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Abstract

In the realm of multimodal tasks, Visual
Question Answering (VQA) plays a crucial
role by addressing natural language questions
grounded in visual content. Knowledge-Based
Visual Question Answering (KBVQA) ad-
vances this concept by adding external knowl-
edge along with images to respond to ques-
tions. We introduce an approach for KBVQA,
augmenting the existing vision-language trans-
former encoder-decoder (OFA) model (Wang
et al., 2022). Our main contribution involves
enhancing questions by incorporating rele-
vant external knowledge extracted from knowl-
edge graphs, using a dynamic triple extraction
method. We supply a flexible number of triples
from the knowledge graph as context, tailored
to meet the requirements for answering the
question. Our model, enriched with knowl-
edge, demonstrates an average improvement
of 4.75% in Exact Match Score over the state-
of-the-art on three different KBVQA datasets.
Through experiments and analysis, we demon-
strate that furnishing variable triples for each
question improves the reasoning capabilities of
the language model in contrast to supplying a
fixed number of triples. This is illustrated even
for recent large language models. Addition-
ally, we highlight the model’s generalization
capability by showcasing its SOTA-beating per-
formance on a small dataset, achieved through
straightforward fine-tuning.

1 Introduction

The domain of Knowledge-Based Visual Question
Answering (KBVQA) not only utilizes visual in-
formation extracted from images, such as object at-
tributes and visual relationships but also integrates
supporting facts to facilitate accurate reasoning and
answer prediction.
Motivation: Recently, large language models
(LLMs) like GPT-4 (OpenAI et al., 2023) have
garnered attention for their human-like understand-
ing of both images and language, enabling them to

Figure 1: Example question answerable solely from an
image (Shah et al., 2019), without requiring external
information.
Question: Who is to the right of R.Madhavan?
Named Entities: [Kangana Ranaut, R. Madhavan]

tackle KBVQA questions very effectively. How-
ever, these LLMs come with a significant drawback:
their immense size (around a trillion parameters)
poses challenges for offline usage. Additionally,
they struggle with user-centric data, such as ques-
tions related to named entities within an image. For
instance, consider questions like Who is the person
in the middle of the image? or What is the age of
the person shown in the image? In such cases, a
model should provide specific answers, such as the
person’s name or age, rather than generic responses
like man or I can’t guess the age. This could also
limit the performance of many IoT applications
where real-time user-centric data plays a crucial
role.
To solve this problem previous works in KBVQA
(Li et al., 2020; Garcia-Olano et al., 2021; Vick-
ers et al., 2021) used a fixed number of triples
from knowledge graphs as additional sources of
information to answer the question. Nevertheless,
using a fixed number of triples for all questions
may lead to either inadequate information or un-
necessary noise, potentially resulting in inaccurate
predictions. E.g. in Figure 1, Who is to the right
of R.Madhavan? These questions can be answered
from image features alone and when additional
knowledge is given it introduces noise which of-



ten confuses the model and subsequently leads to
incorrect predictions. Similarly, some questions re-
quire more triples to reach the correct answer, but
providing a fixed number of triples can limit the
model’s reasoning capabilities due to insufficient
information.
Our Approach: To address this, we propose a
dynamic triple filtering module capable of retriev-
ing a variable number of triples from knowledge
graphs as context to answer the questions. We use
an established vision language transformer encoder-
decoder (OFA) (Wang et al., 2022) model which
takes an image, question, and filtered triples as
input to predict the desired answer.

Our contributions are,
1. An approach to Knowledge Based VQA, pro-

viding a dynamic triple filtering method
that gives question-specific triples instead
of a fixed number of ones, serving as con-
text to answer the posed question. The ap-
proach surpasses the state-of-the-art (SOTA)
on three different KBVQA datasets by at least
4.12%(Section 4, Section 5 & Section 3.1.2).

2. A benchmark across all three datasets.
Through a comprehensive evaluation of the
VQA model under diverse settings, encom-
passing both its strengths and weaknesses,
we ascertain that the enhanced performance
can be attributed to the integration of exter-
nal knowledge from ConceptNet (Speer et al.,
2018) and WikiData (Vrandečić and Krötzsch,
2014) in the form of an additional "knowledge
vector". (Section 4)

3. An enhanced knowledge base for the CRIC-
VQA dataset. This enhancement raises the
number of triples from 3,439, as documented
in CRIC-VQA (Gao et al., 2023), to 99,586
triples (Section 4.2)

2 Related Work

Knowledge-based VQA: KBVQA is a recent ad-
vancement that incorporates external knowledge
along with images and questions to arrive at an an-
swer. There are various datasets published for this
purpose. These datasets are mainly of two types-

Open Domain Knowledge-Based VQA in-
volves answering questions that require broad-
world knowledge, going beyond what’s directly
visible in an image. Several datasets, such as OK-
VQA(Marino et al., 2019), A-OKVQA(Schwenk
et al., 2022), and ScienceQA(Lu et al., 2022), fall

into this category. Researchers have tackled this
challenge by leveraging various sources of informa-
tion. Recent work utilizes large language models
(LLMs) like GPT-3.5 (Gui et al., 2022; Lin et al.,
2022) to retrieve relevant knowledge. Works such
as (Khademi et al., 2023; Lin et al., 2022; Gui
et al., 2022) found that increasing the diversity of
knowledge sources leads to improved accuracy in
answering these types of questions.

