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Abstract

Effective cross-lingual communication remains
a significant challenge in today’s rapidly global-
izing world. Developing Speech-to-Text Trans-
lation (S2T) systems using artificial intelli-
gence presents various difficulties, such as the
unavailability of all language pairs for simul-
taneous model training. Additionally, when a
model is trained on a new language, it often
loses its ability to remember previously learned
tasks, a phenomenon known as catastrophic
forgetting. This paper explores the applica-
tion of Gradient Episodic Memory (GEM) to
address these challenges. Our study investi-
gates the effectiveness of GEM in enhancing
S2T model performance across sequentially in-
troduced language pairs. Experimental results
demonstrate that GEM can significantly reduce
forgetting by 24.8% and boost translation ac-
curacy by 44.5% as compared to baseline, of-
fering a promising approach for scalable and
efficient multilingual-continual S2T systems.

1 Introduction

Speech-to-text (S2T) translation is a technology
that bridges language barriers by converting spoken
language into written text in a different language.
This capability is increasingly vital in our global-
ized world, where effective and seamless commu-
nication across diverse linguistic communities is
essential. Traditional S2T translation systems like
(Bansal et al., 2017; Le et al., 2021; Sarkar et al.,
2023) typically require large, diverse datasets for
training and are often retrained from scratch when-
ever new language pairs are introduced. This pro-
cess is not only computationally expensive and
time-consuming but also environmentally unsus-
tainable due to the high energy consumption in-
volved.

Continual learning, also known as lifelong learn-
ing, offers a promising solution to these challenges.
In the realm of S2T translation, continual learn-
ing allows models to adapt incrementally to new
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Figure 1: Task diagram of proposed work where new
task (S2T for English to Russian, t+1) is trained using
the model from previous task (S2T for English to French,
t). And similarly for English to Italian (task t+2 trained
from model of task t+1).

languages and dialects without forgetting previ-
ously learned ones (Bremner et al., 2013; Rusu
et al., 2022). Traditional methods suffer from
Catastrophic Forgetting (McCloskey and Cohen,
1989), where a model’s performance on previously
learned tasks degrades as it learns new ones. Con-
tinual learning mitigates this issue by enabling S2T
models to retain past knowledge while incorporat-
ing new information, thus maintaining high per-
formance across all tasks. This approach not only
improves the efficiency and scalability of multi-
lingual S2T systems but also ensures they remain
effective as new language data becomes available.

To this end our contributions include studying
continual learning for end-to-end (E2E) S2T to mit-



igate the catastrophic forgetting. To the best of our
knowledge, no prior research has been conducted
on this specific domain.

2 Related Work

Recently, several studies have applied continual
learning to automatic speech recognition. (Sadhu
and Hermansky, 2020) sequentially trained an
HMM-DNN model on four different tasks using
the Wall Street Journal, Reverb, Librispeech , and
Chime4 corpora. (Chang et al., 2021) developed
an end-to-end ASR model in which they first pre-
trained it on the WSJ corpus then on Librispeech
and finally on the Switchboard corpus (Godfrey
et al., 1992) tested the model’s performance on dif-
ferent speech recognition tasks after each update.
As real-world data distributions vary a lot from one
task to another, it becomes quite essential to know
when the training data is presented with a different
task than the one it was trained for. In this respect,
(Zeno et al., 2019) came up with a Bayesian ap-
proach to continual learning that does not require
knowledge at the time of transition from one task
to another. Similarly, (Mai et al., 2021) introduced
the concept of online continual learning over im-
age classification, assuming that the emergence of
new classes or instances of images may include a
variety of online data streams.

Applications of continual learning have been
successfully extended to various tasks such as com-
puter vision (Aljundi et al., 2017) and automatic
speech recognition (Eeckt and hamme, 2023; Fu
et al., 2021). This has not been investigated with
respect to Speech-to-Text Translation so far.

3 Problem Statement

The continual learning of S2T models is defined as
follows. First, we assume we have an initial model
that has been trained on a given dataset (D). This
model serves as a seed model on which a sequence
of continual learning updates is applied. Second,
we have a set of labeled datasets D = {D;}¥,
which become available sequentially over time for
model training. N represents the total number of
language pairs available to train the model. Retrain-
ing the S2T model from scratch each time a new
dataset D,, becomes available incurs substantial
computational costs. Hence a replay-based con-
tinual learning method retains few samples from
previous tasks to minimize the L2 distance between
gradients of new and old data, thereby preserving

past knowledge while learning new tasks:
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Where, L,,¢,, is the loss on current task, g,e, s
the gradient of the loss with respect to the new data,
gf)l o 1s the gradient of the loss with respect to the
samples from the i-th previous task and ) is a reg-
ularization parameter that controls the importance

of preserving old knowledge.

