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Abstract

Traditional search methods primarily depend
on string matches, while semantic search tar-
gets concept-based matches by recognizing un-
derlying intents and contextual meanings of
search terms. Semantic search is particularly
beneficial for discovering scholarly publica-
tions where differences in vocabulary between
users’ search terms and document content are
common, often yielding irrelevant search re-
sults. Many scholarly search engines have
adopted knowledge graphs to represent seman-
tic relations between authors, publications, and
research concepts. However, users may face
challenges when navigating these graphical
search interfaces due to the complexity and
volume of data, which impedes their ability to
discover publications effectively. To address
this problem, we developed a conversational
search system for exploring scholarly publica-
tions using a knowledge graph. We outline
the methodical approach for designing and im-
plementing the proposed system, detailing its
architecture and functional components. To as-
sess the system’s effectiveness, we employed
various performance metrics and conducted a
human evaluation with 40 participants, demon-
strating how the conversational interface com-
pares against a graphical interface with tradi-
tional text search. The findings from our evalu-
ation provide practical insights for advancing
the design of conversational search systems.

1 Introduction

Digital publication platforms have greatly ex-
panded the accessibility of scholarly articles, offer-
ing an extensive range of publications that can be
efficiently discovered through integrated search en-
gines. These digital platforms provide researchers
with access to millions of scholarly documents,
encompassing conference papers, journal articles,
workshop proceedings, and book chapters. The
number of scholarly documents is growing expo-
nentially, with estimates suggesting that it doubles

approximately every 15 years (Bornmann et al.,
2021). As the body of literature grows, traditional
keyword-based search methods are becoming less
effective at filtering and ranking relevant docu-
ments. These lexical methods rely heavily on well-
formulated queries and otherwise yield irrelevant
results. Researchers are often hindered by the so-
called vocabulary mismatch problem, which mani-
fests as differences between search terms and the
terminology in the documents (Furnas et al., 1987).
This issue is especially pronounced in open-ended
and exploratory search scenarios, where users navi-
gate unfamiliar information spaces. In such scenar-
ios, users’ incomplete knowledge of certain topics
prevents them from formulating queries to access
the information they need (Schneider et al., 2023a).

Reacting to the challenges posed by the high
volume of scientific output, digital publication plat-
forms have begun to make their search functionali-
ties more intelligent by employing semantic search
methods using natural language processing (NLP).
These methods enable search engines to understand
the context and intent behind user queries. Mov-
ing beyond exact keyword matches to semantic
matches on a conceptual level can help identify rel-
evant articles, even when different terms are used,
thereby aiding users in discovering publications
from subfields they are unfamiliar with. Comple-
menting this, knowledge graphs (KGs) have estab-
lished themselves as a versatile data structure for
representing semantic relationships between inter-
connected entities like institutions, authors, topics,
research fields, and other concepts.

Two popular examples of platforms that have
incorporated KGs are Microsoft Academic (Wang
et al., 2020a) and Semantic Scholar (Kinney et al.,
2023). Microsoft Academic created the Microsoft
Academic Graph, which supports semantic search,
contextual query understanding, and personal rec-
ommendations. Similarly, the Semantic Scholar
platform operates on the Semantic Scholar Aca-



demic Graph with more than 200 million papers.
While these platforms offer a range of graph-based
features and visualizations, they introduce usability
hurdles by rendering graphical search interfaces
more complex. Graphical interfaces can become
less effective for exploratory search because of the
added layers of complexity, causing users to ex-
perience cognitive overload (Sweller, 1988). This
might be exemplified by the decline and eventual
termination of Microsoft Academic in 2021, whose
intricate interface likely has contributed to deter-
ring users (Orduña Malea et al., 2014).

To address the complexity of graphical semantic
search interfaces, we propose developing a conver-
sational interface for discovering scholarly publi-
cations via dialogue interactions, leveraging a KG
data structure. The emerging paradigm of conversa-
tional search promises to satisfy information needs
using intuitive information-providing conversations
while avoiding information overload (Radlinski
and Craswell, 2017). Through interactions with
conversational agents, users can resolve ambigui-
ties, refine their queries, narrow down the relevant
search space, and extract novel insights. Our study
aims to provide insights into how conversational
search systems integrated with KGs can enhance
the discovery of publications, thereby improving
navigation and information retrieval in the schol-
arly research landscape. To demonstrate the effec-
tiveness of our developed system, we utilize the
open-source corpus of the ACL Anthology as our
data foundation. The source code, models, datasets,
and questionnaires are made available via a public
GitHub repository.1 Our three main contributions
are as follows: (1) We propose an architecture for
integrating a conversational exploratory search sys-
tem with a scholarly KG. (2) We implement the
system by assembling different task-specific lan-
guage models. (3) We conduct both a model-centric
performance assessment and a human evaluation
of the developed system with 40 participants.

