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Introduction

A word’s meaning resides in the heart and soul of its “generator” - people. How do we include human
(personal, social, cultural, situational) context, ethically, into LLMs – the base models of our NLP syste-
ms?

Language modeling in the context of its source [author] and target [audience] can enable NLP systems to
better understand human language. Advances in human-centered NLP have established the importance
of modeling the human context holistically, including personal, social, cultural, and situational factors in
NLP systems. Yet, our NLP systems have become heavily reliant on large language models that do not
capture the human context.

Human language is highly dependent on the rich and complex human context such as (a) who is spea-
king, (b) to whom, (c) where (situation/environment) and (d) when (time and place). It is additionally
moderated by the changing human states of being such as their mental and emotional states.

Current large language models can possibly simulate some form of human context given their large scale
of parameters and pre-training data. However, they do not explicitly process language in the higher order
structure of language – connecting documents to people, the “source” of the language.

Prior work has demonstrated the benefits of including the author’s information using LLMs for down-
stream NLP tasks. Recent research has also shown that LLMs can benefit from including additional
author context in the LM pre-training task itself. Progress in the direction of merging the two successful
parallels, i.e., human-centered NLP and LLMs, drives us toward creating a vision of human-centered
LLMs for the future of NLP in the era of LLMs.

Human-centered large language modeling has the potential to bring promising improvements in human-
centric applications through multiple domains such as healthcare, education, consumerism, etc. Simul-
taneously, this new research focus also brings multitudes of unexplored architectural, data, technical,
fairness, and ethical challenges. With our first edition of the Human-Centered Large Language Mode-
ling (HuCLLM) workshop, we aim to create a platform where researchers can present rising challenges
and solutions in building human-centered NLP models that bring together the ideas of human and social
factors adaptation into the base LLMs of our NLP systems.

We received 35 submissions, of which 18 were accepted for presentation at the workshop. These papers
will be presented at oral and poster sessions on the day of the workshop. The workshop day will also
include keynote talks and a panel session on human-centered large language modeling. We thank all
our participants and reviewers for their work. We hope you enjoy the first edition of HuCLLM and the
research published in these proceedings.

Nikita Soni, Lucie Flek, Ashish Sharma, Diyi Yang, Sara Hooker, H Andrew Schwartz

HuCLLM 2024 Chairs
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Abstract

Large Language Models (LLMs) can gener-
ate text by transferring style attributes like
formality resulting in formal or informal text.
However, instructing LLMs to generate text
that when spoken, is more intelligible in an
acoustically difficult environment, is an under-
explored topic. We conduct the first study to
evaluate LLMs on a novel task of generating
acoustically intelligible paraphrases for better
human speech perception in noise. Our ex-
periments in English demonstrated that with
standard prompting, LLMs struggle to control
the non-textual attribute, i.e., acoustic intelli-
gibility, while efficiently capturing the desired
textual attributes like semantic equivalence. To
remedy this issue, we propose a simple prompt-
ing approach, prompt-and-select, which gen-
erates paraphrases by decoupling the desired
textual and non-textual attributes in the text
generation pipeline. Our approach resulted in
a 40% relative improvement in human speech
perception, by paraphrasing utterances that are
highly distorted in a listening condition with
babble noise at signal-to-noise ratio (SNR) −5
dB. This study reveals the limitation of LLMs
in capturing non-textual attributes, and our pro-
posed method showcases the potential of using
LLMs for better human speech perception in
noise.1

1 Introduction

Paraphrase generation is the task of rephrasing a
sentence while retaining its meaning (Bhagat and
Hovy, 2013). Humans perform paraphrasing in spo-
ken conversations, to enable their listeners to per-
ceive spoken messages as intended (Bulyko et al.,
2005; Bohus and Rudnicky, 2008). Motivated by
human speech production strategies, paraphrasing
has also been applied to speech synthesis systems,
to enhance the quality, naturalness (Nakatsu and

1Our code and data are available at https://github.
com/uds-lsv/llm_eval_PI-SPiN.

White, 2006; Boidin et al., 2009), and intelligibil-
ity of synthetic speech, especially in challenging
acoustic conditions (Zhang et al., 2013). Recent
explorations on why certain sentences are more in-
telligible than their paraphrases showed that, the
observed intelligibility gain in a noisy listening en-
vironment is attributed to the rephrasing, which
introduces more acoustic cues that survived the
masking effect of the noise (Chingacham et al.,
2021, 2023). In other words, the enhanced speech
perception with paraphrasing is driven by noise-
robust acoustic cues.

The potential of paraphrasing is however, seldom
used to build human-like spoken dialogue systems
that are adaptive to human listeners’ perception er-
rors in noise, presumably due to the limited investi-
gations to generate paraphrases that are acoustically
more intelligible in a noise condition. Prior studies
relied on human annotations to identify the ideal
paraphrase among a set of candidates (Nakatsu and
White, 2006; Zhang et al., 2013; Chingacham et al.,
2023), with little discussion on generating intelli-
gible paraphrases. This raises the question of how
to generate text that is semantically equivalent to
and acoustically more intelligible than the given
input sentence, for a noisy environment. We refer
to this task as Paraphrase to Improve Speech
Perception in Noise (PI-SPiN).