Closed Domain Knowledge-Based VQA per-
tains to questions that rely on information from a
fixed knowledge base. Datasets like FVQA (Wang
et al., 2017), KVQA (Shah et al., 2019), Vi-
Quae (Lerner et al., 2022), and CRIC-VQA (Gao
et al., 2023) fall into this category. Some ap-
proaches like (Shevchenko et al., 2021; Li et al.,
2020), utilize knowledge graphs to retrieve relevant
information needed to answer specific questions.
Others (Lerner et al., 2024) have employed a fixed
multimodal knowledge base, which combines in-
formation from different modalities to provide ac-
curate answers.
As user-centric or factual questions require a lim-
ited knowledge base to answer a question our work
focuses on Closed Knowledge Based VQA. In pre-
vious works, the MEMNET architecture (Tai et al.,
2017) was utilized. It retrieved relevant facts from
knowledge graphs and then passed them to a BI-
LSTM (Huang et al., 2015) to find the answer. Re-
cent models have leveraged the Vision+Language
BERT model (Su et al., 2020) to obtain desired
answers. Another approach, proposed by (Chen
et al., 2020), utilizes a BERT-based encoder UNI-
TIER (Devlin et al., 2019) which frames VQA as a
classification problem. However, this method has
limitations in its applicability to other datasets due
to fixed class labels. The latest work, POP-VQA by
(Sahu et al., 2024), employs MT-CNN to retrieve
a fixed number of highly relevant facts. These rel-
evant facts, along with questions and images, are
then fed into a transformer encoder-decoder model
to obtain the desired answer.

Datasets: Three primary datasets, KVQA (Shah
et al., 2019), CRIC-VQA (Gao et al., 2023), and
FVQA (Wang et al., 2017), are used for Closed
Domain Knowledge-Based VQA. KVQA contains
183,000 Q&A pairs, emphasizing named entity un-
derstanding with 18,000 entities across 24,000 im-
ages. Conversely, FVQA and CRIC-VQA priori-
tize commonsense over named entities, with FVQA
having 5826 questions and 2190 images, and CRIC-



Figure 2: The proposed framework is illustrated in the flow diagram. In the first stage of prediction, triples are
filtered based on images, followed by an additional round of filtering based on questions. Finally, the extracted
triples in green represent useful triples and the triples in red represent noisy ones. In the second stage of prediction,
Relevant Triples, Image Resnet Features and Questions, are fed into a transformer encoder-decoder model (OFA)
to generate the predicted answer.⊕ represents the concatenation of all the features to pass it to the transformer
encoder-decoder to get the predicted answer. Irrelevant triples are depicted with dashed lines, while relevant triples,
filtered based on images, are represented with bold lines.

VQA comprising 494K questions and 94K images.
We primarily used external knowledge sourced
from the Wikidata (Vrandečić and Krötzsch, 2014)
and ConceptNet (Speer et al., 2018) knowledge
graphs to address questions within these datasets.

3 Our Approach

Our approach follows a two-stage process to
determine the answer for a given question. Let
A be the set of potential answers, I be the set
of images, i be the input image, Q be the set
of questions, and q be the input question. a∗

represents the predicted answer where a∗ ∈ A,
and θ represents the learnable parameters of the
model. Then the predicted answer

a∗ = argmax
a∈A

P (a|q, i; θ) (1)

Where P (a|q, i; θ) represents the probability
of an answer given a question and the image.
P (a|q, i; θ) is computed in two stages, namely, the
triple filtering stage and the prediction stage.

Triple Filtering Stage: Given a question q and
an image i, we retrieve a set of triples t∗ ⊂ T using
an iterative retrieval mechanism, where T is the
whole set of triples in the knowledge graph.

t∗ =
⋃
t∈T

(t|(P (t|q, i; θr) >= λ)) (2)

here, θr is the set of learned parameters of the
fact retriever module, and λ is a threshold hyper-
parameter.

We integrate multi-hop triples, where we specifi-
cally focus on utilizing 2-hop triples for contextual
information.

Prediction Stage: Then we compute the prob-



ability of an answer given question, image and
relevant triples as:

P (a|i, q) = P (a|t∗, i, q; θp) (3)

here, θp are the learned parameters of the predic-
tor module and θ = θp ∪ θr

3.1 Triple Filtering Module
In this module, we extract relevant information
from a large-scale knowledge graph to address
questions in KBVQA datasets. It involves two
distinct steps:

3.1.1 Triples Relevant to Entities in Image
Our initial step involves extracting image-relevant
triples from a vast knowledge graph, effectively
reducing dataset size by eliminating unnecessary
information. In KVQA and CRIC-VQA, labels
representing named entities or object names in the
images are available within the dataset, enabling
the extraction of relevant triples by identifying all
triples with head or tail entities corresponding to
these labels. However, in datasets like FVQA lack-
ing inherent labels, we utilize an alternative method
detailed in Section 5 to extract relevant triples.

3.1.2 Triples Relevant to Entities in Question
From the refined subset of triples obtained from
the first step, the module further refines the triple
selection by filtering on the question.

In our approach, inspired by prior work (Wang
et al., 2014; Ma et al., 2019; Nayyeri et al., 2023),
we leverage embedding similarities to find relevant
triples. Preceding triple embedding computation,
we substitute all named entities with a <MASK>
token. This substitution ensures the model priori-
tizes predicates over named entities, mitigating the
extraction of irrelevant triples. For example, in a
query like ’Who is to the right of R.Madhavan?’,
employing <MASK> prevents irrelevant triples like
(R.Madhavan, spouse, Sarita Birje) from being ex-
tracted to answer the question.

Number of triples 1 3 5 7 9
Accuracy 68.95% 73.42% 82.7% 82.6% 80.20%

Table 1: Exact-match scores when fixed numbers of
triples are provided as context for the KVQA dataset.

In contrast to prior studies, which provided a
fixed number of similar triples for answer predic-
tion, our approach introduces a dynamic triplet
filtering method. We offer the model a variable

number of triples based on a similarity threshold
criterion. We include triples with similarity scores
equal to or greater than the specified threshold. Af-
ter observation, we found that a threshold of 0.8 ef-
fectively captures nearly all relevant triples needed
to answer the given questions.

