a suitable format for easy classification. To find
the vectorized notations, we used the pre-trained
model CodeBERT, a multi-programming-lingual
model pre-trained on NL-PL, i.e. Natural language
and Programming language, pairs in six program-
ming languages (Python, Java, JavaScript, PHP,
Ruby, Go). We have also used TF-IDF to find the
vectorized notations and source code metrics to
measure quantifiable or countable SW character-
istics. So, in this study, 05 sets of input features,
namely SW metrics (SOFT), TFIDF, CBERT, SW
metrics with TE-IDF (SMFIDF), and SW metrics
with SMCBERT, are utilized for predictions.

3.3 Feature Extraction Techniques

To reduce data complexity and improve the effi-
ciency and performance of ML algorithms, we em-
ploy a total of 05 FSTs, including AF (the consider-
ation of all features as important), specifically RST,
CCRA, PCA, and GA.

3.4 Data Balancing Techniques

This study uses SMOTE to generate synthetic sam-
ples for the minority class. This process increases
the number of minority-class samples, aiming to
create a more balanced dataset.

3.5 Classification Techniques

Finally, we have applied different classification
models, namely Multinomial Naive Bayes (MNB),



Table 1: Accuracy and AUC values for SW vulnerability Prediction models

AUC Accuracy

BNB | KNN | LOGR | DT | SVCL | BAGKN | RF [ EXTR | BNB | KNN [ LOGR | DT [ SVCL [ BAGKN | RF [ EXTR

ORG Data

All Features
SOFT 051 | 061 [ 079 [075] 0.77 079 [077] 077 [6881] 7178 | 77.72 [71.29] 7426 | 7228 [7624| 75.74
TFIDF 0.79 | 068 | 0.80 |0.64]| 0.77 0.75 [083| 083 [70.79] 7030 | 7327 |71.78 | 70.79 | 7030 |79.21 | 7871
CBERT | 0.69 | 0.60 | 079 |0.79 | 0.74 079 [0.77| 078 |5446| 7178 | 80.69 |74.75| 7822 | 7574 [ 7723 | 7426
SMFIDF | 0.81 | 0.69 | 081 [0.72| 0.74 078 [0.83| 081 |7475] 7624 | 7921 [76.73| 7426 | 7277 |77.23| 79.70
SMCBRT | 0.70 | 0.65 | 081 |080| 0.75 079 [076| 078 |54.95| 7822 | 7723 |77.23| 7228 | 7723 | 7426 | 73.27

GA
SOFT 098 [ 1.00 [ 1.00 [1.00] 1.00 1.00 [1.00] 1.00 [6931] 70.79 | 7525 [77.23 | 73.76 | 7871 [7327] 77.23
TFIDF 077 | 071 | 080 |077] 0.72 0.77 |0.82] 081 |93.56] 100.00 | 100.00 | 95.54 | 100.00 | 93.56 | 88.61 | 99.01
CBERT | 0.88 | 1.00 | 1.00 |0.90 | 1.00 0.88 | 096 | 097 |5842100.00 | 100.00 | 88.61 | 100.00 | 86.14 |74.75 | 89.11
SMFIDF | 0.69 | 0.67 | 084 |0.77 | 0.80 0.77 [0.86| 085 [90.10 | 100.00 | 100.00 | 97.52 | 100.00 | 95.54 | 86.14 | 93.56
SMCBRT | 092 | 1.00 | 1.00 |094| 1.00 095 [092] 095 [59.90] 100.00 | 99.51 |88.61 | 100.00 | 83.66 |83.17 | 88.12
SMOTE

All Features
SOFT 053078 [ 078 [084] 0.78 083 [087 087 [5214] 7536 | 70.00 |77.86 ] 72.14 | 75.71 [80.36| 81.79
TFIDF 091 | 083 | 092 |088] 091 0838 [093| 093 |79.64| 79.64 | 80.00 |7893| 80.36 | 7857 |80.71 | 84.64
CBERT | 0.65 | 0.77 | 091 |0.86| 0.88 084 [088| 090 |6357] 73.93 | 81.07 |74.64| 8250 | 74.64 |79.64| 81.07
SMFIDF | 091 | 0.79 | 093 [087| 093 089 [092| 094 [8357] 80.71 | 85.00 [80.00| 8571 | 7750 |85.36 | 82.14
SMCBRT | 0.72 | 0.79 | 093 [089 | 091 088 [092| 095 |6250] 76.07 | 8143 |7429| 8321 | 7321 | 8429 | 80.71