2 Related Work

Conversational search systems are defined as con-
versational interfaces that support acquiring in-
formation through multi-turn dialogues. These
systems progressed significantly in recent years,
largely driven by the rapid adoption of large lan-
guage models (LLMs). A growing body of research
focuses on augmenting conversational search sys-

1Repository: github.com/philotron/CS-Scholarly-KG

tems with LLMs (Schneider et al., 2024c), includ-
ing utterance understanding (Kuhn et al., 2023), di-
alogue management (Friedman et al., 2023), knowl-
edge retrieval (Lewis et al., 2020), and response
generation (Sekulic et al., 2024; Schneider et al.,
2024b). While LLMs hold great potential for con-
versational search systems, they are not without
shortcomings. LLMs can hallucinate or omit cru-
cial information, and their outputs often lack trans-
parency regarding the source of generated content
(Ji et al., 2023). In addition, LLMs are usually
non-deterministic, posing challenges in ensuring
consistent and correct knowledge due to the ran-
domness in their text generation processes.

To mitigate issues of factuality and reliability
in conversational systems and LLMs, researchers
have studied using KGs to ground outputs in verifi-
able data sources. Integrating KGs with dialogue
systems has long been a focus in the literature. KGs
can replace static domain knowledge with dynamic
ontologies and have shown effectiveness in con-
versational question answering (QA) (Christmann
et al., 2019; Schneider et al., 2024a). By navigat-
ing entity nodes and relationships, KGs enhance
conversational context and information exploration.
Numerous studies support the use of KGs for im-
proving utterance understanding, response genera-
tion, and dialogue management (Chen et al., 2019,
2023). While KGs are increasingly being com-
bined with conversational agents in fields such as
healthcare, law, and business, there remains a sig-
nificant gap in their application within the scholarly
domain. Thus far, Meloni et al. (2023b) are the only
ones to propose combining a conversational agent
with the Academia/Industry DynAmics (AIDA) KG
(Angioni et al., 2021). Their AIDA chatbot focuses
on QA by executing database queries to count, list,
compare, or describe scholarly entities (e.g., au-
thors or conferences), thereby offering senior re-
searchers an overview of the research landscape
through bibliometric data (Meloni et al., 2023a).

In contrast, our proposed system supports the
conversational discovery of research articles for
users with vague goals in open-ended search sce-
narios, building on insights from our previous work
(Schneider et al., 2023b). Therefore, unlike the
AIDA chatbot, which primarily assists senior re-
searchers, our proposed system is designed to sup-
port exploratory information search for non-expert
users looking to discover relevant publications on a
given topic without requiring in-depth knowledge.

https://github.com/philotron/CS-Scholarly-KG
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Figure 1: Architectural components of the conversational exploratory search system.

3 Conversational Search System

3.1 System Architecture

The developed dialogue system helps users nar-
row down relevant publications via a three-phase
search process. An overview of the conversation
flow is illustrated in Figure 4 in Appendix A. In the
first phase, the system receives a short description
of a search goal (e.g., “I want to study how peo-
ple express their feelings on social media.”) and
then it assists users by recommending an appropri-
ate NLP research topic to explore (e.g., Emotion
Analysis). Second, users can iteratively choose
thematic clusters of articles within the selected re-
search topic (e.g., Emotion Detection in Social Me-
dia Text). Third, users are presented with a list of
articles at the lowest cluster level, where they can
compare papers based on summarized information
from the abstracts. Finally, users have the option to
either access links to the full texts of the papers or
continue exploring other research topics, clusters,
or articles. In Section 4.1, we will elaborate on the
developed NLP models powering the three-phase
search process through (1) topic classification, (2)
text clustering, as well as (3) text summarization.