This task is particularly interesting in the context
of generative LLMs, which have shown incredible
performance in natural language generation (NLG)
tasks such as paraphrase generation and dialogue
generation (Radford et al., 2019; Wei et al., 2022;
Li et al., 2024). Moreover, recent studies have
demonstrated LLMs’ capability to control text gen-
eration for a wide range of style attributes like sen-
timent, syntax, formality, and politeness (Zhang
et al., 2023; Sun et al., 2023a). PI-SPiN differs
from those controllable text generation problems,
as it aims to generate text that satisfies the desired
textual attributes (e.g., semantic equivalence), in

1
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…

step1: prompt LLM to generate multiple paraphrases.
step2: select the best candidate based on the pairwise ratio of STOI (PWR-STOI).

Generate a simple, intelligible, and spoken-styled 
paraphrase with 10-12 words for the given input 
sentence: I have a part-time job at a law firm.

LLM

standard prompting

prompt-and-select

paraphrase

paraphrase 1

paraphrase 2

…

paraphrase N

Generate N simple, intelligible, and spoken-styled 
paraphrases with 10-12 words for the given input 
sentence: I have a part-time job at a law firm.

LLM

Figure 1: A schematic representation of the prompt-and-select and standard prompting approach to generate
acoustically intelligible paraphrase in a noisy environment. A speech intelligibility metric, short-time objective
intelligibility measure (STOI) is employed to select the paraphrase that is more likely to improve speech perception.

addition to the non-textual attribute (i.e. acoustic
intelligibility), which is hard to describe textually.

To explore the potential of LLMs in PI-SPiN,
we proposed to evaluate LLMs’ inherent capability
to generate acoustically intelligible paraphrases,
without any model fine-tuning. Through standard
prompting methods like zero-shot learning (ZSL),
we found that the model was able to capture textual
attributes, while consistently struggling to improve
acoustic intelligibility. We also observed that in-
creasing the description of the desired non-textual
attribute in the prompt only confuses the model,
and it may even lead to a deterioration in textual
attributes that were achievable otherwise.

To effectively utilize LLMs for generating acous-
tically intelligible paraphrases, we propose a sim-
ple approach called prompt-and-select, which
guides paraphrase generation by introducing the
desired non-textual attribute in a post-processing
step (see Figure 1). It is a two-step process begin-
ning with prompting the LLM to generate multiple
candidates and then selecting the best candidate
based on acoustic intelligibility, which is hard to
capture in textual mode alone. By conducting a hu-
man evaluation with native English listeners, who
have no hearing impairments, we verified that the
LLM-generated paraphrases via prompt-and-select
approach are indeed more intelligible than original
sentences, in a listening environment with babble
noise at SNR −5 dB.2

2See definitions of babble noise and SNR in Appendix A.

Our main contributions are as follows:

• We conduct an elaborate study on the evalua-
tion of LLMs on a novel task called PI-SPiN.

• Our results illustrate the weakness of standard
textual prompting to control a non-textual at-
tribute – acoustic intelligibility.

• Our proposed approach prompt-and-select is
an effective solution to generate paraphrases
that are more acoustically intelligible.

2 Related Work

Acoustic Intelligibility. Speech perception has
been a long-standing research topic in speech
science (Kalikow et al., 1977; Luce and Pisoni,
1998; McArdle and Wilson, 2008), which con-
tributed towards a better understanding of human
(mis)hearing. More specifically, several human per-
ception experiments were conducted to investigate
the intelligibility of speech tokens such as vow-
els (Pickett, 1957; Cutler et al., 2004), consonants
(Weber and Smits, 2003; Jürgens and Brand, 2009),
words in isolation (Luce and Pisoni, 1998; Clopper
et al., 2010; Wilson and Cates, 2008), words in con-
text (Kalikow et al., 1977; Uslar et al., 2011; Chin-
gacham et al., 2021), especially in noisy environ-
ments. While several studies showcased the influ-
ence of linguistic characteristics such as predictabil-
ity (Kalikow et al., 1977), syntactic complexity (Us-
lar et al., 2011; Carroll and Ruigendijk, 2013; van
Knijff et al., 2018), and lexical features (Luce and
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Pisoni, 1998; McArdle and Wilson, 2008), on the
intelligibility of utterances in noise, there is limited
explorations in utilizing the linguistic potential to
improve acoustic intelligibility in noise.

We share the motivation to improve speech per-
ception in noise using paraphrases with early stud-
ies (Cox and Vinagre, 2004; Nakatsu and White,
2006; Zhang et al., 2013; Chingacham et al., 2023).
Nakatsu and White (2006) proposed to train a re-
ranker to select the paraphrases that are more likely
to sound natural, when synthesized. They gener-
ated multiple paraphrases for each sentence mainly
by modifying the word order and replacing a few
lexical units in the original sentence. On the other
hand, Zhang et al. (2013) proposed an objective
measure to distinguish the intelligibility difference
among paraphrases that are of the same syntactic
type, thereby restricting the type of sentential para-
phrases. More recently, Chingacham et al. (2023)
investigated the potential of improving intelligibil-
ity by considering a larger set of paraphrase types,
which are generated using modern paraphrasing
models. However, our work is distinct from theirs
as we explore LLMs’ inherent ability to generate
acoustically intelligible paraphrases.

LLM Evaluation. Given the rapid growth of
LLMs such as ChatGPT and GPT-4 (OpenAI,
2023), there has been a surge of research inter-
est towards a holistic evaluation of their capabil-
ities (Chang et al., 2024). Recent studies have
attempted to examine their performance across di-
verse tasks, such as machine translation (Hendy
et al., 2023; Zhu et al., 2023), text summariza-
tion (Yang et al., 2023; Pu and Demberg, 2023),
etc; and also aspects of multilinguality (Lai et al.,
2023b; Ahuja et al., 2023) and multimodality (Bang
et al., 2023). Close to our work, there have been
a few studies looking into the controllable gener-
ation ability of LLMs. Lai et al. (2023a) explore
the potential of ChatGPT as a text-style transfer
evaluator. Sun et al. (2023b) present a systematic
study on ten controllable generation benchmarks.
Notably, their control factors are derived from the
language perspective (e.g., sentiment and number),
whereas our work pioneers the investigation of the
potential of LLMs as an acoustically intelligible
paraphrase generator.

