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Abstract
Rerunning a metric-based evaluation should be more straightforward, and results should be closer, than in
a human-based evaluation, especially where code and model checkpoints are made available by the origi-
nal authors. As this report of our efforts to rerun a metric-based evaluation of a set of single-attribute and
multiple-attribute controllable text generation (CTG) techniques shows however, such reruns of evaluations do not al-
ways produce results that are the same as the original results, and can reveal errors in the reporting of the original work.
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1. Introduction

Over the past few years, the fields of natural lan-
guage processing (NLP) and machine learning (ML)
have seen an increase in interest in reproducibility
(Sinha et al., 2020; Branco et al., 2020; Belz et al.,
2021; Belz and Thomson, 2023). Initially, efforts
focussed on promoting and encouraging sharing
of all resources needed to rerun experiments, but
increasingly it became clear that exact reproduc-
tion of results is rarely the outcome even where
metric evaluation is concerned. The question is
what can be concluded in such situations beyond
binary reproduced vs. not reproduced findings.

Belz et al. (2022; 2023) proposed QRA++, an
approach to measuring how close results from two
evaluations are, and how reproducible evaluation
measures are, in order to facilitate comparison in
terms of degree of reproducibility between differ-
ent methods of evaluation. This approach enables
comparable, quantified reproducibility results to be
produced.

In this short report, we present our work rerun-
ning the metric-based evaluation of a set of single
and multiple-attribute controllable text generation
techniques (Gu et al., 2022, 2023). In the case
of all except one pair of scores from the original
and reproduction evaluations, the two scores are
not the same, and we apply QRA++ to quantify the
differences.

We start with a summary of the QRA++ mea-
sures we use (Section 2), followed by a description
of the specific original experiments we repeated
in this reproduction study (Section 3). We then
describe how we went about repeating the work
(Section 4), before presenting the side-by-side re-
sults from the original work and our reproduction
along with the QRA++ measures of their similarity
(Section 5). We finish with some discussion and
conclusions (Section 6).

2. QRA++ Measures

QRA++ distinguishes four types of results com-
monly reported in NLP and ML papers:

1. Type I results: single numerical scores, e.g.
mean quality rating, error count, etc.

2. Type II results: sets of related numerical
scores, e.g. set of Type I results .

3. Type III results: categorical labels attached to
text spans of any length.

4. Type IV results: Qualitative findings stated ex-
plicitly or implied by quantitative results in the
original paper.

The above are quantitatively assessed as follows:
1. Type I results: Small-sample coefficient of vari-

ation CV* (Belz, 2022).
2. Type II results: Pearson’s r, Spearman’s ρ.
3. Type III results: Multi-rater: Fleiss’s κ; Multi-

rater, multi-label: Krippendorff’s α.
4. Type IV results: Proportion of findings that are

/ are not confirmed by the repeat experiment.
To obtain comparable results we restrict our-
selves to pairwise system ranks as findings.

In the work reported in this paper we have Type I, II
and IV results, and therefore apply the correspond-
ing quantitative measures above.

3. Original Work Being Repeated

In the present reproduction study, we carried out
repeat evaluations of the main new systems pre-
sented by Gu et al. (2022) and Gu et al. (2023).
The authors provide the code on GitHub1 and the
model checkpoints on Google Drive.2

1https://github.com/HappyGu0524/Multi
Control

2https://drive.google.com/drive/folde
rs/14XHSG4IAGlAL9t-SYoTUKnAs5ARqHd5f

https://github.com/HappyGu0524/MultiControl
https://github.com/HappyGu0524/MultiControl
https://drive.google.com/drive/folders/14XHSG4IAGlAL9t-SYoTUKnAs5ARqHd5f
https://drive.google.com/drive/folders/14XHSG4IAGlAL9t-SYoTUKnAs5ARqHd5f
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More precisely, the experimental grid we repro-
duced looks as follows: {PriorCTG} x {Topic (World,
Sports, Business, and Technology), Sentiment
(Positive and Negative), Toxicity (Toxic and Non-
Toxic)} x {no extension, extension} + {PriorCTG} x
{Multi attribute (Topic, Sentiment and Non-Toxic)}
x {no optim, optim} + {MultiCTG} x {Multi attribute
(Topic, Sentiment and Non-Toxic)}. The individual
systems (MultiCTG, PriorCTG +/- extend/optim) are
described in the next section.