4 Methodology

The S2T baseline used is a transformer-based
encoder-decoder model (Vaswani et al., 2023). The
hypothesis is that the model being trained for fu-
ture tasks be optimized by comparing the gradients
of previous tasks. To that end, we aspire to em-
ploy the approach originally proposed for visual
recognition task handling continual learning using
gradient episodic memory (GEM) (Lopez-Paz and
Ranzato, 2022). Motivated by its recent applica-
tion in computer vision tasks, we ask the following
research question: Will the same approach be able
to learn in an S2T setting? We confirm that using
GEM in S2T setting, we are able to mitigate the
catastrophic forgetting.

4.1 Gradient Episodic Memory (GEM)

GEM is a replay-based continual learning method
that retains samples from past data in its memory.
When the model encounters data from a new task,
it minimizes the L2 distance between the gradients
of the new data and the old data. To minimize
the total loss L1, We ensure that the update to
the model parameters does not significantly change
the gradients computed for the old tasks. This
constraint helps to prevent catastrophic forgetting.
The new gradient is calculated as:

Gnew = VoLnew (2)

where 6 represents the model parameters, and Lpew
is the loss function for the new task. The gradients
from the stored examples are then calculated as:

géld - veﬁéld for i=0,...,.n—1 (3)

where Egld is the loss for the samples from the ¢-th
previous task stored in the episodic memory. The
gradient w to prevent catastrophic forgetting is then
defined as:

W= GTU + Gnew “4)



where G = (gly, .-+, g0 ") is the matrix of gra-
dients for the previous tasks, and v is a vector
obtained by solving the quadratic programming
problem that ensures the constraints on gradient
alignment.

4.2 S2T Transformer

The Transformer model is an adaptation of the
Transformer architecture, specifically designed to
handle speech representations as input. These fea-
tures are inputted into the S2T encoder, which is
composed of several layers utilizing self-attention
mechanisms. These mechanisms allow the model
to process various segments of the input sequence,
thereby efficiently capturing long-range dependen-
cies. The self-attention mechanism calculates atten-
tion weights to emphasize key features during the
decoding process. In the training phase, the model
is fine-tuned to align with the ground truth target
text by optimizing the following loss function:

Lo = — Zlog P(zp|yn) 5)

Here, Lg7 represents the label-smoothed cross-
entropy loss on speech and target language text
pairs, x is the input speech and y is the target text.
This loss is calculated by updating the model pa-
rameters 6 such that it doesn’t change the gradients
of previous tasks g,;q. The S2T Transformer gener-
ates a sequence of predicted tokens that articulate
the translated textual representation.

5 Experiment

In this section, we detail the following components:
(a) datasets, (b) baselines, (c) training and testbed
and (d) evaluation metrics.

5.1 Dataset

We conduct experiments on four pairs of transla-
tion directions available in MuST-C! (Di Gangi
et al., 2019) dataset: English (En) to German (De),
French (Fr), Russian (Ru) and Dutch (N1). It con-
tains audio, transcript and translation from TED
talks for each direction. The statistics of the dataset
is shown in Table 1.

5.2 Baselines

As there is no previous continual learning baseline
for S2T models, we create two baselines of our own.
First is to simply fine-tune the model on new

'We use v1.0. https://ict.fbk.eu/must-c/

MuST-C Dataset
En | Hours| #Sents | Train | Val | Test
N
De | 408 274K 269K | 1.5K | 2.8K
Fr |492 280K 275K | 14K | 2.6K
Ru | 489 270K 265K | 1.3K | 2.5K
NI | 442 253K 248K | 1.4K | 2.6K

Table 1: Train, test and validation splits for MuST-C.

tasks and the second baseline is a setup where all
task’s datasets are available together during training
as it is a joint approach. In this experiment, we
consider the fine-tune to be a lower bound and
joint to be an upper bound for the performance of
the model.

5.3 Training and Testbed

In this study, we utilized the FAIRSEQ S2T toolkit
(Wang et al., 2020) to implement our method. The
core architecture is an S2T Transformer encoder-
decoder model. Both the encoder and decoder con-
sist of 6 self-attention layers, each featuring 8 atten-
tion heads. Due to limitations in training resources,
the encoder and decoder are of the small configu-
ration, comprising of 256 hidden units. Data aug-
mentation is performed using SpecAugment (Park
et al., 2019), and the GELU activation function is
employed to enhance convergence, normalization
and training stability. The S2T model is trained
with label-smoothed cross-entropy loss, with a la-
bel smoothing factor set at 0.1. The Adam opti-
mizer is used, featuring a learning rate of 1e-4, and
the learning rate schedule follows an inverse square
root pattern.