Figure 1 illustrates the system architecture,
which is structured into four distinct subsystems.
Each subsystem encompasses multiple components
responsible for typical dialogue system functions.
The front end is a conversational interface imple-
mented as a web application subsystem using the
open-source framework Streamlit.2 It features a
basic chat interface with a text input form and a
scrollbar for the current dialogue history. User
messages entered in the chat interface are sent to a
dialogue system built with RASA, an open-source
machine learning framework.3 RASA supports the

2Streamlit: https://streamlit.io
3RASA: https://rasa.com

development of conversational agents with a nat-
ural language understanding (NLU) pipeline that
recognizes intents and entities from user utterances.
Based on these semantically parsed user utterances,
the agent’s dialogue manager, which takes into ac-
count dialogue states, dialogue policies, and conver-
sation context, predicts the system’s next actions.
Aside from standard actions like producing a sim-
ple response, the agent connects with an action
handler component to implement custom actions.
One custom action is the KG retriever component.
It enables the construction and execution of struc-
tured queries to retrieve data from the scholarly KG,
such as abstracts, thematic clusters, or research top-
ics. It connects with the knowledge base subsys-
tem, which hosts the KG in a Neo4j property graph
database.4 For the query construction, extracted en-
tities from user utterances are matched with those
existing in the KG to fill out template queries.

In addition to the KG, the knowledge base
subsystem hosts the open-source vector database
Weaviate, which performs embedding-based sim-
ilarity search.5 Together with the KG, the vector
database supports the research topic classifier com-
ponent by finding the closest research topics from
user inquiries. Another component that powers
a custom action is the language model accessor,
which provides a connecting endpoint to the gen-
erative language model subsystem. Inside this sub-
system, we host the open-source LLM Zephyr-7B-
Beta (Tunstall et al., 2023). The subsystem offers
two inference endpoints for dynamic prompting.
The endpoints are used to generate names for paper
clusters and summarized paper comparisons.

The described system is deployed on three vir-
tual machines (VMs) in a cloud environment. The
first VM operates the dialogue system that interacts

4Neo4j: https://neo4j.com
5Weaviate: https://weaviate.io

https://streamlit.io/
https://rasa.com/
https://neo4j.com/
https://weaviate.io/


directly with users through the conversational in-
terface. The second VM acts as a database server,
while the third VM, equipped with a GPU (16 GB
memory), hosts the large language model. De-
spite the architecture’s various technical compo-
nents depicted in Figure 1, the conversational in-
terface hides the complexity of the underlying KG,
providing a highly accessible search experience.

3.2 Knowledge Graph and Vector Database

To establish the data foundation for the conversa-
tional search system, we constructed a domain-
specific KG with over 85,000 research articles
sourced from the ACL Anthology.6 A compact
overview of the data schema with entity nodes and
relations is presented in Figure 5 in Appendix A.

Sourcing articles from the ACL Anthology pro-
vided us with detailed metadata on authors, venues,
and publication years that were automatically trans-
formed into nodes and relations of the KG. In ad-
dition, we assigned each article to one or multiple
research topics. To achieve this, we used a previ-
ously established taxonomy of NLP research topics
from Schopf et al. (2023), which is organized as a
two-level hierarchy with main topics and subtopics,
along with topic names and human-written defi-
nitions. This taxonomy includes 12 main topics,
such as Text Generation or Sentiment Analysis, and
a total of 71 subtopics (e.g., Question Generation
or Emotion Analysis). For classifying articles, we
employed two fine-tuned language models for clas-
sifying publications: a SPECTER2-based model
(Singh et al., 2023) for multi-label topic classifi-
cation based on the used NLP taxonomy (Schopf
et al., 2023; Schopf and Matthes, 2024), and a
SciNCL-based model (Ostendorff et al., 2022) to
classify if a publication is a survey paper consoli-
dating information from several other publications.
The taxonomy inside the KG is later applied to
train a classification model that predicts a relevant
NLP subtopic based on a described search goal.
By providing topic definitions and listing related
topics, the conversational agent can guide users
through the NLP taxonomy.

While effective for broad classification, the two-
level NLP taxonomy is not granular enough to
account for thematic differences within a given
subtopic. For example, the subtopic Emotion Anal-
ysis includes over 780 publications, which share
only a few common characteristics. To have a more

6ACL Anthology: https://aclanthology.org

fine-grained filtering mechanism, we clustered pa-
pers based on their title and abstract content (e.g.,
specific techniques, application domains, or bench-
mark datasets). These thematic clusters are pre-
computed and modeled as nodes in the KG. The
clustering and cluster naming methods will be dis-
cussed in more detail in Section 4.1.