3 PI-SPiN Task Description

Typically, the paraphrase generation task focuses
on generating text that is semantically equivalent

to the given input text. However, the PI-SPiN task
aims at generating text that is semantically equiv-
alent to, as well as, acoustically more intelligible
than the original input text, in an adverse listening
condition.

For example, consider the following paraphrase
triplet (s1, s2, s3) from the Paraphrases-in-Noise
(PiN) dataset3 (Chingacham et al., 2023):

s1: “i was raised in a generation we did need all
those things.”

s2: “we did need all those things when i was a
child.”

s3: “we did need all those things when i was
young.”

s1 is a sentence retrieved from a spoken cor-
pus, while s2 and s3 are outcomes of a paraphrase
generation pipeline. Though all sentences are se-
mantically equivalent to each other, they exhibited
a significant difference in acoustic intelligibility
under noise. More precisely, when these sentences
were uttered in a difficult listening condition with
babble noise at an SNR of −5 dB, humans per-
ceived s2 with fewer errors in perception compared
to s1, while s3 was perceived much worse than
s1. The better intelligibility of utterances can be
attributed to both linguistic features like predictabil-
ity (Kalikow et al., 1977), syntactic structure (Uslar
et al., 2013), as well as acoustic features like the un-
derlying sounds of the utterance (Luce and Pisoni,
1998). In the more recent investigations on the
intelligibility difference among paraphrases (Chin-
gacham et al., 2023), it was shown that the better
intelligibility of s2 in such high noise environments
is mainly driven by the noise-robust acoustic cues
that are defined by both the constituting sounds as
well as the noise signal. PI-SPiN aims to gener-
ate paraphrases (like s2) that are likely to improve
human speech perception in such noisy conditions.

Speech intelligibility in noise is better when sen-
tences are simple (Carroll and Ruigendijk, 2013),
shorter (Coene et al., 2016), and linguistically
more predictive (Valentini-Botinhao and Wester,
2014). However, the intelligibility of an utterance
in noise is not only driven by its underlying text.
The perception is also influenced by the acoustic
cues that survived the masking effect of the back-
ground noise (Cooke, 2006). Hence, PI-SPiN is a

3See Appendix B for more samples.
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text generation task, that involves both textual at-
tributes like semantic equivalence and a non-textual
attribute that captures the noise-robustness of an
utterance.

To generate the acoustic realization of a sen-
tence, we used the Tacotron2 text-to-speech (TTS)
system, which demonstrated performance on par
with that of a professional voice talent (Shen et al.,
2018). More specifically, we used the Tacotron2
model4 pre-trained on the LJSpeech dataset by
SpeechBrain (Ravanelli et al., 2021). Further, to
create the noise-distorted signals, the clean audio
signals underwent a noise-mixing procedure us-
ing an open-sourced tool, audio-SNR.5 The bab-
ble noise from the NOISEX-92 dataset (Varga and
Steeneken, 1993) was mixed with clean audio at
SNR−5 dB. To determine whether the generated
text satisfies the desired outcome, we primarily re-
lied on automatic metrics, which are discussed in
detail in the following section.

4 Experimental Setup

Model. For all our experiments, we used Chat-
GPT6 (Ouyang et al., 2022), which is one of the
most popular LLMs. It has shown impressive per-
formance on paraphrase generation with textual
style attributes, while its ability on acoustically in-
telligible paraphrasing remains unclear. We adopt
default parameters (temperature=1.0, top_p=1.0)
for the API calls.

Dataset. The evaluation dataset consists of 300
short sentences, which are spoken in a conversa-
tional scenario. The dataset is created by filter-
ing out sentences with 10 to 12 words from the
top 1000 lines of the speech corpus, Switchboard
(Godfrey et al., 1992).

Metrics. Human evaluation is the gold standard
for most text-generation tasks. However, human
evaluation is expensive and time-consuming, which
limits the scale of evaluation. Thus, we perform
an automatic evaluation of the whole evaluation
dataset and a human evaluation of a subset of the
dataset. For automatic evaluation, we employed
a range of metrics, which determine the semantic
equivalence between the input and output texts, as
well as, the linguistic and acoustic features that
contribute to the acoustic intelligibility in noise.

4https://huggingface.co/speechbrain/
tts-tacotron2-ljspeech

5https://github.com/Sato-Kunihiko/audio-SNR
6Version: gpt-3.5-turbo

1. Semantic equivalence. Semantic Textual Simi-
larity (STS) measures how similar two texts are
in terms of their meaning. In the past, several
STS scores were proposed (Bär et al., 2012; Han
et al., 2013). More recently, Zhang et al. (2020)
proposed BERTScore, which has shown encour-
aging results in correctly identifying the semantic
equivalence/distance between two texts. For all our
evaluations, the STS score is the BERTScore-f1
calculated using the distilled BERT model (Sanh
et al., 2019). The higher the STS value, the better
the semantic equivalence between two texts.