The outcomes of the above approaches are pre-
sented in Section 4.

3.2 Prediction Module
To predict the answer based on an image, ques-
tion, and triples extracted from the triple filtering
module, we employ a transformer encoder-decoder
model known as OFA (Wang et al., 2022). The
complete architecture is depicted in Figure 2, of-
fering a comprehensive overview of our approach.
Due to space constraints, we have given the details
of the OFA model in Appendix I.

Algorithm 1 outlines the high-level process of
retrieving relevant triples and making answer pre-
dictions as shown in Appendix E.

4 Experimental Setup & Results

In this section, we explain the results of KVQA
and CRIC-VQA datasets.

4.1 Results on KVQA dataset
Table 2 displays the results on the KVQA dataset.
Overall, our model exhibits superior performance
compared to baseline models and surpasses them
in the majority of categories. The KVQA dataset
includes 12 classes. However, prior research only
made comparisons across 9 classes. Therefore, we
also present our results for these 9 classes for a fair
comparison. Our model achieves an average score
of 85.19% on the KVQA dataset which is 4.12%
better than the SOTA model POP-VQA. We have
also included the results for all 12 classes in the
Appendix B. However, we do encounter a major
shortfall in the multi-entity class, where our perfor-
mance is 6% lower than the current SOTA model,
POP-VQA. We attribute this performance gap to
the fact that the POP-VQA model is specifically
trained for single-hop question-answering contexts.
At the same time, our approach incorporates multi-
hop triples, potentially introducing additional noise
that could affect prediction accuracy.

Previous approaches mainly rely on a fixed num-
ber of the most similar triples as context for pre-
dictions, our approach employs dynamic filtering,
enhancing the model’s reasoning capabilities, as
shown in Table 3.



OFA(Ours)
Types of Questions MEMNET UNITIER POP-VQA Single-Hop Multi-Hop

1-Hop 61.00% 65.70% 89.80% 84.25% 86.04%
Boolean 75.10% 94.60% 95.70% 96.89% 97.17%
Comparison 50.50% 90.40% 89.60% 90.82% 90.15%
Counting 49.50% 79.40% 73.20% 90.08% 90.32%
Intersection 72.50% 79.40% 72.30% 87.07% 89.03%
Multi-Entity 43.50% 77.10% 94.90% 84.01% 88.53%
Multi-Relation 45.20% 75.20% 93.27% 90.10% 90.77%
Spatial 48.10% 21.20% 83.89% 92.70% 94.50%
Subtraction 40.50% 34.40% 37.00% 32.50% 40.20%

Average Scores 53.98% 68.60% 81.07% 83.15% 85.19%

Table 2: Results on KVQA (Shah et al., 2019). Exact match scores for various question types. These scores are
obtained in a setting where triples are filtered based on both the questions and the images, and the number of triples
varies according to a similarity threshold. We show a comparison of our results with the performance of previous
baseline models, MEMNET (Tai et al., 2017), UNITIER (Chen et al., 2020) and POP-VQA (Sahu et al., 2024), on
the KVQA test set. Bold and underline indicate the best and second-best scores. Overall our model outperforms the
baseline across the test set and most of the classes.

4.1.1 Ablation Results

We demonstrate the efficacy of our dynamic filter-
ing method across various settings. Typically, in-
puts consist of Image Features, Questions, Named
Entities, and Context, separated by <SEP> tokens
and fed into the transformer encoder. Answers are
generated by the transformer decoder. The context
is structured as a sequence of triples, labelled as
triple1 <SEP> triple2 <SEP> triple3... <SEP>
triplen, with triples are in the form (head, relation,
tail). These settings include:

1. No External Knowledge (Table 3, Row 1): In
this setting, we provided image features and
questions without any context.

2. Triples Related to Images (Table 3, Row 2):
Here, we included all triples associated with
named entities in the image.

3. Triple Filtering Based on Questions:
In this context, there exist two configurations,
Fixed Number of Triples (Table 3, Row
4&6): We choose a fixed number of top-5
triples with the highest similarity scores.
While we experimented by varying numbers
of triples, as depicted in Table 1, we observed
that providing top-5 triples as context yielded
the highest accuracy.
Dynamic Number of Triples with Similar-
ity Threshold (Table 3, Row 3&5): We se-
lected all triples with a similarity greater than
or equal to 0.8.

For comparison with baselines on the KVQA

dataset, we conducted evaluations on the OFA large
model, utilizing a dynamic number of multi-hop
triples to determine accuracy across various ques-
tion classes.

Models Base Large

OFA+Image 62.70% 76.70%
OFA+Image+All Triples 72.00% 73.67%
OFA+Image+Filtered Triples(Dynamic)
(Single-Hop)

83.65% 85.35%

OFA+Image+Filtered Triples(Top-5)
(Single-Hop)

82.45% 83.20%

OFA+Image+Filtered Triples(Dynamic)
(Multi-Hop)

85.15% 87.55%

OFA+Image+Filtered Triples(Top-5)
(Multi-Hop)

83.57% 82.70%

Table 3: Ablation Results on the KVQA Dataset.
All Triples (Row 2) refers to image-only triple filtering,
Filtered Triples involve filtering based on both question
and image. In the second approach, two settings are
considered: 1) Fixed triples with Top-5 context and
2) Dynamic triples with a similarity threshold. Bold
indicates best scores.