GA

SOFT 099 [ 1.00 [ 1.00 [1.00] 1.00 1.00 [1.00] 1.00 [5464] 80.00 | 71.07 [7857| 7357 | 7679 [79.64 | 80.36
TFIDF 0838 | 076 | 0.88 |0.84| 0.88 0.85 [092| 091 |87.14]100.00 | 100.00 | 99.64 | 100.00 | 96.79 | 93.57 | 97.86
CBERT | 091 | 1.00 | 1.00 | 097 1.00 092 [097| 099 |64.29]100.00 | 100.00 | 86.07 | 100.00 | 79.64 |91.79 | 97.50
SMFIDF | 0.89 | 0.79 | 091 [086| 091 089 [092| 093 |81.79 ] 100.00 | 100.00 | 98.21 | 100.00 | 9821 | 96.07 | 98.57
SMCBRT | 090 | 1.00 | 1.00 |097 | 1.00 098 [095| 098 |6571]100.00| 100.00 | 87.14 | 100.00 | 90.00 | 93.57 | 92.50

Bernoulli Naive Bayes (BNB), Gaussian Naive
Bayes (GNB), Decision Trees (DT), K Nearest
Neighbors (KNN), SVM with linear (SVML), poly-
nomial (SVMP), RBF kernel (RBFK), Bagging
Classifier with base estimator as K Neighbors Clas-
sifier, MultinomialNB, Logistic Regression, Deci-
sion Tree Classifier, Random Forest Classifier, Ex-
traTrees Classifier, AdaBoost Classifier, and Gradi-
ent Boosting Classifier for SW vulnerability detec-
tion. MLP classifiers with optimization algorithms
blogs, Adam and SD, have also been adapted for
SW vulnerability detection. These models are vali-
dated using 5-fold cross-validations, and the effec-
tiveness of developed prediction models is assessed
using a variety of performance metrics, including
accuracy and area under the ROC curve. We fur-
ther utilized box plots for visual representation and
the Wilcoxon rank-sum test to detect significant
differences among the models.

4 Experimental Results

The overall predictive ability assessment of the
proposed research framework is shown in Figure 1,
described in this section. Table 1 lists the predictive
ability of the selected combination of word embed-
ding, data sampling, feature selection, and classi-
fication techniques on public datasets. The results
for other combinations are of similar type. The

models are validated using 5-fold cross-validation
(CV). The key inferences from Table 1 are as fol-
lows:

High AUC scores confirm that the developed
prediction models correctly predict the source
code containing SW vulnerability.

Prediction models trained on embedding with
source code metrics have a high predictive
ability. In contrast, those models trained on an
individual, either embedding or source code
metrics, have low predictive ability.

Models trained on SMOTE balanced data are
better than those trained on the original dataset
(ORGD).

Models trained after feature selection using
GA have a very high predictive ability.

4.1 Comparative evaluation of Embedding
techniques

Understanding Contextual Cues using Word
Clouds: Figure 2(a) and Figure 2(b) illustrate word-
cloud of both non-vulnerable and vulnerable source
code, respectively. These visuals reveal the con-
text in which vulnerabilities arise, highlight key
features, functions, variables, or words that dom-
inate the non-vulnerable data, and establish key



differences in programming practices or patterns
between the two datasets.

n variable

"array doublle il s

cLoublear‘r‘ow doublear‘r‘ow
1ng doublearrow aaaaa bio
ole ba iR

3

closetag i

1number
~wvariable node

enpl

”ator‘ tr‘lhg

Svariables variapie

((b)) Vulnerability

Figure 2: Word-level contextual overlapping among
Vulnerable and Non-vulnerable source code datasets

Comparative analysis of Code Embedding Tech-
niques Performance through Box-Plot Analysis:
Figure 3 illustrates a detailed analysis of the perfor-
mance differences of sets of features for prediction.
Upon investigation, it is evident that SMCBERT
stands out as a top performer, achieving the highest
mean AUC score of 0.80. CBERT alone closely
trails behind its soft-metrics-enhanced counterpart,
with a median AUC of 0.78. TF-IDF exhibits the
same AUC value, indicating the importance of tex-
tual frequency across the word embedding land-
scape for the datasets at hand. It is interesting to
observe that while the combination of soft met-
rics and CBERT causes a boost in accuracy, the
same combination with TFIDF achieves marginally
lower scores, stressing the importance of careful
integration with soft metrics and the additional con-
text it provides. The simple use of SW metrics
alone delivers the lowest degree of accurate perfor-
mance, highlighting the importance of developing
cohesive combination techniques.