In addition to the KG database, we installed a
vector database that supports various embedding
models and similarity metrics, making it ideal for
efficiently ranking semantically similar documents.
We employed the SPECTER2 embedding model
(Singh et al., 2023) for generating vectors from pa-
pers’ titles and abstracts and used them for the men-
tioned research topic classification, mapping NLP
topics from the taxonomy to user requests during
the search dialogue in real-time. A document iden-
tifier in the vector database links these embeddings
to the papers in the KG. As a last construction step,
we further enriched the KG with metadata from
the Semantic Scholar API, including one-sentence
too long; didn’t read (TLDR) summaries, citation
counts, and publication references.

4 Results and Discussion

4.1 Model Training and Evaluation

Research Topic Classification. In the following
sections, we report the results of training and eval-
uating the NLP models that underpin the three-
phase search process of our developed dialogue
system: (1) research topic classification, (2) article
text clustering, and (3) comparative article sum-
marization. The first phase involves classifying an
uttered search goal or problem description into a
fitting NLP research topic. This is especially help-
ful for users in exploratory search settings because
they may not be familiar with all existing fields
of study and struggle to phrase their queries us-
ing the correct terminology. Due to the absence
of datasets that map search goals expressed in lay-
man’s terms to NLP topics, we created a synthetic
multi-class dataset using GPT-3.5-Turbo (version:
0613) (OpenAI, 2022). We prompted the LLM to
generate questions on the 12 main topics in our tax-
onomy using three distinct personas: a computer
science student with only peripheral NLP knowl-
edge, a businessperson with practical experience
of NLP tools but minimal technical expertise, and
a non-technical, non-academic individual whose
technology use is limited to basic tasks. Persona-
specific prompting yielded diverse inquiries in lay-

https://aclanthology.org/


man’s language. For example, the question “How
are computers able to respond when we ask them
questions?” was generated for the topic Natural
Language Interfaces. To account for questions un-
related to NLP, we also generated a set of out-
of-scope questions such as “Who discovered the
laws of thermodynamics?” Following a quality in-
spection of the synthetically produced questions,
we assembled a training dataset of 1601 examples,
consisting of 120 questions for each of the 12 topics
and 161 general questions. We also derived a test
dataset containing 364 examples with a balanced
class distribution similar to the training dataset.

In our experiments, we evaluated three classifica-
tion approaches: vector similarity search, prompt-
ing a LLM (GPT-3.5-Turbo), and few-shot fine-
tuning of a transformer model with the SetFit
framework (Tunstall et al., 2022). Concerning
the vector search approach with the SPECTER2
model, we measured the cosine similarity to com-
pare vectors of embedded user queries with paper
embeddings in our vector database to retrieve the
100 most similar papers. We found that a simi-
larity threshold below 77% effectively filters out
the non-NLP-related questions. Using the schol-
arly KG, we aggregated linked topics for these
papers and predicted the most frequent topic as
output class. For the LLM approach, we crafted
a zero-shot prompt for GPT-3.5-Turbo, provided
in Appendix A, which instructed the LLM to clas-
sify the appropriate topic from the list of 12 main
topics or answer with “None” if the question was
not related to NLP. Moreover, we tested the SetFit
approach for fine-tuning the sentence transformer
model multi-qa-MiniLM-L6-cos-v1 (Wang et al.,
2020b). We trained for 3 epochs, a batch size of 16,
and 30 SetFit iterations for contrastive learning.

Figure 2 illustrates the classification perfor-
mance for each approach. While vector search
achieved a macro F1-score below 0.50., GPT-3.5-
Turbo achieved a score near 0.75; however, it ex-
hibited a bias toward particular topics, leading to
overprediction and incorrectly classifying general
questions as NLP topics. The SetFit model demon-
strated superior performance over the two other
approaches with a score of 0.95. Consequently, we
implemented the topic classifier component with
this fine-tuned model for main topic classification
in combination with similarity search for classify-
ing the subtopic. This allows a more nuanced clas-
sification of user queries into subtopics, given the
more detailed information in the paper abstracts.

Vector Search GPT-3.5-Turbo SetFit Model
Topic Classification Approach
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Figure 2: Comparison of accuracy and F1-scores for
three topic classification approaches.

Article Text Clustering. After selecting an NLP
subtopic, the conversational search agent guides
users by presenting clusters of papers to further
narrow down the search space. We tried out vari-
ous clustering methods for thematically grouping
similar papers because listing all papers within one
subtopic at once is impractical. Selecting thematic
clusters makes it easier for users to find relevant pa-
pers by iteratively choosing smaller, more specific
clusters. Our experiments indicated that agglomer-
ative clustering, a hierarchical bottom-up cluster-
ing approach, was the most effective in producing
mutually exclusive clusters at each hierarchy level
(Murtagh and Contreras, 2012). We employed the
SPECTER2 embeddings of the publications, which
were the same ones used for the similarity search
as part of the research topic classification.