2. Lexical deviation. Lexical deviation (LD)
shows to what extent two texts are similar or differ-
ent in terms of their surface form. The difference
in wording between the two texts is particularly
interesting for paraphrase generation. Bandel et al.
(2022) showed that the deviation in the linguistic
forms of paraphrases is one of the critical factors
that decides its quality – high-quality paraphrases
exhibit high LD, as well as, high STS as they differ
lexically, yet maintain the semantics. As defined
in Liu and Soh (2022), we used the overlap in lexi-
cal tokens of the uncased lemmatized form of two
texts to capture the lexical deviation between the
input sentence and the model-generated paraphrase.
The higher the LD score, the more difference in
paraphrased wording.

3. Utterance length. It is a textual attribute
that influences acoustic intelligibility, as it was
observed that shorter sentences introduce fewer
misperceptions in noise (Chingacham et al.,
2023). Though paraphrases of shorter lengths
are more likely to be perceived correctly, shorter
paraphrases may risk missing some semantics of
the original text. Hence, it is critical to evaluate
utterance length along with semantic equivalence.
To measure utterance length in terms of phonemes
(i.e. PhLen), we used a grapheme-to-phoneme
model7 to generate the phonemic transcript of a
sentence. Further, to compare the length within
each input-output pair, the pairwise ratio of PhLen
is calculated by dividing the length of the model
output by that of its input sentence (denoted as
PWR-PhLen). Thus, when the model-generated
text is similar to the input text, PWR-PhLen
value is close to 1.0, while a value much less
than 1.0 reflects that the model-generated text is
considerably shorter than the original text.

7https://pypi.org/project/g2p-en/
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Prompt-ID Prompt

pzsl−low Generate an intelligible paraphrase for the following input sentence: {input text}

pzsl−med Generate a simple, intelligible, and spoken-styled paraphrase with 10-12 words
for the following input sentence: {input text}

pzsl−high For a noisy listening environment with babble noise at SNR -5, generate a simple,
intelligible, and spoken-styled paraphrase with 10-12 words, for the following input
sentence: {input text}

Table 1: Three prompts used in standard prompting, with an increasing level of detail in the task objective. Bold-
faced words are task-specific keywords in the prompt statement.

4. Linguistic predictability. Several studies in the
past have shown that when lexical tokens are more
predictable from the context, word misperceptions
are less likely to occur (Kalikow et al., 1977; Uslar
et al., 2013; Valentini-Botinhao and Wester, 2014;
Schoof and Rosen, 2015; Bhandari et al., 2021).
Thus, we considered the perplexity (PPL) score
determined by a pre-trained language model, GPT-
28 (Radford et al., 2019) to estimate the linguistic
predictability of a sentence. To compare the lin-
guistic predictability among input and output texts,
the pairwise ratio of the perplexity is calculated by
dividing the PPL of model-generated text by the
input sentence PPL (denoted as PWR-PPL). Higher
PPL scores indicate lesser linguistic predictability.
Thus, a PWR-PPL value less than 1.0 indicates that
the model-generated text is more predictable than
the input text.

5. Acoustic Intelligibility. The acoustic intelli-
gibility of an utterance in a noisy environment is
primarily driven by the acoustic cues that survived
the energetic masking of the noise – utterances
with better noise-robust acoustic cues are better
perceived in noise (Cooke, 2006; Tang and Cooke,
2016). We use the Speech Intelligibility (SI) metric,
STOI (Taal et al., 2010), to capture the acoustic in-
telligibility of an utterance. STOI is a non-textual
attribute, as it measures the mean correlation of
short-time envelopes between the clean and noisy
audio signals of an utterance. The higher the STOI
score, the higher the noise-robustness of an utter-
ance. Similar to other pairwise ratios, the pair-
wise ratio of STOI (PWR-STOI) is calculated by
dividing the STOI of model-generated text by the
input text STOI. Thus, PI-SPiN aims at generating
paraphrases with PWR-STOI values above 1.0 in-
dicating that the model output is acoustically more
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intelligible than the input sentences.
All pairwise ratios range between 0.0 and +∞,

while STS and LD range between 0.0 and 1.0. For
the evaluation, we report each of these metrics,
averaging across the evaluation dataset.

5 Evaluating LLMs for PI-SPiN

In our experiments, an LLM is prompted to gen-
erate a paraphrase for each input sentence in the
evaluation set with a prompt template: {prompt
prefix} + {input text}. In the following sec-
tion, we described two prompting methods that we
employed and evaluated for the task.

5.1 Standard Prompting
In this setting, the model is prompted to gener-
ate an intelligible paraphrase given an input sen-
tence in a zero-shot manner. As shown in Table 1,
we investigate three types of prompts, which de-
scribe the desired attributes with different granular-
ity: low (pzsl−low), medium (pzsl−med), and high
(pzsl−high). With the increasing number of task-
specific tokens in the prompt, the task description is
more detailed. Prompts are designed by including
keywords like ‘paraphrase’ and ‘intelligible’ that
represent the desired outcome. Additionally, a few
more tokens like ‘10-12 words’ and ‘spoken-styled’
were used in the prompt to ensure that the gen-
erated paraphrase adheres to the length and style
of input sentences. We hypothesize that with addi-
tional task-oriented tokens in the prompt, the model
will steer the paraphrase generation by optimizing
the intelligibility.