3.1. Systems included in reproduction
We included the results for the four main new
systems from the original work (Gu et al., 2022,
2023) in our reproduction study; we abbreviate sys-
tem names as follows: MultiCTG, PriorCTG, Pri-
orCTG+extend, and PriorCTG+optim.

MultiCTG: This is the core new CTG approach
proposed by Gu et al. (2022) which directly
searches for the intersection areas of multiple at-
tribute distributions to achieve control over multiple
control attributes. The attribute space is first es-
timated with an autoencoder structure, then the
intersections are iteratively approached via joint
minimisation of distances to points representing
the controlled attributes.

PriorCTG: This is the core new CTG approach
proposed by Gu et al. (2023), which utilises a form
of latent-space control, more specifically an invert-
ible transformation function, the Normalizing Flow,
that maps the complex distributions in latent space
to simple Gaussian distributions in prior space.

PriorCTG+extend: The extend control strategy
additionally achieves opposite control, as in con-
trastive learning, by using negative weights when
interpolating.

PriorCTG+optim: The optim control strategy ad-
ditionally optimises the intersection of the single
attribute representations in prior space to achieve
multiple-attribute control.

All systems are trained on the IMDb movie re-
views dataset (Maas et al., 2011), the AGNews
dataset (Zhang et al., 2015), and the Jigsaw
Toxic Comment Classification Challenge Dataset
(cjadams, 2017), respectively, for control of senti-
ment, topic and detoxification attributes. Note that
we did not include any of the baseline systems in
the reproduction.

3.2. Evaluation metrics
The metrics in this section are all described in detail
in Gu et al. (2022). The main set of metrics as-
sesses single-attribute control performance (called
‘attribute relevance’ in the original papers), com-
puted as the percentage of outputs that are classi-
fied as having the given intended control attribute
value by a specific classifier.

For Sentiment control performance, the classifier
is DeBERTa (He et al., 2020) finetuned on the Yelp
dataset (Zhang et al., 2015).

For Topic control performance, the classifier
is DeBERTa finetuned on the AGNews dataset
(Zhang et al., 2015) utilizing the portion of dataset
not used during the model’s training.

For Toxicity control performance, there is a dis-
crepancy between what the paper says and what
is in the evaluation script shared on GitHub. Ac-
cording to the former, toxicity is measured with the
Google Perspective API.3 However, the script uses
a toxicity classifier obtained by finetuning DeBERTa
on the Jigsaw Toxic Comment Classification Chal-
lenge Dataset,4 analogous to control performance
assessment for the other control attributes. We ran
the evaluation both with Perspective and with the
DeBERTa classifier, and found that scores obtained
with the latter were closer to the original scores, so
those are what we used.

Multiple-attribute control performance is com-
puted as the average of the single-attribute control
performance scores for the three attributes being
controlled.

Perplexity is calculated by GPT2-large following
the Contrastive Prefix method (Qian et al., 2022).
Note that we used our own implementation as no
code was shared for this.

Distinctness (Li et al., 2016) is computed as
the percentage of distinct n-grams in the contin-
uations generated from a given set of prefixes.
System-level 1-gram, 2-gram, and 3-gram distinct-
ness scores are obtained by averaging over prefix-
level distinctness scores. In multi-control setting,
the average of system-level Distinct-1, 2 and 3 is
computed. Here too we used our own implemen-
tation based on Yu et al. (2021) implementation,
because the code was not shared either by Li et al.
or by Gu et al.

This gives us six main types of metrics (the
three classifier-based metrics, their average (for
multiple-attribute control), perplexity, and distinct-
ness). In Table 1 we additionally give the aver-
age over the individual control performance scores
(Avg. columns) for sentiment, topic and toxicity.

4. Reproduction Work

Our first step was to download the code and model
checkpoints from the authors’ Github and Drive
repositories, and recreate the environments on our
machine with a GPU RTXA6000 with 48GB RAM.

We then re-executed the inference phase of
the experiments involving PriorCTG from Gu et al.
(2023), first those with single-attribute control, i.e.