4.2 Results on CRIC-VQA dataset

Table 4 presents the results obtained on the CRIC-
VQA dataset, which features factual questions
requiring commonsense reasoning. Due to the
dataset’s is not open source, there has been lim-
ited prior research. In our study, we compared
our method with nine baseline models outlined in
(Gao et al., 2023). Our approach achieves an ac-
curacy of 85.80%, surpassing the SOTA model



Models Accuracy

Q-Only GRU 55.18%
Q-Only-BERT 59.03%
SAN 63.98%
Bottom-Up+latt 62.39%
MAC-CS 69.65%
NMN-CS 68.96%
Memory-VQA+latt 66.93%
VILBERT+latt 77.54%
VILBERT+ERNIE+latt 79.85%

Ours

OFA Base (Fixed) 76.17%
OFA Large (Fixed) 79.28%
OFA Base (Dynamic) 81.85%
OFA Large (Dynamic) 85.80%

Table 4: Results on CRIC-VQA (Gao et al., 2021).
Exact match scores for various baselines as well as our
model. Fixed denotes fixed number of triples with Top-
5 context, and dynamic denotes variable triples with a
similarity threshold.

VILBERT+ERNIE+latt by 5.95%. As the num-
ber of baselines is high, we explain each in the
Appendix G.

The CRIC-VQA dataset possesses a relatively
small knowledge base, containing approximately
3,400 triples. To demonstrate the effectiveness of
our method, we expanded the knowledge base us-
ing ConceptNet. Our augmentation involved incor-
porating all triples related to the objects depicted
in the images, ensuring alignment with either the
head or tail entity corresponding to the object la-
bel. Consequently, we augmented the knowledge
base to a substantial 99,586 triples. This significant
increase presents challenges in extracting relevant
knowledge for question-answering tasks. Given the
dataset’s size and computational constraints, our
experiments primarily focused on filtering context
based on both images and questions.

Due to space constraints, training details are
present in Appendix A.

5 Generalisation Capability

We demonstrate our model’s generalization capabil-
ity by fine-tuning it on the FVQA dataset following
pretraining on the KVQA dataset. The primary
challenge with the FVQA dataset is the absence of
object labels within the dataset itself. So extracting
image-relevant triples directly from the knowledge
graph by matching the head or tail entity is not
possible. We fine-tuned the CLIP model (Radford
et al., 2021) to get image-relevant triples. We have

Models Accuracy

Human 77.99%
FVQA (Wang et al., 2018) 56.91%
ZS-FVQA (Chen et al., 2021) 58.27%
FVQA (Ensemble) (Wang et al., 2018) 58.76%
MM-Reasoner (Ensemble) (Khademi et al., 2023) 61.10%

Ours

OFA Base(Ours) 54.00%
OFA Large(Ours) 65.28%

Table 5: Results on FVQA. Exact match scores for var-
ious baselines as well as our model. Utilized pre-trained
model on KVQA dataset under dynamic multi-hop set-
ting (Table 3). The inference is done while providing
the dynamic number of triples as context.

included details of fine-tuning the CLIP model in
Appendix D. To find image-relevant triples we cal-
culate the CLIP embedding (Radford et al., 2021)
for each triple. To ensure we extract relevant triples
for small objects in the image, we divide the im-
age into four equal-sized patches and compute the
CLIP embedding for each patch. When examining
the entire image without dividing it into patches,
important details related to small objects (such as
the flower vase) as shown in Figure 3 might be over-
looked. Cosine similarity between patch embed-
dings and all triples is calculated, selecting those
with a similarity above 0.8 for each patch. For ex-
tracting the triples relevant to the question we use
the same approach as explained in Section 3.1.2.
Our approach achieves an accuracy of 65.28%,
surpassing the SOTA by 4.28%. In Table 5, we
compare our work with previous baselines, partic-
ularly those that do not consider named entities
when extracting relevant triples from the knowl-
edge base. This improvement is attributed to our
model’s ability to eliminate irrelevant noise intro-
duced by external context, unlike the SOTA model
MM-Reasoner, which integrates context from di-
verse sources such as image captions, GPT4 and
many more.
Ablation Results : We explore various settings
to demonstrate the effectiveness of incorporating
a dynamic number of triples during pretraining
or fine-tuning, as depicted in Table 6. The table
showcases results with and without fine-tuning the
FVQA dataset, presenting different contextual in-
formation during these processes. Notably, we find
that utilizing a dynamic number of triples leads
to a 12% performance improvement compared to
a fixed number. We also include results without
image segmentation into patches and results ob-



Figure 3: Splitting the image into four patches to extract
relevant triples.

tained by identifying triples relevant to objects in
the image. For this, we utilize the object detection
model (Wu et al., 2019) to obtain bounding boxes
for objects and extract the most relevant triples for
each box. For a comprehensive understanding of
these approaches, including detailed results, please
refer to Appendix C. Despite the distinct domains
between the fine-tuning dataset (FVQA) and the
pretraining dataset (KVQA), our model exhibits
strong performance and generalizability across dif-
ferent domains.

Context-Type
Models Pre-training Inference ∼ FT FT

Base fixed fixed 20.35% 43.00%
Base fixed dynamic 21.90% 30.00%
Large fixed fixed 36.48% 39.00%
Large fixed dynamic 38.70% 50.00%
Base dynamic fixed 34.50% 41.51%
Base dynamic dynamic 40.14% 54.00%
Large dynamic fixed 43.50% 58.00%
Large dynamic dynamic 47.00% 65.28%

Table 6: Ablation results for FVQA dataset: Exact
match scores comparing fine-tuned (FT) and non-fine-
tuned (∼FT) models, pre-trained on the KVQA dataset.
The pre-training context type specifies how the model
was trained on the KVQA dataset, while the inference
context type indicates the settings for fine-tuning and
inference on the FVQA dataset.

6 Relevance of Knowledge in the Context
of MLLMs

Given the extensive training of MLLMs on vast
datasets, it’s natural to assume that external knowl-
edge might not be essential for using them in tasks
like KB-VQA. Recently, there have been extensive

discussions about whether Multimodal Large Lan-
guage Models (MLLMs), trained on large datasets,
can answer KB-VQA questions based solely on
their internal knowledge or if external informa-
tion is necessary. In this section, we illustrate that
relying solely on the implicit knowledge within
MLLMs is insufficient for addressing such ques-
tions. Additionally, we’ll demonstrate the effective-
ness of our knowledge retrieval method by evalu-
ating its performance with a contemporary vision
language model.

