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Abstract

Recently, neural vocoders have been employed
in end-to-end speech synthesis for convert-
ing the intermediate spectral representations
to the corresponding speech waveform. In
this paper, two generative adversarial network
(GAN) based vocoders, Parallel WaveGAN
and HiFi-GAN are proposed for Myanmar end-
to-end speech synthesis and subjective eval-
uations are conducted to compare the perfor-
mance of the models. The subjective evalua-
tion results show that both models trained on
small Myanmar speech dataset achieve the high
fidelity speech synthesis with fast inference
speed, showing the ability of generalizing to the
mel-spectrogram inversion of unseen speakers.
Specifically, in end-to-end speech synthesis,
Tacotron2 with HiFi-GAN vocoder achieves
state-of-the-art performance resulting in a 4.37
mean opinion score (MOS) for Myanmar lan-
guage.

1 Introduction

Text-to-speech (TTS) models focus on synthesizing
intelligible and natural sounding speech which are
indistinguishable from the original human speech.
For the past few decades, statistical parametric
speech synthesis (SPSS) has been the dominant
technology for TTS (Tokuda et al., 2013; Qian
et al., 2014; Wu et al., 2015; Zen and Sak, 2015).
However, SPSS needs a complex pipeline for get-
ting language dependent good linguistic features
and that is time consuming and very expensive.
This paper is a part of the ASEAN IVO 2023
project, "Spoof Detection for Automatic Speaker
Verification", which aims to enhance the security
and reliability of speaker verification by effectively
detecting spoofing attacks.

In recent years, end-to-end neural TTS models,
such as Tacotron (Wang et al., 2017), Tacotron2
(Shen et al., 2018), Transformer based TTS (Li
et al., 2019), FastSpeech (Ren et al., 2019), Fast-
Speech2 (Ren et al., 2020), have emerged to sim-

plify traditional speech synthesis pipeline and their
synthesized speeches can be comparable with hu-
man recordings. The end-to-end neural TTS is typi-
cally composed of two main processing models, the
spectral representation generator and the vocoder.
The first one generates the spectral representation
such as mel-spectrograms given the input text or
phoneme, and the vocoder converts the speech
waveforms from the generated mel-spectrograms.
Griffin Lim algorithm (Griffin and Lim, 1984), the
classic phase estimation method is generally used
for speech waveform reconstruction.

Recently, in the context of end-to-end TTS
synthesis, the separately trained neural vocoders
such as WaveNet (Van Den Oord et al., 2016),
Parallel WaveNet (Oord et al., 2018), MelGAN
(Kumar et al., 2019), WaveGlow (Prenger et al.,
2019), Parallel WaveGAN (Yamamoto et al.,
2020) and HiFi-GAN (Kong et al., 2020) have
demonstrated remarkable capabilities in generat-
ing natural-sounding synthetic speech. Inspired by
this factor, in this work, the advantage of neural
vocoder is combined into the Myanmar end-to-end
speech synthesis to achieve both efficient and high-
fidelity speech synthesis.

We trained two generative adversarial network
based neural vocoders, Parallel WaveGAN and
HiFi-GAN on Myanmar speech dataset because of
their remarkable performance on generating wave-
form at fast inference speed while maintaining the
quality of speech comparative to the other neu-
ral vocoders. To confirm the effectiveness of the
vocoders, experiments were conducted by utiliz-
ing them in different conditions. We examined
the ability of each vocoder in ground truth mel-
spectrogram inversion, generalization on unseen
speakers, and Myanmar end-to-end speech synthe-
sis. Audio samples are available on this website1.

1http://nlpresearch-ucsy.edu.mm/subeval-voc.html
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Figure 1: A proposed model of End-to-End TTS with
GAN-based neural vocoders

2 Myanmar End-to-End Speech Synthesis

For Myanmar language, statistical parametric
speech synthesis with different input linguistic fea-
tures have been done on Myanmar speech synthesis.
In HMM-based Myanmar TTS (Thu et al., 2015),
CART-based Myanmar TTS (Hlaing and Pa, 2018),
DNN-based Myanmar speech synthesis (Hlaing
et al., 2018), LSTM-RNN-based Myanmar speech
synthesis (Hlaing et al., 2019; Hlaing and Pa, 2020,
Oo et al., 2020), we found that traditional speech
synthesis pipeline and traditional vocoder such as
WORLD vocoder (Morise et al., 2016) were used.