Exploring Code Embedding Techniques
through Friedman Mean Rank: We have used
the Friedman Mean Rank test with a confidence
interval of 95% (0.05 significance level), meaning
the null hypothesis is accepted if p>0.05 to find
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Figure 3: Performance box-plots of Code-Embedding
techniques

the significant impact of the feature sets extracted
from the source code. The obtained p-value after
applying the Friedman Mean Rank test is less
than 0.05, confirming that the model’s prediction
power depends on the methods used to find the
features from the source code. A model with a
lower mean rank value performs better than the
one with a higher mean rank value. The models
trained on a combination of SW metrics with
CodeBERT(SMCBERT) lower mean rank, as
shown in Table 2, represent the best models for SW
vulnerability prediction. The results of Table 2 also
confirm that the models trained on an individual,
either embedding or source code metrics, have low
performance for SW vulnerability prediction.

Table 2: Friedman Mean Rank statistics of Code-
Embedding Techniques at p-value 0.05

SOFT | TFIDF | CBERT | SMFIDF | SMCBRT
Accuracy | 3.39 2.86 3.01 2.94 2.79
AUC 3.78 2.77 3.11 2.77 2.57

4.2 Evaluation of Feature Selection
Methodologies

We employed four diverse FSTs to identify and
retain the most informative characteristics of the
data while discarding irrelevant ones, ultimately
leading to simpler and potentially more effective
prediction models. We compared the original fea-
ture set with four additional sets generated by the
selection procedures.

Comparative analysis of FST performance
through Box-Plots: Figure 4 illustrates assess-
ment metrics accuracy and AUC across the original
dataset and four feature selection methods. An im-
portant observation drawn from this analysis is that
CCRA shows marginally higher performance than
AF, with an 85% accuracy score, with RST only
marginally behind with a mean of 84%. For com-
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Figure 4: Performance Box-plots of FS Techniques

parison, AF results in a mean accuracy score of
83%, and in terms of AUC, all the aforementioned
features along with AF show identical scores of
0.77. This highlights that certain features make up
for most of the interpretation of the dataset in the
context of the vulnerability prediction task at hand,
and the use of FSTs allows for a reduction in the
complexity of the data without compromising over-
all performance. It is apparent that the GA model
displays the highest mean accuracy at 88% as well
as mean AUC at 0.84 and the smallest interquar-
tile range (IQR). This may highlight the superior
predictive capabilities of the GA model compared
to other FSTs. In contrast, PCA shows the low-
est degree of accurate performance, significantly
lower than AF. This suggests that dimensionality
reduction primarily based on variance might not
align with the features most relevant to the fault
prediction task.

Exploring FST Techniques through Friedman
Mean Rank: We have applied the Friedman Mean
Rank test with a confidence interval of 95% (0.05
significance level), meaning the null hypothesis is
accepted if p>0.05 to find the significant impact
of the features used as an input of the models. The
Friedman Mean Rank test return p-value <=0.05
confirms that the models trained by changing the
input features significantly impact the prediction
power of the models. From Table 3, we can con-
clude that the models trained using selected sets of
features derived by GA as input give the best results
and perform significantly better than all features.
This finding confirms that the models’ performance
will not be degraded after removing irrelevant fea-
tures.

4.3 Feasibility analysis of Class balancing

Optimizing data distribution in classes is crucial
for classification model performance. This study
uses the data-balancing technique SMOTE to ad-

Table 3: Friedman Mean Rank of FST, at p-value 0.05

AF | RST | CCRA | PCA | GA
Accuracy | 295 | 3.01 | 292 | 3.78 | 2.35
AUC 2.67 292 | 292 424 | 2.25
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Figure 5: Performance Box-plots of Class Balancing
techniques

dress the essential problem of the underrepresented
minority class, which may be prevalent in SW vul-
nerability prediction tasks.

Comparative analysis of Data Balancing Tech-
niques performance through Box-Plot: Figure 5
showcases the evaluation metrics for both the origi-
nal datasets and the datasets that have undergone
balancing techniques. In terms of accuracy, the
mean value for the original data is 86%, whereas
the balanced data exhibits a slightly lower mean
accuracy of 81%. This suggests a potential de-
crease in accuracy when utilizing data balancing
techniques. However, a different trend emerges
when we consider the AUC metric. The original
data boasts an AUC of 0.67, while the balanced
data demonstrates a significantly higher AUC of
0.87. This substantial improvement in AUC com-
pared to the marginal difference in accuracy leads
to the conclusion that the model can differentiate
between classes when using balanced data.