6.1 Zero-shot Evaluation on the LLAVA
model

We conducted experiments with the MLLM llava-
v1.6-vicuna-13b1, prompting it to generate re-
sponses to zero-shot image prompts under two con-
ditions: one without external knowledge and the
other with external knowledge obtained through
our dynamic triple retrieval module. The prompts
for both conditions are detailed in Appendix F. For

Dataset Without External Knowledge With External Knowledge

KVQA 55.20% 64.50%
CRIC-VQA 58.60% 69.40%

Table 7: Zero-shot results on LLAVA model: Exact
Match scores achieved by the llava-v1.6-vicuna-13b
model. The results are reported for two settings: (1)
without providing any prior knowledge and (2) with the
inclusion of knowledge in the form of triples, alongside
questions and named entities found in the images.

evaluation, we computed exact match scores by
comparing generated answers with correct ones.
To determine whether discrepancies arose from the
model’s output or it is exact match metric issues,
we performed a qualitative analysis on 200 incor-
rect samples. Additional information regarding this
is provided in Appendix H.
The results of the above approach are shown in
Table 7. We can observe incorporating explicit
external knowledge increased accuracy by approxi-
mately 10.05%. The significant increase in accu-
racy demonstrates how even large language models
benefit from incorporating external knowledge.

6.2 Finetuning LLAVA on KVQA dataset

Here we demonstrate the effectiveness of our ap-
proach while finetuning LLAVA for the KB-VQA
task. We fine-tuned LLAVA in three different set-
tings:

1https://huggingface.co/liuhaotian/llava-v1.6-vicuna-13b



1. Without Knowledge: Here no context is pro-
vided to answer the question.

2. With Fixed Knowledge: Here top-5 most
similar triples are provided as context to an-
swer the question.

3. With Dynamic Knowledge: Here triples ob-
tained from the dynamic triple retrieval mod-
ule are provided to answer the question.

The results are shown in Table 8. There is a sub-
stantial increase in accuracy 15.7%, on the KVQA
test set when contextual information is integrated
while fine tuning. This accuracy gap further widens
to 20.2% when the triples are filtered using our dy-
namic filtering approach. These results underscore
the effectiveness of our approach, even with recent
models, significantly enhancing prediction accu-
racy.

Technique Accuracy

LLAVA+Labels 72.40%
LLAVA+Labels+Knowledge (fixed) 88.10%
LLAVA+Labels+Knowledge (dynamic) 92.60%

Table 8: Results of LLAVA on KVQA Dataset: Exact
Match scores achieved by the LLAVA model after fine-
tuning on the KVQA Dataset for the KB-VQA task.
In this context, labels refer to named entities detected
within the images, while knowledge indicates external
information supplied either statically or dynamically.

7 Qualitative Analysis

We’ll illustrate how integrating knowledge boosts
the OFA model’s predictive power while efficiently
filtering noise enhances its reasoning capability.
We choose some samples as shown in Table 9. The
first row shows that giving extra information helps
the model make correct predictions for simple ques-
tions with straightforward answers. In this case, the
correct answer is obtained whether or not we filter
the knowledge triples. Rows 2 and 3 demonstrate
that providing all triples filtered based on image
and not question introduces irrelevant knowledge
(noise), resulting in inaccurate predictions. How-
ever, filtering triples based on questions leads to
correct answers. These complex questions include
a single-hop subtraction (Row 2) and a multi-hop
boolean query (Row 3), requiring noise removal
for accurate predictions.

In the final example, regardless of whether
knowledge triples are supplied or not, the model
produces incorrect answers. This question falls un-
der the spatial and multi-hop categories, requiring

Image Question Truth
Value

No
Triples

All
Triples

Filtered
Triples

Is the person
in the image a
politician?

No Yes No No

For how many
years did the per-
son in the image
live?

83 72 82 83

Were all the peo-
ple in the image
born in the same
country?

No Yes Yes No

Who among the
people in the im-
age ever married
Vladimir Soshal-
sky?

Person
on
the
left

Person
on
the
right

Person
on
the
right

Person
on
the
right

Table 9: Qualitative analysis, which presents instances
from the dataset and their answer predictions with and
without the presence of triples in the input.

the model to make inferences based on both image
features and external knowledge. One possible ex-
planation for the inaccurate predictions could be
the model’s insufficient training to a broad range
of questions within these complex categories, hin-
dering its ability to reason effectively in such sce-
narios. Due to space constraints, we provide these
and some more examples in Table 16.

8 Conclusion

We presented a novel approach for KBVQA, uti-
lizing a dynamic triple-filtering module to extract
external context from knowledge graphs. Our
method outperforms the SOTA on three different
KBVQA datasets, achieving an average improve-
ment of 4.75%. We demonstrated that providing
the model with a varying number of triples during
pre-training or fine-tuning enhances its reasoning
capabilities compared to a fixed number of triples.
We also showcased the generalization capability of
our approach by achieving SOTA performance on a
small dataset using a model trained on a completely
different domain. Furthermore, we demonstrated
that large MLLMs also require external knowledge
for accurate responses. Finally, we also demon-
strated the effectiveness of our approach on the
latest MLLM LLAVA, emphasizing that providing
a dynamic number of triples improves accuracy
by 20% as compared to static ones. The key in-
sight is that dynamically determining the number
of relevant triples in the context eliminates noise,
resulting in more precise predictions. We also dis-
cuss some future explorations in Appendix K.
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A Training Details