Initially, we used a distance threshold of 10, re-
sulting in clusters averaging 15 publications each.
However, this led to too many clusters inside a
given research topic, making cluster selection very
cumbersome. The distance threshold represents
the maximum distance within which items are
clustered together. To improve the clustering, we
adopted an iterative hierarchical approach. We pro-
gressively decreased the distance threshold at each
cluster level, keeping the number of clusters small
while increasing the paper similarity within each
subcluster to facilitate user navigation. Clustering
stopped when fewer than 10 publications remained
per cluster, ensuring a user-friendly number to dis-
play. Overall, we constructed a granular hierarchy
of 47,035 thematic clusters, which were modeled
as nodes in the constructed scholarly KG.

Next, it was necessary to assign human-readable
cluster names to help users identify relevant clus-
ters during the conversational search interaction.
We applied a term frequency-inverse document fre-



quency (TFIDF) vectorizer to extract important
words from the titles of all publications within
each cluster. Through several experiments, we
found that an n-gram range of (2,5), considering
sequences of two to five consecutive words, yielded
good cluster names. However, we observed that a
few clusters had identical names. To resolve this,
we performed another cluster naming iteration, tak-
ing into account all previous names. If a name was
repeating, we selected the second or third most rel-
evant TFIDF label to ensure unique names. While
the TFIDF-derived names were readable, they of-
ten contained too much detail and domain-specific
words, rendering them less accessible to non-expert
users. To make cluster names more understandable,
the aforementioned Zephyr-7B-Beta LLM was ap-
plied. Within the LLM subsystem in our architec-
ture, a specialized component was developed for
cluster naming. A dynamic prompt, detailed in
the GitHub repository, was created to transform
an existing TFIDF cluster name alongside five ran-
domly selected paper titles from a chosen clus-
ter into a more comprehensible cluster name (e.g.,
Emotion Detection in Social Media Text or Extrac-
tion of Concept Maps for Multi-Document Summa-
rization). To minimize response latency during a
conversation, names for clusters and subclusters
were pre-computed and stored in the scholarly KG.

Comparative Text Summarization. In the last
phase of the conversational search process, users
can compare papers listed at the lowest cluster level.
Although these papers are already thematically re-
lated, the comparison allows users to discern spe-
cific similarities and differences, aiding in deter-
mining which paper to read more thoroughly. The
language model subsystem allows for the summa-
rization of objectives and results of two selected
papers, which are generated in real-time upon re-
quest with Zephyr-7B-Beta. Given that injecting
full abstracts can impede the LLM’s ability to ac-
curately detect objectives and results, only relevant
portions of the abstract are provided in a dynamic
prompt, which has been shown to reduce halluci-
nated outputs (Martino et al., 2023).

To this end, we first classified abstract sentences
that discuss objectives or results using SciBERT, a
language model pre-trained on scientific text (Belt-
agy et al., 2019). We fine-tuned SciBERT on a
labeled dataset from Gonçalves et al. (2020), in-
cluding 500 computer science abstracts and 3,287
sentences classified as background, methods, objec-

tives, results, or conclusions. After hyperparameter
optimization, our fine-tuned model achieved an
F1-score of 75.39%, which is around one percent-
age point higher than the model from Gonçalves
et al. (2020) with 74.60%. Finally, we applied
our model to all the publication abstracts in our
KG and stored the classified objectives and results
sentences accordingly. More details about our fine-
tuned model are available in the repository. A dy-
namic LLM prompt for text summarization was
crafted, as shown in Table 5 in Appendix A. Two
researchers manually assessed the generated com-
parisons. Initial experiments with other models,
such as Falcon-7B and Llama-2-7B, showed that
these models were less attuned to following the
instruction, often producing hallucinated content or
excessively verbose responses, making them unsuit-
able for conversational interactions. As a result, we
selected Zephyr-7B-Beta, which delivered better
output in terms of style and faithful content.

4.2 Human Evaluation
Experiment Design. To evaluate the three-phase
search system in an end-to-end manner, we de-
signed a user study in which participants explored
publications related to two predefined search sce-
narios. They interacted with the conversational
search interface and a graphical interface featur-
ing a traditional text-based search, allowing us to
compare the effectiveness of both systems. For
the experiment, we recruited 40 participants from
university courses and social networks according
to criteria that match our target user group of non-
experts. Table 3 in Appendix A gives an overview
of participant demographics. All participants had
at least basic technical knowledge, good English
proficiency, and an interest in NLP without having
expert-level knowledge. The gender composition
was 35% female and 65% male, ranging in age
from 20 to 29 years, with an average age of 25.