5.4 Performance Metric

Case-sensitive detokenized BLEU using sacre-
BLEU (Post, 2018) is used to report the perfor-
mance of the model. All experiments are repeated
with three different random seeds, and we report
the average BLEU on the MuST-C tst-COMMON
set.

6 Results

We measure the performance of the system across
four tasks sequentially as shown on Table 2. T-1
was conducted on De, T-2 on Fr, T-3 on Ru, and
T-4 on NI. The goal is to retain model performance
on previous tasks while performing T-2, T-3 and
T-4. The results are given in terms of BLEU scores



T-1 T-2 T-3 T-4 Agg.

De De Fr Avg | De Fr Ru Avg | De Fr Ru NI Avg | Avg
Fine- | 23.85| 0.5 30.1 | 153 | 0.2 0.2 17.23| 5.87 | 0.3 0.2 0.1 28.78| 7.34 | 7.37
Tune
Forg 98% 99.2%| 99.3% 98.8%| 99.3%| 99.4% 98.8%
Joint | 26.02| 26.02 | 36.05| 31.03| 26.02| 36.05| 18.23| 26.76| 26.02 | 36.05| 18.23 | 29.78| 27.52| 27.84
GEM | 23.85| 542 | 26.71| 16.07| 5.59 | 6.33 | 14.41| 8.78 | 4.88 | 5.77 | 4.32 | 24.86| 9.96 | 10.65
Forg 77% 76.5%| 76.3% 79.5%| 78.4%| 70% 74.3%

Table 2: Task-wise average BLEU score and forgetting on four pairs of MuST-C data. Fine-tune and Joint are the
baselines whereas GEM is the proposed method for continually learning S2T models. Forg denotes the forgetting
on that method. Here, T-1, T-2, T-3, and T-4 are tasks where we train the model on De, Fr, Ru and NI language pairs

sequentially. Agg Avg is overall average.

and Forgetting in percentages, which quantify the
retention of tasks learned before.

6.1 Automatic Evaluation

As seen in Table 2 for the Task 1 with fine-tune,
the BLEU score for De is 23.85 whereas it
significantly lowered in next subsequent tasks. In
Task 2, fine-tune’s BLEU score on De lowers to
0.5 and further goes even worse down to 0.2 after
Task 3 and after Task 4 to 0.3. It shows similar
result with other language pairs as the number of
task increases. Conversely, GEM demonstrates
quite smooth performance with BLEU score of
23.85 for Task 1 on De, and a score of 5.42 for De
after Task 2, 6.33 after Task 3, and 4.32 after Task
4, showing that the model is able to remember the
previous task. It follows a similar score for other
languages as well. In Figure 2, although NI in Task
4 is trained for the first time in both fine-tune
and GEM, the increase in BLEU score can be
explained due to the forward transfer experienced
by the S2T model using GEM. The result shows
that GEM is able to preserve previous knowledge
at an average BLEU score of 10.65 across all
tasks compared to the baseline fine-tune with an
average of 7.37.

Forgetting: One of the main challenges of
continual learning is forgetting, which means that
the performance on the tasks learned earlier in the

run deteriorates upon the introduction of new tasks.

From Table 2 we see fine-tune baseline has very
high forgetting rates of 98% on Task 1, 99.2% on

Task 2, 98.8% on Task 3, and 99.4% on Task 4.

However, this effect of forgetting is considerably
reduced if applied GEM: 77% for Task 1, 76.5%
for Task 2, 76.3% for Task 3, and 70% for Task
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Figure 2: Epoch wise BLEU score on all tasks trained
sequentially.

4. This reduces the average rate of forgetting for
GEM to be 74.3%.

7 Conclusion

In this paper, we propose GemST, a new method for
continually learning Speech-to-Text models. Re-
sults obtained from our experiments on the MuST-
C dataset indicate that GEM not only improves
the BLEU scores of multiple tasks compared to
the baseline, but it also causes a requisite massive
drop in the forgetting rates. Hence it demonstrate
GEM'’s efficacy toward the development of robust
S2T systems that learn tasks introduced sequen-
tially without suffering from the so-called catas-
trophic forgetting. This development paves the way
for future research and development on continual
learning methodologies within the S2T domain.



Limitations

While our proposed method demonstrates supe-
rior performance compared to the baseline, a few
limitations should be noted: (1) While GEM ef-
fectively retains knowledge from previous tasks,
there is potential to further minimize the forgetting.
Developing more advanced methods could lead
to greater reductions in forgetting, enhancing the
overall performance of the model, (2) As this study
presents the first application of continual learning
to S2T, there is a lack of established baselines. Fu-
ture work could develop and compare additional
continual learning baselines to provide a more com-
prehensive evaluation. Nevertheless, our primary
objective was to initiate research in this area.
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