Results and Analysis Table 2 summarizes the
results of all three prompts that we used in stan-
dard prompting. We observed that ChatGPT can
generate high-quality paraphrases as indicated by
high scores for semantic equivalence and lexical
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Prompt-ID STS↑ LD↑ PWR-PhLen↓ PWR-PPL↓ PWR-STOI ↑

pzsl−low 0.852 0.699 1.343* 1.086 0.992
pzsl−med 0.860 0.668 1.119* 1.042 0.991
pzsl−high 0.837 0.729 1.250* 1.236* 1.005

Table 2: An automatic evaluation of paraphrases generated by different prompts. Pairwise ratios (PWR) significantly
different from 1.0 (p < 0.05) are marked with an asterisk (*). They indicate the significant difference between the
model-generated output and the input text.9

Prompt-ID Sentences

— {input text} I also have a part-time job at a law firm.
pzsl−low {output} Additionally, I am employed part-time at a law firm.
pzsl−med {output} I work part time at a law firm as well.
pzsl−high {output} In a busy environment with loud chatter, I work part-time at a law office.

— {input text} Is your father’s cafe, one that you could cater out of?
pzsl−low {output} Can you use your father’s cafe as a location for catering purposes?
pzsl−med {output} Could you use your father’s cafe as a catering venue?
pzsl−high {output} Can your dad’s café be used for catering in a noisy setting?

— {input text} I believe that the cure for polio is already founded.
pzsl−low {output} I hold the belief that the remedy for polio has already been discovered.
pzsl−med {output} I think the polio cure has already been discovered.
pzsl−high {output} I think polio’s cure has already been discovered in a noisy setting.

— {input text} I think you can do that for a little while.
pzsl−low {output} I believe you have the capability to do that temporarily.
pzsl−med {output} I believe you can manage that temporarily.
pzsl−high {output} I believe you can manage it temporarily amidst the loud chatter.

Table 3: A qualitative analysis of model-generated text, {output}, for a given {input text} under three standard
prompts: pzsl−low, pzsl−med, pzsl−high. The prompt pzsl−high generates several tokens that are irrelevant (bold-
faced words) to the task objective.

deviation (i.e. STS and LD). More importantly,
we found that the length of paraphrases generated
by the prompt pzsl−med (PhLen = 42.08) is con-
siderably shorter than those generated with the
prompt pzsl−low (PhLen = 50.67), indicating the
effectiveness of additional keywords in pzsl−med

to control a textual attribute – length. However,
the non-textual attribute, acoustic intelligibility (i.e.
STOI) of model-generated paraphrases is not sig-
nificantly different from their corresponding input
sentences as reflected by the PWR-STOI scores
being not significantly different from 1.0. Further-
more, paraphrases generated with a detailed task
description in pzsl−high, also resulted in a simi-
lar observation – LLM struggles to improve the
non-textual attribute while controlling textual
attributes appropriately.

9See Appendix C for the absolute scores of different met-
rics.

Compared to pzsl−low and pzsl−med, pzsl−high

resulted in worse performance, indicated by con-
siderably longer output texts despite prompting to
control length (PWR-PhLen = 1.250) and output
texts that are linguistically less predictive (PWR-
PPL = 1.236). It is also reflected in a higher lexical
deviation (LD = 0.723) at the expense of lower tex-
tual similarity between input and output (STS =
0.837). To have a deep understanding of its behav-
ior, we conducted a qualitative analysis as shown
in Table 3. We noticed that the additional context
of the non-textual attribute confused the model
in understanding the task objective and resulted
in model hallucination. In sum, using standard
prompting may not effectively elicit the model’s
ability to generate paraphrases with the intended
non-textual attribute, which is beyond the model’s
comprehension.10

10In Appendix D, we also conducted a preliminary study

6



1 6 12
0.60

0.70

0.80

0.90
Sc

or
e

STS

1 6 12
0.60

0.65

0.70

LD

1 6 12
0.60

0.80

1.00

1.20

Sc
or

e

PWR-PhLen

1 6 12
0.60

0.80

1.00

1.20
PWR-PPL

1 6 12
0.60

0.80

1.00

1.20
PWR-STOI

(a)

1 6 12
0.60

0.70

0.80

0.90
Sc

or
e

STS

1 6 12
0.60

0.65

0.70

LD

1 6 12
0.60

0.80

1.00

1.20

Sc
or

e

PWR-PhLen

1 6 12
0.60

0.80

1.00

1.20
PWR-PPL

1 6 12
0.60

0.80

1.00

1.20
PWR-STOI

(b)
Figure 2: An automatic evaluation of the standard prompting (n = 1) and the proposed prompt-and-select (n > 1)
approach. The X-axis is the number of candidates generated (n) and the Y-axis is the mean scores (with error bars at
95% confidence interval). The reference line in Fig. (b) marks when the input text feature is the same as the output
text feature. Increasing n improves the pairwise ratio of acoustic intelligibility (PWR-STOI), but it comes with a
trade-off on semantic equivalence (STS).11

5.2 PAS: Prompt-and-Select
Prior studies on dialogue generation (Boidin et al.,
2009; Nakatsu and White, 2006; Weston et al.,
2018) have demonstrated the utility of a simple
yet effective pipeline of controlling text generation
in two steps: first generating a candidate set of dia-
logues, and then selecting the best candidate based
on the task requirement. Similarly, we proposed to
decompose the current task into a two-step process:
(1) prompt the LLM to generate multiple output
texts that are semantically equivalent to the input
text and (2) select the best candidate based on the
acoustic intelligibility.

Our approach is similar to the prompt-and-
rerank method proposed in (Suzgun et al., 2022).
However, our approach deviates from theirs mainly
in two ways: (1) instead of using beam search at
the decoding phase, we propose to utilize the poten-
tial of an LLM to generate multiple (n) candidates
that exhibit the desired textual attributes and (2) the
best candidate selection is based on a metric (i.e.
PWR-STOI) that represents a non-textual attribute,
which is not considered in prior studies.