Prior to the user experiment, we randomly as-
signed participants into two groups (Group A and
Group B), which determined the sequence in which
each group used the search interfaces for the two
search scenarios (Scenario 1 and Scenario 2). We
ensured that the demographic characteristics of
both groups were similarly distributed. Group A is
exposed to Scenario 1 with the conversational in-
terface first, followed by Scenario 2 with the graph-
ical interface. Conversely, Group B is exposed to
Scenario 1 with the graphical interface first, then
Scenario 2 with the conversational interface. This



Evaluation Metric Scenario 1 Scenario 2
Mean (Std. Dev.) Conversational Graphical Conversational Graphical
System usability scale 76.00 (18.94) 77.25 (15.28) 76.63 (16.63) 65.25 (23.91)
Readability 4.50 (0.95) 3.40 (1.14) 4.45 (0.76) 3.20 (1.54)
Correctness 4.25 (0.97) 4.05 (1.00) 4.25 (0.72) 3.85 (1.31)
Usefulness 4.50 (0.61) 3.65 (0.99) 4.30 (0.80) 2.95 (1.23)
Summary quality 4.10 (0.85) - 4.15 (0.67) -
Overall satisfaction 4.15 (0.88) 3.45 (1.00) 4.10 (1.07) 2.85 (1.14)

Table 1: Overview of mean and standard deviation of evaluation metrics by search scenario and interface type.

crossover design allows each participant to test
both interfaces but for a different scenario to avoid
learning effects. Scenario 1 is about analyzing emo-
tional expressions on social media related to mental
health during the COVID-19 pandemic, while Sce-
nario 2 focuses on creating multiple-choice exams
for a programming course. Both scenarios end with
the instruction: “Your task is to use the provided
search interface below to find papers related to the
described scenario.” The full scenario descriptions
are documented in Table 2 in Appendix A.

Participants were given approximately 10 min-
utes to interact with the interfaces (see screenshots
in Table 4), followed by an evaluation question-
naire, which we share in the repository. The latter
includes 10 questions from the system usability
scale (SUS) (Brooke, 1996). The SUS metric is
calculated using a specific formula, resulting in a
value between 0 and 100, with 68 being considered
average. Furthermore, participants were asked five
questions to rate the general information quality in
terms of readability, correctness, and usefulness,
the quality of the generated comparisons, as well as
overall satisfaction. The questions were answered
on a 5-point Likert scale, where a rating of 5 de-
noted the most favorable value. In addition, we
included two open-ended free-text fields for feed-
back on the system’s strengths and weaknesses.

Quantitative Analysis of Evaluation Metrics.
Based on the questionnaire responses, we con-
ducted both quantitative and qualitative analyses.
Table 1 lists the mean and standard deviation for
each evaluation metric grouped by scenario and
interface. We found that all data points were within
reasonable ranges without containing significant
outliers. Generally, the ratings for the conversa-
tional interface tend to be more favorable across
the various evaluation metrics. This is also reflected
in the overall satisfaction scores for Scenario 1 and
Scenario 2, with ratings of 4.15 and 4.10 for the
conversational interface compared to 3.45 and 2.85
for the graphical interface. The conversational in-

terface especially surpasses the graphical interface
in readability and usefulness metrics, as reflected
by mean ratings that were around one point higher
across both scenarios. We hypothesize that the dia-
logue interaction was not as overwhelming, deliv-
ering information in a more digestible format and
increasing its overall utility by offering additional
choices for paper selection. This positive feedback
was likely also influenced by the quality of sum-
marized paper comparisons, which achieved solid
scores of 4.10 in Scenario 1 and 4.15 in Scenario 2.