3https://www.perspectiveapi.com/
4https://www.kaggle.com/c/jigsaw-toxic

-comment-classification-challenge/

https://www.perspectiveapi.com/
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/
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Methods Sentiment↑ (%) Topic↑ (%) Detox.↑ PPL.↓ Dist.-1/2/3↑ (%)Avg. Pos. Neg. Avg. W. S. B. T. (%)
PriorCTG 97.1 99.9 94.3 95.9 95.5 99.3 90.2 98.7 90.7 61 42.0 / 79.7 / 88.4
PriorCTG Repro 98.2 99.9 96.6 94.8 93.4 97.8 88.5 99.5 96.9 59.7 41.9 / 79.5 / 88.4
PriorCTG+extend 99.7 99.9 99.5 97.8 97.9 99.4 94.0 99.8 95.7 61.6 42.4 / 79.4 / 88.1
PriorCTG+extend Repro 99.3 99.9 98.7 98.2 98.2 99.5 95.5 99.8 99.9 60.8 42.3 / 79.2 / 88.1

Table 1: Side-by-side metric results from original work (Gu et al., 2023) and reproduction study for single-
attribute control (last two rows in Table 1 in the original paper). The results of the last two columns are
obtained using our own implementation. For PriorCTG and PriorCTG+extend systems (see Section 3).
Repro=Reproduction results.

Methods Average↑ (%) Sentiment↑ (%) Topic↑ (%) Detoxification↑ (%) PPL.↓ Dist.↑ (%)
MultiCTG 87.4 ± 10.9 86.7 ± 10.5 84.8 ± 14.2 90.7 ± 7.4 31.3 59.0
MultiCTG Repro 88.4 ± 8.3 84.9 ± 11.5 84.5 ± 14.4 95.9 ± 5.5 31.5 59.2
PriorCTG 89.9 ± 8.7 88.0 ± 10.6 87.4 ± 8.5 94.3 ± 3.2 38.9 65.3
PriorCTG Repro 91.1 ± 6.7 88.0 ± 10.2 87.1 ± 11.2 98.3 ± 1.6 38.3 65.2
PriorCTG+optim 92.2 ± 8.6 92.5 ± 8.5 89.3 ± 11.0 94.9 ± 3.4 33.0 61.7
PriorCTG+optim Repro 93.2 ± 7.2 91.8 ± 9.7 89.3 ± 12.4 98.6 ± 1.1 32.5 62

Table 2: Side-by-side metric results from original work (Gu et al., 2022, 2023) and reproduction study for
multiple-attribute control. Results for MultiCTG are from the third to last row in Gu et al. (2022). Original
results for the other two systems are from the last two rows in Table 3 in Gu et al. (2023). The results of
the last two columns are obtained using our own implementation. For system and metrics descriptions
see Section 3). Repro=Reproduction results.

where Topic, Sentiment or Toxicity are being con-
trolled individually, and then those with multiple-
attribute control, where Topic, Sentiment and Toxi-
city are being controlled at the same time.

For multiple-attribute control we also re-executed
the inference phase of the experiments involving
MultiCTG from Gu et al. (2022). This gave us sets
of 35 × 5 = 175 outputs (35 inputs from the PPLM
Prompts test set × 5 repetitions of prompting and
collecting the outputs) for each system/attribute
combination.

Note that as in the original work, outputs are
generated for all values of all controlled attributes
(single-attribute case) or for all combinations
of controlled attribute values (multiple-attribute
case), results for all of which except Toxicity=toxic
(‘Detox(ification)’ in the tables) are reported in the
results tables. In the multiple-attribute case, the
average over different attribute value combinations,
along with the corresponding standard deviation, is
reported.

For the evaluation, we computed the metrics
listed in Section 3. Recall from Section 3.2 that
we used the script provided by the authors for Sen-
timent, Topic and Toxicity control performance as-
sessment. However, we coded our own scripts to
compute Perplexity and Distinct-n, as scripts are
not provided for these. We also use our own code
for the standard deviations in the multiple-attribute
table. For all scripts we use parameters as provided
by the authors.

Note that as a result of some of the evaluation

scripts not being shared, we have two distint repro-
duction situations (which in QRA++ is reflected in
the measurement conditions): (a) for the classifier-
based control-performance measures, we use our
outputs (regenerated by us using the original au-
thors’ code) and evaluate them with the original
authors’ scripts; and (b) for perplexity and distinct-
ness, we use our outputs and our evaluation scripts.
In the former case differences in scores can only
be due to differences in executing the original au-
thors’ code, whereas in the latter case, differences
can be due to both execution and differences in the
evaluation code.