The first end-to-end Myanmar TTS System
based on Tacotron was introduced in (Win et al.,
2020) and Tacotron2 based end-to-end Myanmar
TTS with phone-level embedding was found in
(Qin et al., 2020). However, there is no research
on the effectiveness of neural vocoder specifically
trained on Myanmar speech dataset for Myanmar
end-to-end TTS. To the best of our knowledge, this
is the first effort to explore the advance of neural
vocoder in Myanmar end-to-end TTS.

Figure 1 shows our proposed model of Myan-
mar end-to-end TTS with generative adversarial
network based neural vocoders. In this work, a
Tacotron2 (Shen et al., 2018) model was trained for
the purpose of text to mel-spectrogram generation
and the generated mel-spectrograms were given
into our separately trained GAN-based vocoders,
including Parallel WaveGAN and HiFi GAN as
the input conditions. Tacotron2 uses character se-
quences as input, but our model was trained on
phoneme sequences to alleviate the mispronuncia-
tion problems of rarely occurred words in the small
training set.

3 GAN based Neural Vocoder

The first attempt of applying GAN (Goodfellow
et al., 2014) to the synthesis of raw-waveform au-
dio is WaveGAN (Donahue et al., 2018) and fol-
lowed by many variants of GAN-based vocoders
such as MelGAN (Kumar et al., 2019), StyleMel-

GAN (Mustafa et al., 2021), Multi-band Mel-
GAN (Yang et al., 2021), Parallel WaveGAN (Ya-
mamoto et al., 2020) and HiFi-GAN (Kong et al.,
2020). GAN-based vocoders show significant per-
formance over autoregressive models in the speed
and quality of synthesized speech (AlBadawy et al.,
2022). Among the different variants of GAN-based
vocoders, we selected to train the vocoders using
Parallel WaveGAN and HiFi-GAN for Myanmar
end-to-end speech synthesis.

3.1 Parallel WaveGAN
The Parallel WaveGAN (Yamamoto et al., 2020) is
a distillation-free, fast, and small-footprint wave-
form generation method using GAN. Though
a WaveNet-based model conditioned on mel-
spectrogram is used as the generator, the model
is non-autoregressive at both training and inferenc-
ing. The generator is trained by jointly optimiz-
ing the multi-resolution short-time Fourier trans-
form (STFT) auxiliary loss Laux and the waveform-
domain adversarial loss Ladv.

LG = Laux(G) + λadvLadv(G,D) (1)

where λadv represents the hyperparameter that bal-
ances the two loss terms.

Meanwhile, the discriminator is trained to cor-
rectly classify the generated sample as fake and
simutaneously ground truth sample as real with the
following equation:

LD = Ex∼p[(1−D(x))2] + Ez[D(G(z))2] (2)

where x denotes the target waveform, p denotes its
distribution, and z denotes the input white noise.

3.2 HiFi-GAN
HiFi-GAN has been composed of one generator
and two discriminators containing multi-scale dis-
criminator (MSD) and multi-period discriminator
(MPD) (Kong et al., 2020). The generator of HiFi-
GAN is a fully convolutional neural network with
multi-receptive field fusion (MRF) module that can
perceives the various length of patterns in parallel.
The final loss terms for the generator in HiFi GAN
is as follows:

LG = LAdv(G;D) + λfLF (G;D) + λmLM (G)
(3)

where LF and LM are the feature matching loss
and mel-spectrogram loss, respectively.

In the discriminator part, each sub-discriminator
of MPD handles equally spaced samples of input



audio and MSD was used to capture consecutive
patterns and long-term dependencies. The discrim-
inator with respect to the sub-discriminators of
MPD and MSD is as follows:

LD =
K∑
k=1

LAdv(Dk;G) (4)

where Dk represents k-th sub-discriminator in
MPD and MSD.