The experiments encompassed both OFA Base and
Large models, maintaining image resolutions at
480× 480 and 640× 640 for Base and Large mod-
els, respectively. The dropout rate was set at 0.1.
Adam Optimizer was employed with beta values
of 0.9 and 0.999, epsilon set to 1 × 10−08, and
a warm-up ratio of 0.06. An initial learning rate
of 1 × 10−5 with polynomial decay was utilized.
During test inference, a beam size of 10 and a tem-
perature of 0.98 were applied. T5-Base (Raffel
et al., 2023) model generated embeddings for ques-
tions and triples in the triple filtering process. The
training was conducted on Nvidia RTX A6000 2,
with each iteration taking approximately 8 and 12
hours for the Base and Large models, respectively.
We utilized the LLAVA model for fine-tuning the
KVQA dataset for the KB-VQA task. Fine-tuning
was conducted with a learning rate of 2 × 10−5

over 2 epochs, with a warmup ratio set to 0.03. All
experiments were performed on three Nvidia RTX
A6000 GPUs, with each iteration requiring approx-
imately 18 hours to obtain conclusive results.
The number of parameters used and the number of
encoder-decoder layers for both the OFA-Base and
OFA-Large models are given in Table 11.

B Additional Results for KVQA Dataset

In Section 4, we demonstrated the results for 9
classes on the KVQA dataset, aligning with the
prior state-of-the-art model, POP-VQA (Sahu et al.,
2024). However, in this Section, we extend our
analysis to cover all 13 classes within the KVQA
dataset, as detailed in Table 10. Additionally,
we include the results obtained from the MEM-
NET (Tai et al., 2017) and UNITIER (Chen et al.,
2020) models for a fair comparison.

We also present results for the other two scenar-
ios. First, no triples are given as context, second
when we include all the triples associated with the
image, without any filtering based on the question
as explained in Section A. The results for these
approaches can be found in Table 12.

In our observations, it becomes evident that
including all triples results increase in accuracy
across most categories when compared to not in-
cluding any triples at all. However, in more com-
plex categories such as subtraction, the accuracy

2https://www.nvidia.com/en-in/design-visualization/rtx-
a6000/

improvement is not as significant, mainly because
accurate predictions demand more refined triples.

An interesting observation occurs when we look
at the spatial category. When we provide all triples,
accuracy decreases, indicating that in the spatial
category, the inclusion of triples is unnecessary.
This result shows that our dynamic triple extrac-
tion module works effectively, especially in spatial
questions, where it rarely provides external triples.
This emphasizes that the module can smartly adjust
to meet the specific needs of each question.
We discuss this in Section 4.1

C Additional Results for FVQA Dataset

In Section 5, due to the absence of labels in the
dataset, we utilized the CLIP model to extract rel-
evant triples from the image. To achieve this, we
divided the image into four patches, computing the
most relevant triples for each patch. In this Section,
we present results for two additional settings to
ensure transparency,

Triples relevant to Full Image: In this config-
uration, we refrain from dividing the image into
patches. Instead, we compute relevant triples for
the entire image. These results are summarized in
Table 13. The problem with this approach is that
when computing the cosine similarity of the CLIP
embedding of the entire image and triples, triples
relevant to smaller objects might not be captured.
For instance, as depicted in Fig 3, triples related to
the flower vase could be overlooked.

Triples relevant to objects in the image: For
extracting the triples relevant to objects in the im-
age we use the following approach:

• Bounding Box Extraction: We identify bound-
ing boxes for each object present in the image.
These bounding boxes define the spatial re-
gions corresponding to the objects.

• Detectron Model: To achieve this, we utilize
the Detectron model, which detects the precise
coordinates of the bounding boxes.

• Image Patch Extraction: Once we have the
bounding box coordinates, we extract image
patches corresponding to those regions.

• Triple Extraction: For each image patch, we
find the relevant triples associated with the
objects within that patch.

The results are demonstrated in table 14.



OFA(Ours)
Types of Questions MEMNET UNITIER Single-Hop Multi-Hop

1-Hop 61.00% 65.70% 84.25% 86.04%
1-Hop Counting - 78.0% 88.80% 90.74%
1-Hop Subtraction - 28.60% 31.25% 37.89%
Multi-Hop 53.20% 87.90% 60.80% 90.40%
Boolean 75.10% 94.60% 96.89% 97.17%
Comparison 50.50% 90.40% 90.82% 90.15%
Counting 49.50% 79.40% 90.08% 90.32%
Intersection 72.50% 79.40% 87.07% 89.03%
Multi-Entity 43.50% 77.10% 84.01% 88.53%
Multi-Relation 45.20% 75.20% 90.10% 90.77%
Spatial 48.10% 21.20% 92.70% 94.50%
Subtraction 40.50% 34.40% 32.50% 40.20%

Table 10: The table displays the results of all 13 classes on the KVQA dataset. These scores are obtained in a setting
where triples are filtered based on both the questions and the images, and the number of triples varies according to a
similarity threshold.

Model #Param #Enc.Layers #Dec.Layers
OFA-
Base

182M 6 6

OFA-
Large

472M 12 12

Table 11: The table displays information regarding the
parameter count, as well as the number of encoder and
decoder layers for both the OFA Base and OFA Large
models.

In the above two approaches, we filtered the
triples based on the image, for further filtering
based on a question we used the same method as
explained in Section 3.1.2.
For prediction we employed a pre-trained model on
the KVQA dataset, specifically focusing on the best
setting where the model was trained with multi-hop
dynamic triples as context. The fine-tuning and in-
ference process also considers a dynamic number
of triples as context. We have provided results for
both scenarios: without and with fine-tuning on the
FVQA dataset, as elaborated in Section 5.