In order to avoid this dual possible source of dif-
ference for perplexity and distinctness scores, we
decided to re-evaluate the original authors’ outputs
with our own script. This means that the scores
in our tables are not the same as in the two orig-
inal papers for these two metrics. But it means
CV* scores and other reproducibility measures are
comparable across all metrics.

5. Side-by-Side Results and QRA++
Assessment

Tables 1 and 2 present side-by-side evaluation re-
sults for the original and reproduction work, for each
of the six metrics from Section 3, plus, in Table 1
only, averages over individual control performance
scores (Avg. columns). Reall that we reevaluated
the original authors’ outputs in terms of Perplexity
and Distinctness (see preceding section).
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System
CV* between original and reproduction scores for each evaluation measure

Sent Sent Sent Topic Topic Topic Topic Topic Detox PPL Dist-1 Dist-2 Dist-3
avg pos neg avg W S B T

Prior-CTG 1.12 0 2.4 1.15 2.22 1.52 1.9 0.8 6.59 2.15 0.24 0.25 0
Prior-CTG+ext 0.4 0 0.8 0.41 0.31 0.1 1.58 0 4.28 1.3 0.24 0.25 0
Average 0.76 0 1.6 0.78 1.27 0.81 1.74 0.4 5.44 1.725 0.24 0.25 0

Table 3: CV* for each pair of original and reproduction metric scores, for the Prior-CTG and Prior-
CTG+extend systems, and the average over both systems.

System CV* between original and reproduction scores for each evaluation measure
Avg Sentiment Topic Detox PPL Distinct-n

Multi-CTG 1.13 2.09 0.35 5.56 0.64 0.34
Prior-CTG 1.32 0.0 0.34 4.14 1.52 0.15
Prior-CTG+optim 1.08 0.76 0.0 3.81 1.52 0.48
Average 1.18 0.95 0.23 4.5 1.23 0.32

Table 4: CV* for each pair of original and reproduction metric scores, for the Multi-CTG, Prior-CTG and
Prior-CTG+optim systems, and the average over all three.

5.1. Type IV results

Regarding Type IV results (findings), here we are
assessing relative performance between systems,
such that each pairwise ranking counts as one find-
ing. Note that statistical significance was not com-
puted in the original work.

For single-attribute control (Table 1), in the origi-
nal work, Prior CTG+extend has higher scores than
PriorCTG according to all metrics except for Per-
plexity and 2-gram and 3-gram Distinctness where
PriorCTG scores are very slightly higher. For Sen-
timent/Pos, scores are identical. In our reproduc-
tion evaluations, these two systems are ranked the
same way in all cases, giving us a perfect propor-
tion of 13/13 findings upheld for this table.

For multiple-attribute control (scores in Table 2),
the same type of analysis gives us a proportion of
18/18 findings upheld (pairwise ranks confirmed).

5.2. Type I results

For Type I results, we computed CV* values for all
individual system/metric level original and repro-
duction scores. We report the individual scores, as
well as the mean per metric.

For single-attribute control (scores in Table 1),
Table 3 shows CV* scores for each pair of original
and reproduction metric scores, for the Prior-CTG
and Prior-CTG+extend systems, and the average
over both systems (last row).

One clear tendency is that the Prior-CTG sys-
tem has better reproducibility scores across the
board than Prior-CTG+extend (except for distinct-
ness metrics where the two systems are tied).

Looking at metric-level differences (‘Average’
row), we can see that Perplexity and (by a smaller

margin) Detoxification Control have lower repro-
ducibility than the other metrics.

For multiple-attribute control (scores in Table 2),
Table 4 shows CV* scores for each pair of original
and reproduction metric scores, for the Multi-CTG,
Prior-CTG and Prior-CTG+optim systems, and the
average over all three (last row). We can see that
here too, the Perplexity and Detoxification Control
metrics have the poorest reproducibility.

We can also see a slight tendency for the classi-
fier scores for the Prior-CTG+optim system to have
better reproducibility than the other two systems
(but not for PPL and Distinct-n), but the picture
is more mixed than for the single-attribute control
systems.