Exploring Data Balancing Techniques through
Friedman Mean Rank: This work also uses the
Friedman Mean Rank test with a confidence inter-
val of 95% (0.05 significance level), meaning the
null hypothesis is accepted if p>0.05 to find the sig-
nificant impact of the models trained on balanced
data using SMOTE. The calculated p-value <=0.05
of the Friedman Mean Rank test confirms that the
models trained on balanced data significantly im-
pact the performance of the models. A model with
a lower mean rank value performs better than the
one with a higher mean rank value. Hence, from
Table 4, we can conclude that the models trained on
balanced data give the best results and perform sig-



nificantly better than the original data. The above
finding is based on the AUC value because of the
imbalanced nature of the data.

Table 4: Friedman Mean Rank of Data Balancing Tech-
niques, at p-value 0.05

ORGD | SMOTE
Accuracy 1.45 1.55
AUC 1.94 1.06

4.4 Evaluation of Classification techniques

We analyzed the performance of nine different ML
classifiers and six ensemble Techniques based on
accuracy performance metrics. Our primary objec-
tive was to gain insights into the effectiveness of
these classifiers in the predictive model.

Exploring ML techniques performance
through Box-Plot: Figure 6 reveals a range
of mean accuracy values from 75% to 90% |,
indicating significant variations in predictive
capabilities among classifiers. In the ML-based
classification, vulnerability detection models
demonstrate a slight variation in performance is
noticed when the focus is shifted from accuracy
score to AUC score and vice versa. However, it is
clear that the EXTR Classifier demonstrated the
highest mean accuracy and AUC score at 90.87%
and 0.82, respectively, followed by LOGR and RF
classifiers - yielding values only marginally lower.
Consequently, the consistently higher performance
of ensemble classifiers like Extra Trees highlights
their superior ability to manage the intricate
patterns and interactions inherent in the dataset.

Exploring ML techniques through Friedman
Mean Rank: This work also uses the Friedman
Mean Rank test with a confidence interval of 95%
(0.05 significance level), meaning the null hypothe-
sis is accepted if p>0.05 to find the significant im-
pact of the models. The calculated p-value <=0.05
of the Friedman Mean Rank test confirms that the
models trained by using different ML algorithms
significantly impact the performance of the models.
From Table 5, we can conclude that the models
trained using EXTR classifiers give the best results
and perform significantly better than other classi-
fiers.

5 Conclusion

The role of code embedding techniques in design-
ing a reliable and accurate SW vulnerability detec-

tion model, alongside various ML/DL techniques,
feature selection, and data balancing methods, re-
mains an open and hypothetical area of research. In
this context, we systematically evaluated different
classifiers and ensemble methods, alongside ad-
vanced embedding techniques like CodeBERT. In-
terestingly, the feasibility of embedding techniques,
SOFT, TFIDF, CBERT, SMFIDF, and SMCBERT
is explored for the intended task. Upon investiga-
tion, it is evident that SW metrics combined with
CodeBERT (SMCBERT) stand out as top perform-
ers, achieving the highest mean AUC score of 0.80,
making models trained on SMCBERT the best for
SW vulnerability prediction. The proposed frame-
work delivers 150 vulnerability prediction pipelines
and is evaluated on publicly available datasets from
Drupal, Moodle, and PHPMyAdmin. The experi-
mental findings show that FSTs, particularly GA,
significantly enhance model performance by iden-
tifying the most informative features. Data balanc-
ing methods like SMOTE further improve model
generalization, as seen in higher AUC scores. Ad-
ditionally, among classifiers, EXTR demonstrates
a superior ability to manage the intricate patterns
and interactions in the vulnerability datasets.

The future scope of this work includes explor-
ing advanced FSTs, more sophisticated data bal-
ancing and adaptive learning methods could en-
hance model generalization. Expanding to di-
verse, modern datasets will ensure scalability, while
real-time detection and cross-platform evaluations
can demonstrate effectiveness in dynamic environ-
ments. The approach could also automate vul-
nerability detection within continuous integration
pipelines, providing developers with timely feed-
back on code security.
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