Inspecting the perceived system usability, the
SUS scores for Scenario 1 were similar for both in-
terfaces, with SUS scores at 76.00 and 77.25. Since
all participants presumably had prior experience
on how to use a text-based search engine as well
as a standard chat interface, it is not surprising that
the scores are similar. It is very likely that each
participant was already acquainted with operating
both types of interfaces. In Scenario 2, the conver-
sational interface maintained a comparable score of
76.63, whereas the graphical interface had a lower
score of 65.25, suggesting that the conversational
interface offers more consistent usability across
different search scenarios. This observation is cor-
roborated by the rating distributions illustrated in
Figure 3. The latter shows that Scenario 2 received
worse ratings compared to Scenario 1 for both eval-
uated interfaces, with the rating distributions shift-
ing towards the lower scores, possibly indicating
that Scenario 2 was slightly more difficult with re-
gard to discovering relevant papers. This effect was
especially pronounced for the graphical interface
compared to the more consistent performance of
the conversational interface. The more stable rat-
ings of the conversational interface could suggest
it retains usability and information relevancy, even
during more challenging exploration tasks.

Qualitative Analysis of Participant Feedback.
Our qualitative analysis of the free-text responses
concerning the systems’ strengths and weaknesses
confirmed the quantitative results, revealing that
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Figure 3: Comparison of rating distribution between the conversational and graphical user interface (UI) for
readability, correctness, usefulness, and overall satisfaction. The thick line intersecting the box marks the median.

the conversational interface received higher ratings
and demonstrated more consistent usability than
the graphical interface. Every participant was as-
signed an anonymous identifier between P1 and
P40 to protect their privacy. In the following para-
graphs, cited questionnaire responses are presented
in quotation marks and assigned to their identifiers.

The first notable strength of the conversational
search interface, mentioned in nearly every sec-
ond feedback comment, was the system’s ease of
use. For example, participant P9 remarked, “It is
easy to use and to find topics & papers even if the
prior exposure to the given topic is low.” Users
appreciated that they could immediately start talk-
ing with the conversational agent without requir-
ing extensive knowledge of the interface or the
search domain, unlike many graphical interfaces.
A second strength highlighted by users was the sys-
tem’s guidance and structured navigation abilities,
with one participant positively noting the “Step by
step process to narrow down the search and avoid
search results that are not related to your query”
(P29). This feature effectively addressed the search-
related vocabulary mismatches, as exemplified by
the comment: “I don’t need to know exact terms
or what im looking for” (P40). Lastly, users val-
ued the time-saving clustering and summarization
features, which helped them avoid going through
individual abstracts from long lists of papers. As
participant P11 stated, “[...] it understands the con-
tent of the paper and can aggregate it, without me
having to manually go into the files to read the Ab-
stract.” These findings suggest that conversational
agents can help alleviate problems associated with
cognitive overload (Sweller, 1988) by gradually
communicating condensed information.

Yet, a couple of participants initially struggled
with understanding the three-phase search flow
(e.g., “In the first a few minutes it’s hard to un-

derstand what I can reach at the end of conversa-
tion” (P35)). Some were also confused by the two
options of selecting the suggested user response
inputs displayed as buttons versus entering free-
form text. This was especially the case when they
wanted to reverse a choice, which participant P20
remarked, “The options to backtracking are a bit un-
clear at first.” Other participants expressed a desire
to “converse more freely” (P9), similar to those of-
fered by general-purpose LLMs. Strengthening the
integration of LLMs could accommodate this pref-
erence, as LLMs excel in contextual understanding
of queries and navigating complex conversation
logic more effectively than intent-based dialogue
systems. We observed that certain users attempted
to input very long requests or copy-pasting problem
descriptions, an interaction more akin to LLM ser-
vices like ChatGPT (OpenAI, 2022), where users
input a prompt, check the output, and refine the
prompt without engaging in a proper dialogue. This
type of interaction does not align with how our task-
oriented dialogue system was designed to operate.
Nonetheless, the evaluation shows that nearly all
participants quickly figured out how our conversa-
tional system works after a few dialogue turns.

5 Conclusion

We proposed a conversational exploratory search
system integrated with a scholarly KG. Our study
details the architectural components and presents
results from training and evaluating language mod-
els that underpin the three-phase search process,
including research topic classification, text cluster-
ing, and text summarization. We conducted a hu-
man evaluation to assess the system’s effectiveness,
identifying its perceived strengths and potential im-
provements. Our findings offer practical insights
into the design and implementation of conversa-
tional search systems for the scholarly domain.
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A Appendix