5.3. Type II results

For Type II results we compute Pearson’s correla-
tion coefficients between sets of metric scores in
two ways, (i) for each metric (i.e. how do all the
scores for each metric correlate between original
and reproduction), and (ii) for each system (i.e. how
do all the scores for each system correlate).

For single-attribute control (scores in Table 1),
system-level Pearson’s between all metric results
in the original and reproduction runs is above 0.99
for both Prior-CTG and Prior-CTG+extend. Mean
metric-level Pearson’s is perfect (but note that we
have only two score pairs all of which are ranked
identically).

For multiple-attribute control (scores in Table 2),
system-level Pearson’s between all metric results in
the original and reproduction runs is above 0.99 for
all three systems. Metric-level Pearson’s is above
0.99 for all metrics except the sentiment-classifier
metric which at r = 0.969 is slightly lower than the



129

other metrics. Mean metric-level r is 0.994.

6. Discussion and Conclusion

The main challenges in carrying out our reproduc-
tion study were (i) lack of clarity in the paper with
respect to what the averages and standard devia-
tions in results tables were computed over, and (ii)
discrepancies between the shared code and what
the paper said, e.g. the paper says toxicity was
assessed with Perspective, whereas the shared
evaluation script has a toxicity classifier.

Our quantified reproducibility assessments re-
vealed a high degree of reproducibility at the study
level for Type II and Type IV results. For Type I
results, study-level CV* (computed as the mean of
metric-level means) was 1.154 for single-attribute
control, and 1.402 for multiple-attribute control.
While this compares well to reproducibility results
in human evaluations which very rarely achieve
study-level CV* below 5 in pairwise comparisons of
original study and one reproduction, it does confirm
once again that even with identical code, we cannot
necessarily expect to get the same results.

In terms of metric-level CV*, the Detoxification
control metric had notably worse reproducibility
than the others which may be partly but not entirely
explainable by the fact that only Toxicity=nontoxic
was taken into account here.

In terms of the results that tend to be considered
as most important, Type IV results or findings up-
held, reproducibility was perfect with all pairwise
rankings being identical in the original and repro-
duction experiments.
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Perplexity is calculated using the evaluate library
of HuggingFace5 using GPT-2 Large.

System-level Distinct-n (n=1, 2, 3) is the average
Distinct-n at prefix-level, which is computed as the
number of unique n-grams in the set of generated
outputs with the same prefix over the total amount
of tokens. GPT-2 is used to tokenise the texts.

Table 5 and 6 show Perplexity and Distinct-n re-
sults reported in the original work, the results of the
original study computed using our implementation
and the reproduction using our implementation.
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Methods PPL. (%) ↓ Dist.-1/2/3↑ (%)
PriorCTG 54.3 29.1 / 70.1 / 86.9
PriorCTG using our implementation 61 42.0 / 79.7 / 88.4
PriorCTG Repro 59.7 41.9 / 79.5 / 88.4
PriorCTG+extend 54.6 29.8 / 70.5 / 86.8
PriorCTG+extend using our implementation 61.6 42.4 / 79.4 / 88.1
PriorCTG+extend Repro 60.8 42.3 / 79.2 / 88.1

Table 5: Side-by-side metric results from original work (Gu et al., 2023), original work (Gu et al., 2023)
computed using our own implementation and reproduction study using our own implementation for single-
attribute control (last two rows in Table 1 in the original paper). For PriorCTG and PriorCTG+extend
systems (see Section 3). Repro=Reproduction results.

Methods PPL.↓ Dist.↑ (%)
MultiCTG 28.4 49.5
MultiCTG using our implementation 31.3 59.0
MultiCTG Repro 31.5 59.2
PriorCTG 34.7 55.5
PriorCTG using our implementation 38.9 65.3
PriorCTG Repro 38.3 65.2
PriorCTG+optim 29.6 51.6
PriorCTG+optim using our implementation 33.0 61.7
PriorCTG+optim Repro 32.5 62

Table 6: Side-by-side metric results from original work (Gu et al., 2022, 2023), original work (Gu et al., 2022,
2023) computed using our own implementation and reproduction study using our own implementation
for multiple-attribute control. Results for MultiCTG are from the third to last row in Gu et al. (2022).
Original results for the other two systems are from the last two rows in Table 3 in Gu et al. (2023). For
system and metrics descriptions see Section 3). Repro=Reproduction results.
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