4 Experiments

The dataset and the experimental setups of the mod-
els are presented in this section. The training of
both GAN-based vocoders had been conducted
on the open-source implementation from this site2

and Tacotron2 model was implemented using ESP-
net3, an end-to-end speech processing toolkit. Each
vocoder was trained on a single Nvidia Tesla K80
GPU and Tacotron2 model was trained on two
Nvidia Tesla K80 GPUs.

4.1 Dataset

For training our proposed end-to-end pipeline in-
cluding Tacotron2 model, Parallel WaveGAN and
HiFi-GAN vocoders, we used a Myanmar phonet-
ically balanced speech corpus (PBC) (Thu et al.,
2015) built from Basic Travel Expression Corpus
(BTEC) (Kikui et al., 2003) recorded by a female
native speaker. In total, 3,800 utterances were uti-
lized for training, 100 utterances each for validation
and testing. The sampling rate of speech data was
16kHz.

4.2 Experimental setup of Parallel WaveGAN

For training the Parallel WaveGAN on Myanmar
speech dataset, we used 80-band log-mel spectro-
grams with band-limited frequency range (80 to
7600 Hz) as the input auxiliary features for wave-
form generation models. The same configuration
setting for the generator and the discriminator net-
works with the original paper (Yamamoto et al.,
2020) was used in our work. Weight normaliza-
tion was applied to all convolutional layers of both
generator and discriminator. The hyperparameter
λadv in Equation 1 was also set to 4.0. The model
was trained for 200K steps and the discriminator
was fixed for the first 100K steps, and then both
the generator and the discriminator were trained

2https://github.com/kan-bayashi/ParallelWaveGAN
3https://github.com/espnet/espnet

jointly. We set the length of each audio clip to
25600 and mini-batch size to 6. The generator was
set with the initial learning rate of 1 × 10−4 and
the discriminator with the initial learning rate of
5× 10−5.

4.3 Experimental setup of HiFi-GAN

Among the variations of the generators in original
source of HiFi-GAN(Kong et al., 2020), the con-
figuration of HiFi-GAN V1 was applied to train
the model on Myanmar speech dataset. We used
80-band log-mel spectrograms with band-limited
frequency range (80 to 7600 Hz) as input condi-
tions. The FFT and hop size were set to 1024 and
256, respectively. Adam (Kingma and Ba, 2014)
optimizer with β1 = 0.5, β2 = 0.9 was used for
training both the generator and the discriminator
networks, and the initial learning rate was set to
2× 10−4. The batch size was 16 and the length of
each audio clip was 8192. The model was trained
for only 200K steps, the same steps used for train-
ing the Parallel WaveGAN model. This is very
small compared to the training steps used in the
original paper (2.5M steps).

4.4 Experimental setup of Tacotron2

Tacotron2 (Shen et al., 2018), a recurrent sequence-
to-sequence feature prediction network with at-
tention that maps phoneme embeddings to mel-
spectrograms, was trained on the dataset mentioned
in section 4.1 with a batch size of 32. The model
was trained for 125K steps with Adam optimizer
(Kingma and Ba, 2014) and a learning rate of
1 × 10−3. In the training process, the guided at-
tention loss was used to promote a fast and robust
attention learning.

5 Results

To examine the performance of our trained Par-
allel WaveGAN and HiFi-GAN models, three
mean opinion score (MOS) tests were performed
for ground truth mel-spectrogram inversion, mel-
spectrogram inversion for unseen speakers, and
end-to-end Myanmar speech synthesis tasks. Ten
native non-expert speakers participated in all MOS
tests. Subjects were given the synthesized speeches
of two models and ground truth audio, and they
had to rate the quality of synthesized speeches on
a scale of 1 to 5 where 1 is bad and 5 is excellent.
The speech samples were randomly ordered.



Model MOS RTF
Ground Truth 4.69 ± 0.10 -
Parallel WaveGAN 4.49 ± 0.12 0.015
HiFi-GAN 4.59 ± 0.11 0.011

Table 1: Comparison of MOS with 95% confidence
intervals and inference speed (RTF) in ground truth mel-
spectrogram inversion. Note that RTF is based on the
average inference time of 100 utterances in evaluation
set on a single Nvidia Tesla K80 GPU.