For the first step of paraphrase generation, we
perform zero-shot prompting with an appropri-
ate task description, pzsl−med. Thus, pzsl−med is
the prompt that generates exactly one candidate
and involves no selection; it is also referred to
as ppas(n=1). However, to generate multiple para-
phrases (eg: n = 6), the prompt statement can be
simply modified to include the n value, as shown
below

• Generate 6 simple, intelligible, and spoken-
styled paraphrases with 10-12 words for the

on in-context learning, suggesting that demonstrations are not
helpful in capturing the non-textual attribute.

11See Appendix C for the absolute scores of different met-
rics with varying numbers of candidates.

given input sentence: {input text}

Following the creation of the candidate set, STOI
scores are calculated for all model-generated text
as well as the input text, by first synthesizing the
clean utterances and then mixing babble noise at
SNR −5 dB. Finally, the candidate with the highest
PWR-STOI is selected as the model output.

Results and Analysis We begin our analysis
by comparing the results of standard prompting
(n = 1) with the PAS approach, involving 6 can-
didates (n = 6). As shown in Figure 2a, PAS
showcased a high quality of paraphrase generation
as indicated by high STS and high LD, similar to
the standard prompting setup. Similarly, Figure 2b
illustrates that other textual attributes like linguistic
predictability (PWR-PPL = 1.056) and utterance
length (PWR-PhLen = 1.192) of the PAS approach
resulted in similar outcomes of the standard prompt-
ing method – output texts are a bit longer than input
texts, while their linguistic predictability scores
are similar. Importantly, compared to the stan-
dard prompting, the prompt-and-select approach
yielded a noticeably high PWR-STOI (µ = 1.074,
p < 0.05), which is significantly above 1.0. This
indicates that the model-generated text is consider-
ably more intelligible than their corresponding in-
put sentences in the given noise condition. We can
see more clearly from Figure 2b that PAS (n = 6)
leads to a relative improvement of 8.4% in PWR-
STOI compared to the standard prompting (n = 1).
Our findings suggest that introducing the desired
non-textual attribute in a post-processing step is
a potential framework to generate desired text
with multi-modal behavior.

This raises a follow-up question of whether gen-
erating more candidates in the first step further
improves the overall PWR-STOI of generated para-
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Subset STS↑ LD↑ PWR-PhLen ↓ PWR-PPL ↓ PWR-STOI ↑ PWR-Sent-Int ↑

top30 0.831 0.737 1.189* 1.428 1.22* 1.70*
random30 0.848 0.683 1.157* 1.314 1.07* 1.06

Table 4: The automatic and human evaluation of text generated with ppas(n=6). Evaluation on two subsets: top
30 pairs with highest PWR-STOI (top30) and randomly selected 30 pairs (random30). PWR-Sent-Int captures the
pairwise ratio of human speech perception in noise. * marks values significantly above 1.0 (p < 0.05).

phrases. To this end, we modify the number of can-
didates (n) in the prompt statement to double the
candidate pool size. We found that by increasing
the candidate set, there is an improvement in acous-
tic intelligibility. However, when n is increased
from 6 to 12, there was only a limited improve-
ment of 1.6% in PWR-STOI. On the other hand,
we observed that textual attributes like linguistic
predictability and lexical deviation are not signifi-
cantly different under varying n values.

Interestingly, the pair-wise ratio of sentence
length slightly increased, with more choices in
the candidate selection; however, the overall PWR-
PhLen in this approach is still below the standard
prompting setup with no tokens to control length
(pzsl−low). Increasing n from 6 to 12 slightly re-
duced the overall semantic equivalence between
the model input and output paraphrase. This in-
dicates that the choice of n introduces a trade-off
between the improvement in acoustic intelligibility
(PWR-STOI) and the overall semantic equivalence
(STS) and one has to choose n considering this
trade-off between the gain in non-textual attribute
and the need for semantic equivalence.

5.3 Human Evaluation
In addition to the evaluation with automatic metrics,
we also conducted a human evaluation to verify
whether the model output in the PAS setup (using
ppas(n=6)) is indeed more intelligible than their cor-
responding input sentences. For the human percep-
tion experiment, we created two subsets of the eval-
uation dataset of 300 pairs: random30 and top30.
random30 is a set of 30 pairs randomly selected
from the evaluation dataset, while top30 is the top
30 input-output pairs that exhibited the larger im-
provements in STOI scores.

We followed the experiment design of Chin-
gacham et al. (2023) to capture the human speech
perception of an utterance in a (noisy) listening
setup. After synthesizing the noisy utterances of
each sentence using a TTS (Shen et al., 2018) and a
noise-mixing tool (audio-SNR), participants were

asked to listen and transcribe each sentence. Every
utterance in the dataset was listened to by six dif-
ferent participants. For each listening instance, the
edit distance between the phonemic transcriptions
of the actual and transcribed text is measured to
determine the rate of correct recognition. Further-
more, the sentence-level intelligibility (Sent-Int) of
each utterance is calculated by averaging the cor-
rect recognition rates exhibited by the six listeners.

The perception experiment was conducted with
24 native English listeners with no hearing im-
pairments (14 females and 10 males; average age
= 30.71). After data collection, we calculated
the pairwise ratio of sentence-level intelligibility
(PWR-Sent-Int) by dividing the Sent-Int scores of
the output paraphrase by their corresponding input
sentence. A mean score of PWR-Sent-Int signifi-
cantly above 1.0 indicates that the model-generated
paraphrase is significantly more intelligible than
the input sentence, in a given listening condition.