D Training CLIP Model

CLIP model (Radford et al., 2021) is trained for
image-text similarity and not for image-triples sim-
ilarity. Therefore, we train the CLIP model to ex-
tract triples that are relevant to the image. We
denote the set of triples from the knowledge graph
as tk, and the reference image as I. To identify the

OFA(Ours)
Types of Questions With No Triples With All Triples

1-Hop 72.20% 76.81%
1-Hop Counting 75.95% 76.00%
1-Hop Subtraction 29.80% 30.06%
Boolean 86.10% 94.40%
Comparison 83.59% 88.77%
Counting 81.10% 81.30%
Intersection 78.19% 76.40%
Multi-Entity 71.10% 76.32%
Multi-Hop 74.22% 81.70%
Multi-Relation 72.12% 83.92%
Spatial 89.02% 83.43%
Subtraction 4.50% 7.20%

Table 12: The table presents the performance of various
question types in two distinct scenarios: one without the
inclusion of any triples as context (referred to as "With
No Triples"), and the other with all the relevant triples
filtered by images, while not applying any filtering on
the questions (referred to as "With All Triples").

triples that are relevant to the reference image, we
minimise the following objective,

− log
exp(s(I, t

(+)
k )eτ )

exp(s(I, t
(+)
k )eτ ) +

∑
j exp(s(I, t

(j)
k )eτ )

We implement s(I, t(+)
k ) using CLIP as:

s(I, t
(+)
k ) = cos(CLIPV (I), CLIPT (tk))

Here t
(+)
k denotes the triple relevant to the im-

age, t(j)k denotes the irrelevant triples for an im-
age and τ denotes temperature parameter which



Model Without-fine-tuning With-fine-tuning
OFA-Base 33.28 39.94
OFA-Large 34.84 43.20

Table 13: Results on FVQA dataset. Exact match
score with and without fine-tuning on the FVQA dataset.
Triples relevant to images are computed by considering
the whole image without dividing it into patches.

Model Without-fine-tuning With-fine-tuning
OFA-Base 33.75 44.62
OFA-Large 38.42 46.71

Table 14: Results on FVQA dataset. Exact match
score with and without fine-tuning on the FVQA dataset.
Triples relevant to images are computed by considering
each object in the image.

controls the range of the logits in the softmax as ex-
plained in (Radford et al., 2021). Since there isn’t
a specific dataset available for images and their
relevant triples, we utilize the ViQuae Wikipedia
Corpus (Lerner et al., 2022) to acquire the images
and their corresponding triples. We have chosen
2000 instances that include images and their related
triples, which were extracted using the Wikidata
knowledge graph (Vrandečić and Krötzsch, 2014).
We train the CLIP model using the above objective
to get relevant triples.
We discuss this in Section 5

E Algorithm

The algorithm is discussed in 1

F Prompting on LLAVA Model

In this segment, we’ll furnish the prompt utilized to
find responses from the llava-hf/llava-v1.6-mistral-
7b-hf model for image-related questions. To ensure
fair comparison based on exact match scores, we
want concise answers to avoid any extraneous in-
formation. The provided prompt generates concise
responses, minimizing any potential noise.
Prompt for evaluation without giving any knowl-
edge
Please answer concisely in one or two words:
Question: <question>
Named Entities: <named entities>
Prompt for evaluation when giving knowledge
Please answer the question concisely in one or two
words. We also provide Named Entities and knowl-
edge triples separated by <sep> token for your as-
sistance:
Question: <question>

Algorithm 1 Retrieving context for k-hop Ques-
tion Answering and feeding the Question, Image,
and Context into a Transformer Encoder-Decoder
model to predict the desired answer.
Require:
1: Q0 → Input Question
2: T → Triples from Knowledge Graph
3: k → Number of Hops
4: I → Image
5: E → Named Entities

Ensure:
6: Triple Filtering (By Images)
7: for Count in k do
8: for (Head,Relation, Tail) in Knowledge Graph do
9: if Head or Tail in E then

10: Relevant Triples += (Head,Relation, Tail)
11: end if
12: end for
13: end for
14: Triple Filtering
15: for Triple in Relevant Triples do
16: T_Embed = T5 Base(Triple)
17: Q_Embed = T5 Base(Q0)
18: if Similarity(T_Embed, Q_Embed) ≥ λ then
19: Context += Triple
20: end if
21: end for
22: Prediction Module
23: Answer = OFA_Model(Image < SEP > Question <

SEP > NamedEntities < SEP > Context)

Named Entities: <named entities>
Triples: <triples string>
We discuss this in Section 6

G Baselines on CRIC-VQA dataset

In this section, we explain each baseline in brief as
depicted in Table 4.
Q-Only GRU - Q-Only model only takes the GRU
question features as input.
Q-Only BERT - Q-Only model only takes the
BERT question features as input.
SF - SF first uses visual concepts extracted by ob-
ject, scene, action predictors, CNN image feature,
and LSTM question feature to retrieve the Top-1
related knowledge item, then uses the question fea-
ture and retrieved knowledge item to predict the
answer.
Bottom-Up+latt - Bottom-Up is a traditional VQA
model emphasizing object-level reasoning with soft
attention to object regions. This baseline enhances
Bottom-Up by incorporating a binary cross-entropy
loss on attention scores to guide the model to focus
on the correct region when combining attended im-
age and question features for generating the final
answer.
MAC-CS - MAC is a leading modular VQA model



designed for CLEVR and GQA. It breaks down
questions into attention-based reasoning steps. The
expanded MAC’s capabilities to incorporate access
to knowledge items resulted in MAC-CS, which
focuses on commonsense reasoning.
NMN-CS - The Neural Modular Network (NMN)
is a distinct VQA model. However, its original iter-
ations are not directly applicable to commonsense
questions. To address this limitation, visual com-
monsense reasoning modules have been integrated,
resulting in NMN-CS.
Memory-VQA+latt - This memory network oper-
ates by encoding input materials such as knowledge
items and the image in the CRIC as memories. It
utilizes the question to initiate an iterative attention
process, enabling the model to retrieve relevant in-
formation for answering the question. In contrast
to Memory-VQA, this baseline further incorporates
a cross-entropy loss on attention scores.
VILBERT+ERNIE+latt - The model consists of
three modules: ViLBERT for image and question
feature extraction, ERNIE for candidate knowledge
item feature extraction, and an attention module
for predicting the answer by using pooled features
from both transformers to locate the target image
region.
We discuss this in Section 4.2