5.1 Ground Truth Mel-spectrogram Inversion
The MOS test and speed measurement with Real
Time Factor (RTF) were performed to evaluate
the performance of Parallel WaveGAN and HiFi-
GAN models in terms of the quality of synthesized
speeches and the inference speed. 10 utterances
randomly selected from the testing set, were used
for MOS test of mel-spectrogram inversion and the
results are shown in Table 1. It can be clearly seen
that both models can synthesize the high quality
speech comparable to the ground truth speech. Re-
markably, HiFi-GAN model achieves the highest
MOS score 4.59 with a gap of 0.10 compared to the
ground truth audio score 4.69 and this means that
the synthesized speech is almost indistinguishable
from the original speech. The RTF results indicate
that both models get very small RTF values. Specif-
ically, HiFi-GAN model gives the lowest RTF value
(0.011) which implies that the model can synthesize
speech 99.9 times faster than real-time on single
Nvidia Tesla K80 GPU.

5.2 Generalization to Unseen Speakers
In this MOS test, 10 utterances of two unseen fe-
male speakers were utilized for investigating the
ability of our trained models on generalizing to
unseen speakers. However, we did not conduct an
additional training for each model on multi-speaker
dataset for this task. The MOS results for the mel-
spectrogram inversion of the unseen speakers are
shown in Table 2. The results show that Parallel
WaveGAN and HiFi-GAN achieved 4.42 and 4.48
scores, respectively, indicating that both models
can generalize well to unseen speakers.

5.3 End-to-End TTS
To verify the effectiveness of the Parallel Wave-
GAN and HiFi-GAN models in Myanmar end-to-
end TTS pipeline, each model was integrated to
the Tacotron2 model mentioned in section 4.4 as
the vocoder. In the inferencing step, the Tacotron2

Model MOS
Ground Truth 4.68 ± 0.12
Parallel WaveGAN 4.42 ± 0.12
HiFi-GAN 4.48 ± 0.11

Table 2: Comparison of MOS with 95% confidence
intervals for generalizing on unseen speakers

Model MOS
Ground Truth 4.68 ± 0.15
Tacotron2 + Parallel WaveGAN 4.33 ± 0.13
Tacotron2 + HiFi-GAN 4.37 ± 0.13

Table 3: Comparison of MOS with 95% confidence
intervals in end-to-end Myanmar speech synthesis with
neural vocoders

model convert the input phoneme sequences to the
corresponding mel-spectrograms, and by inputting
generated mel-spectrograms to vocoder models,
they generate the corresponding speech waveform.
To evaluate the quality of the generated speech sam-
ples, we conducted MOS test and the results are
presented in Table 3. It can be observed that end-to-
end TTS systems with independently trained neu-
ral vocoders can generate high quality synthesized
speech. In particular, our model using Tacotron2
with Parallel WaveGAN vocoder achieves 4.33
MOS score which is comparable to the MOS results
of the Parallel WaveGAN with the Transformer-
based TTS (Yamamoto et al., 2020), and also the
model using Tacotron2 with HiFi-GAN vocoder
achieves 4.37 MOS score which is comparable to
HiFi-GAN V1 model without fine-tuning (Kong
et al., 2020) in the end-to-end TTS settings.

6 Conclusion

In conclusion, both Parallel WaveGAN and HiFi-
GAN models achieve high-fidelity speech synthe-
sis with fast inference speeds, showing the ability
of generalizing to unseen speakers. By integrat-
ing these GAN-based models with Tacotron2 in
the end-to-end TTS framework as the vocoders,
we achieved the state-of-the-art speech quality for
Myanmar language. Our work demonstrates that
the GAN-based models, even trained on the small
dataset with limited training steps, can achieve high
quality speech for low-resource languages. Future
work includes improving the mel-spectogram gen-
erator to better capture the prosody of speech and
using GAN-based vocoders in various end-to-end
speech synthesis settings.



Limitations

Due to the limited GPU resources, we can use the
limited training steps on the models, however, more
robustness of the models can be achieved by fine-
tuning the hyperparemeters and training the models
until an optimal point is reached. When the ability
of vocoder is examined with the aim of generalizing
to unseen speakers, one of the limitations is the
unavailability of multi-speaker Myanmar dataset.
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