Results and Analysis As illustrated in Table 4,
top30 items signify that the model-output para-
phrases have considerably improved the human
perception in a noisy listening condition. We ob-
served that the overall human speech perception
of model-output paraphrases (Sent-Int = 0.66) was
considerably higher than the input sentences (Sent-
Int = 0.47), introducing a 40% relative gain in the
overall intelligibility. This is also reflected in the
PWR-Sent-Int score that is significantly above 1.0.

We observed the PWR-Sent-Int of random30 is
not significantly above 1.0, even though the PWR-
STOI is significantly above 1.0. With further anal-
ysis of two subsets, we found that the mean STOI
of input sentences in top30 (µ = 0.507) is sig-
nificantly less than random30 (µ = 0.561). This
means that random30 consists of sentences that
are better intelligible in noise. Also, we observed
a strong negative correlation (r = −0.442, p <
0.001) between the STOI of input sentences and
the gain in intelligibility (PWR-Sent-Int), which
highlighted the limited benefits of paraphrasing
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input sentences in random30. However, top30 con-
sists of all input sentences, which are more likely
to benefit from paraphrasing in noisy listening con-
ditions and they reflected the same in the human
evaluation. We conclude with the observation PAS
is a simple yet effective solution to alleviate the
struggles of LLM to generate text with textual and
non-textual attributes, without model fine-tuning.

6 Conclusion

In this work, we evaluate LLMs on acoustically
intelligible paraphrase generation for better human
speech perception in noise. Our results demon-
strate the limitations of LLMs in controlling text
generation with a non-textual attribute – acoustic
intelligibility. To alleviate the struggles of LLMs
in generating text that satisfies both textual and
non-textual attributes, we proposed a simple yet
effective approach called prompt-and-select. With
human evaluation, we found that when the origi-
nal utterances are highly prone to misperceptions
in noise, prompt-and-select can introduce 40% of
relative improvement in human perception. We
hope the findings of this work inspire further explo-
rations to control LLMs’ text generation with differ-
ent real-world context cues, thereby building more
human-like agents. For future work, we could con-
sider two approaches to improve LLMs on this task:
1) fine-tuning LLMs with a large parallel dataset
consisting of sentences and their corresponding
intelligible paraphrases, and 2) incorporating the
acoustic representation of the utterances to control
the paraphrase generation.

Limitations

The proposed “prompt-and-select” approach relies
on the efficacy of STOI scores to identify the best
candidate which is more likely to be perceived cor-
rectly in noise. In other words, this approach re-
quires a metric that accurately estimates the de-
sired non-textual attribute. This could be a limita-
tion for problems that require human annotations
for candidate selection. Additionally, the current
approach introduces an overhead in computation
and inference time, due to multiple generations and
STOI calculation that involves speech synthesis and
noise-mixing procedure. Further investigations are
required to study the trade-off between the benefits
of paraphrasing and the cost of additional resources.
Moreover, our study only evaluated ChatGPT, one
of the representative LLMs, due to budget and re-

source constraints. We believe that a holistic eval-
uation covering more open-source models, such
as Mistral (Jiang et al., 2023) and Llama 3 (Meta,
2024), will be beneficial to deepen our understand-
ing of LLM capabilities.

Ethics statement

In this work, generative LLMs are evaluated for a
new task without model fine-tuning. It is an im-
pactful step to democratize LLMs for research fa-
cilities with limited data and computing resources.
We conducted a human evaluation on Prolific, en-
suring that all participants were paid (9 GBP) for
their service, considering the recommended min-
imum wage per hour in the UK, in 2023. Also,
we ensured to provide an inclusive environment
for our participants in the perception experiment,
providing non-binary options to mark their gender
identity.
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A Definitions

Babble Noise. It is one of the most commonly oc-
curring noise types in the real world (Miller, 1947).
Typically, it is the noise that exists in a cafeteria or
other crowded environments, wherein individuals
engage in conversations in the backdrop of other
conversations. The simultaneous speech produced
by several individuals in the background masks the
target speech and could hinder listening. The bab-
ble noise in the NOISEX-92 database that we use in
this work is a recording of 100 people speaking in
a canteen (Varga and Steeneken, 1993; Deshpande
and Holambe, 2009).

Signal-to-Noise Ratio. To measure the noise
level, a commonly used metric is the signal-to-
noise ratio (SNR) (Taguchi, 1986). SNR represents
the ratio of the power of a clean (undistorted) sig-
nal and a noise signal, which are combined to form
the distorted signal. Simply put, it is a fraction of
powers as defined in Equation (1). It is commonly
measured on a logarithmic scale and referred to in
units of decibels (dB), as defined in Equation (2).
The power of a signal is the sum of the absolute
squares of signal magnitudes averaged across the
time domain.

SNR =
Psignal

Pnoise
(1)

SNRdB = 10 log10(SNR)

= 10 log10(
Psignal

Pnoise
) (2)

When a clean speech signal is mixed with a noise
signal with equal power, the SNR of the resultant
distorted speech is 0 dB. Similarly, when the power
of the clean signal is higher than that of the noise,
the SNR of the resultant signal is positive (> 0 dB).
Higher SNR scores indicate better audibility. On
the other hand, when the noise power is more in the
processed signal, the SNR value is negative (< 0
dB).

B More Samples from the PiN Dataset

In Table 8, we provide more paraphrase triplets
from the PiN dataset.

C Absolute Scores

We provide absolute scores for different evalua-
tion metrics in Table 5 in addition to their pairwise
ratios.