H Qualitative Analysis of LLAVA
Generated Answers

We analyzed LLAVA-generated answers on the
KVQA dataset in a zero-shot scenario. The pri-
mary objective was to confirm whether the model’s
incorrect answers were a result of its output or
an issue with the exact match metric. To achieve
this, we sampled a total of random 200 instances
containing questions of all 13 classes where the
LLAVA model provided incorrect answers. We de-
termined whether the incorrect answers were due to
the model itself or a metric-related problem. This
evaluation yielded counts for both scenarios: in-
stances where the model’s answers were incorrect
and instances where the issue lay with the metric.
The results of the evaluation are shown in Table 15.
The primary issue arises with spatial inquiries

Model mispredictions Metric problem

182 18

Table 15: Human Evaluation results for the LLAVA
Model Output

where the correct response is "Person on the Left",
or "Person on the Right", or "Person on the Center"
yet the model tends to provide named entities of
individuals instead.
For example:
Question: Who among the people in the image
lived longest?
Truth Answer: Person in the left
Predicted Answer: Lili Damita
For such questions, given the limited options of
only three potential answers, we adjust the prompt
as:
Updated prompt for Spatial Class:
Please answer concisely in one or two words:
Question: <question>
Named Entities: <named entities>
Don’t give named entities in the answer instead
provide the answer in form Person in Center, Per-
son in Left, Person in Right.
The outcomes presented in Table 7 account for this
scenario to guarantee a fair assessment process.
Regarding the CRIC-VQA dataset, which focuses
on objects and typically elicits responses of one
or two words like "Desk", "Water" etc there is no
issue with metric and the model generates wrong
answers.
We discuss this in Section 4.2

I OFA Model

We leverage the power of Unified Vision-Language
(VL) modelling (Wang et al., 2022), which has
demonstrated significant potential across various
VL tasks. For our VQA tasks, we adopt a vision
language transformer encoder-decoder model OFA
Base and OFA Large architecture. The OFA model
is designed to handle diverse tasks and modalities,
seamlessly integrating vision-only, language-only,
and vision-language tasks within a sequence-to-
sequence learning framework.

Our input comprises ResNet152 (He et al., 2015)
features extracted from the image, followed by
the question and context, both tokenized using
byte-pair encoding (BPE) (Bostrom and Durrett,
2020). We employ a unified vocabulary that en-
compasses tokens from both visual and linguistic
domains. Transformers serve as the core encoders
and decoders, treating the vision-language task as
a sequence-to-sequence problem.



J More Examples

Refer to Table 16 for the examples used in Sec-
tion 7, as well as some additional examples that
demonstrate the effectiveness of our approach. Ta-
ble 16 includes certain questions that do not neces-
sitate any knowledge (as seen in Row 7). These can
be addressed solely based on image features, with-
out the need for external knowledge. Supplying
triples in these instances results in incorrect pre-
dictions. These questions predominantly belong to
the spatial category. Additionally, some questions
are straightforward and do not require knowledge
filtering (as seen in Row 10). Providing all triples
without filtering based on questions in these cases
would also yield correct answers, eliminating the
need for filtering. These questions are primarily
1-hop questions. However, for complex categories
such as 1-hop subtraction, multi-hop, etc., a robust
reasoning capability is required. Therefore, supply-
ing filtered knowledge is essential to prevent any
confusion that could lead to incorrect predictions.
We discuss this in Section 7

K Future Work

Several potential avenues for future exploration are
available. Presently, the fact retriever and answer
prediction module undergo separate training pro-
cesses. Exploring an end-to-end trainable model
that seamlessly integrates both components rep-
resents an intriguing direction to explore. The
optimal number of triplets for context was de-
termined through experimentation, incorporating
heuristics for similarity values, among other factors.
However, enhancing performance can be achieved
through the model’s automatic learning of this ideal
number of triplets based on the characteristics of
the question, image, etc. Exploring additional tech-
niques to enhance the model’s generalization across
different domains is another compelling direction
to investigate. Creating an explanatory model for
the retrieved context would prove beneficial for nu-
merous practical applications. We anticipate that
the numerous avenues for future work, along with
our presented results, will inspire further explo-
ration and advancements in the KBVQA domain.



Question True Answer No Triples All Triples Filtered Triples Image

Is the person in
the image a politi-
cian?

No Yes No No

In which country
was the person in
the image born?

Slovakia Hungary Slovakia Slovakia

For how many
years did the
person in the
image live?

83 72 82 83

Were all the peo-
ple in the image
born in the same
country?

No Yes Yes No

Who among the
people in the im-
age ever married
Vladimir Soshal-
sky?

Person on the left Person on the
right

Person on the
right Person on the right

For how many
years did the
person in the
image live?

79 86 85 79

Do all the people
in the image have
a common occupa-
tion?

No Yes Yes No

Who is to the right
of Jorge Toriello
Garrido?

Jacobo Árbenz Jacobo Árbenz jajaxedlol Jacobo Árbenz

In which year did
the person in the
image start profes-
sional activities?

1911 1920 1986 1956

Who among the
people in the im-
age ever married
to Bill Williams?

Person in the right Person in the
left

Person in the
right Person in the right

Table 16: Error analysis table, presents instances from the datasets and their predicted answers in three settings
mainly no triples, all triples and filtered triples.
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