The Appendix provides further insights into the results of our research, including a finite-state diagram
of the conversational search flow (Figure 4), the semantic data model of the scholarly KG (Figure 5),
the scenario descriptions for the human evaluation (Table 2), a tabular overview of the participant
demographics (Table 3), screenshots of the conversational and graphical interface (Table 4), and a
collection of the crafted LLM prompts (Table 5).
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Figure 4: Conversational search flow illustrated as dialogue states (S1-S7). The three-phase search process
encompasses: first, identifying a research topic (S3); second, choosing clusters of publications (S4); and third,
comparing publications via short summaries (S5-S6).
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Description of Scenario 1
Imagine you are interested in mental health and emotional changes during the COVID pandemic.
You want to analyze how people express their feelings on social media platforms during the
pandemic. Your goal is to study their emotions to learn how they handle stress and anxiety. To
deal with the enormous volume of data available online, you are looking for ways to automate the
analysis process using NLP techniques.
Your task is to use the provided search interface below to discover papers related to the described
scenario. You have up to 8 minutes for your exploratory search. You are encouraged to “think out
loud”. Afterward, you will fill out an evaluation questionnaire to provide feedback on your search
experience.
Description of Scenario 1
Imagine you are an instructor teaching a programming course in Python. You want to ensure
that the exam questions reflect the learning progress of the students. Your goal is to generate
multiple-choice exams according to their knowledge level. To achieve this, you are looking for
ways to automatically create exam questions based on the course materials using NLP techniques.
Your task is to use the provided search interface below to discover papers related to the described
scenario. You have up to 8 minutes for your exploratory search. You are encouraged to “think out
loud”. Afterward, you will fill out an evaluation questionnaire to provide feedback on your search
experience.

Table 2: Scenario descriptions of the exploratory search task for the human evaluation.

Demographic Variable Group A (n = 20) Group B (n = 20) Overall (n = 40)
Mean age (age range) 25.10 (20 to 29) 24.95 (23 to 28) 25.03 (20 to 29)
Male 13 13 26
Female 7 7 14
High school degree 1 - 1
Bachelor’s degree 14 17 31
Master’s degree 5 3 8
No NLP knowledge 1 2 3
Beginner NLP knowledge 15 13 28
Advanced NLP knowledge 4 5 9
English CEFR level B1 or B2 3 5 8
English CEFR level C1 or C2 17 15 32

Table 3: Overview of study participant demographics.

Conversational Interface Graphical Interface

Table 4: Visual side-by-side comparison of the conversational and graphical interface from the human evaluation.



Prompt 1: Cluster Name Generation (Zephyr-7B-Beta)
Considering the themes and topics from the following TFIDF cluster tag: “{tfidf_cluster_name}”,
please provide a concise and descriptive name for a cluster that includes these {len(paper_list)}
academic papers:
{paper_titles_formatted}
Respond with just the cluster name, based on the overarching themes evident in the titles and the
TFIDF tag. Don’t include the original TFIDF cluster tag and the word “Cluster” in your response.
Prompt 2: Comparative Text Summarization (Zephyr-7B-Beta)
Please provide a comparative analysis of the objectives of two scientific papers.
Refer the papers with their real ids:
Paper {id_a}’s objective is: {obj1}
Paper {id_b}’s objective is: {obj2}
Highlight the key differences and similarities between Paper {id_a} and Paper {id_b}.
Use simple language.
Please provide a comparative analysis of the results of two scientific papers.:
Refer the papers with their real ids:
Results of Paper {id_a}: {res1}
Results of Paper {id_b}: {res2}
Highlight the key differences and similarities between Paper {id_a} and Paper {id_b}.
Use simple language.
Please provide a comparative analysis of the TLDR of two scientific papers.:
TLDR of Paper {id_a}: {tldr1}
TLDR of Paper {id_b}: {tldr2}
Highlight the key differences and similarities between Paper {id_a} and Paper {id_b}.
Use simple language.
Prompt 3: LLM-Based Research Topic Classification (GPT-3.5-Turbo)
You are supposed to classify a query into one of the topics provided. These topics are various fields
of NLP. Your answer should be in the following format:
*topic name*
Nothing else should be included in the output.
Make sure there is no extra punctuation including full stops, quotation marks or anything of that
sort. You are supposed to EXACTLY use the topics from the list provided. If you think it is a
random question and not in the field of NLP, then return the topic as “none”.
You can only provide your answer from the following topics and the topics are:
Multimodality
Natural Language Interfaces
Semantic Text Processing
Semantic Analysis
Syntactic Text Processing
Linguistic and Cognitive NLP
Responsible NLP
Reasoning
Multilinguality
Information Retrieval
Information Extraction and Text Mining
Text Generation
Query: {query}.
Topic:

Table 5: Overview of large language model prompts for various generative tasks using Zephyr-7B-Beta and GPT-
3.5-Turbo. Dynamically inserted variables are enclosed within curly brackets.
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