Prompt-ID PhLen PPL STOI

pzsl−low 50.67 159.95 0.570
pzsl−med 42.08 165.56 0.569
pzsl−high 46.68 193.85 0.577
ppas(n=6)

44.67 182.77 0.617
ppas(n=12)

44.88 184.52 0.627
picl 47.27 146.71 0.573

{input text} 38.02 236.65 0.577

Table 5: Absolute scores for utterance length (PhLen),
linguistic predictability (PPL), and acoustic intelligibil-
ity (STOI) of {input text} and generated outputs by
different prompts.

D In-context Learning

Prior research has shown that LLMs can efficiently
learn to control text generation with demonstra-
tions and perform better than just providing a task
description (Brown et al., 2020). Thus for the in-
context learning (ICL) setup, the input prompt is
modified to include a set of exemplars that repre-
sent the desired model behavior. In other words, to
instruct the model to generate acoustically intelli-
gible paraphrases in an ICL setting requires a set
of sentences and their corresponding paraphrases
that are acoustically more intelligible in a noise
condition.

To provide the best in-context demonstrations,
we created another set of 300 short sentences from
the Switchboard corpus excluding those in the
evaluation set. Then, their corresponding para-
phrases were generated by prompting ChatGPT
with pzsl−med. Following speech synthesis and
noise mixing with babble noise at SNR −5 dB,
we identified the top 5 pairs that exhibited a larger
pairwise difference in STOI scores. Further, the
sentences within each pair were rearranged in such
a way that the second sentence is always better in-
telligible than its paired paraphrase. Further, the
sentences within each demonstration pair were con-
catenated with a token (eg: ‘=>’) and embedded
with pzsl−low for in-context learning. Table 6 rep-
resents the exact prompt statement ( picl) that we
used for the in-context learning.

Results and Analysis As shown in Table 7, the
model learned to generate paraphrases, similar
to those given as examples. Compared to the
zero-shot learning with minimal task description
(pzsl−low), the model in the ICL setup (picl) gener-
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Prompt-ID Prompt

picl Look at the samples of a sentence and its intelligible paraphrase:
1. I don’t know if you are familiar with that. =>

I have no idea if you’re familiar with that.
2. what other long-range goals do you have besides college? =>

Apart from college, what are your other long-term objectives?
3. I don’t have access either. Although, I did at one time =>

In the past, I had access, but currently, I don’t.
4. Right now I’ve got it narrowed down to the top four teams. =>

At this point, I’ve trimmed my options and picked 4 top teams.
5. prohibition didn’t stop it and didn’t do anything really. =>

It continued despite the prohibition, which didn’t accomplish anything.

Similarly, generate an intelligible paraphrase for the input sentence: {input text}

Table 6: The prompt used for the in-context learning setup.

Prompt-ID STS↑ LD↑ PWR-PhLen↓ PWR-PPL↓ PWR-STOI ↑
picl 0.872 0.627 1.250* 0.947 0.997

Table 7: An evaluation of the ICL setup. LLM fails to improve acoustic intelligibility (PWR-STOI < 1.0), though it
learns to capture the demonstrated textual attributes like lexical deviation and predictability.

ated texts that are semantically more similar and
lexically less divergent from the input sentences.
More interestingly, the model also learned to opti-
mize the desired textual attributes like length (PWR-
PhLen) and linguistic predictability (PWR-PPL)
of generated paraphrases, even in the absence of
prompt tokens to explicitly control those features.
Nevertheless, the demonstrations are still not
helpful in controlling the non-textual attribute.
We observed that the acoustic intelligibility scores
of output sentences were not significantly different
from their input sentences (PWR-STOI = 0.997).
Once again, this shows the inability of the LLM to
generate acoustically intelligible paraphrases, even
though it captures textual attributes from the given
exemplars.
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Sentence_ID Sentence

s1 they give more information than opinions
s2 they seem to give more of just the facts than opinions
s3 they seem to give more facts than opinions

s1 you don’t hear much about it in the big ones
s2 in the big ones you don’t hear about it
s3 you never hear about it really in the big ones

s1 I think we talked for a good eight minutes about the subject
s2 we talked for about eight minutes
s3 I think we talked for about eight minutes

s1 I like having people over for dinner
s2 I enjoy having people over for dinner
s3 if I have people over for dinner I like it to be

s1 I studied every piece of material I could
s2 I studied every part of the material
s3 and studied every bit of material that I could study

s1 I wanted to be a teacher at one time
s2 at one point I wanted to be a teacher
s3 I thought at one time I wanted to be a teacher

s1 they never imagined it would be a hit
s2 in fact, they never thought it would be a hit
s3 they never expected it to be a hit

s1 they want a lot more men to participate
s2 they need more men to participate
s3 they really looking for a lot more men to participate

s1 we gave them about seven minutes
s2 we gave them about seven minutes according to my watch
s3 they were given seven minutes

s1 you don’t hear much about it in the big ones
s2 in the big ones you don’t hear about it
s3 you never hear about it really in the big ones

s1 at that stage of life you only have so much money left
s2 you only have a limited amount of money left
s3 you only have so much money left at that point in your life

s1 I was angry that they were capable of doing that
s2 I was mad that they could do that
s3 I was just pissed as hell that they could do that

Table 8: A list of paraphrase triplets (s1, s2, s3) from the PiN dataset. Sentences in each triplet are arranged in
such a way that s1 is acoustically less intelligible than s2, and acoustically more intelligible than s3, in a listening
condition with babble noise at SNR −5 dB.
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Abstract

Traditional reference-based metrics, such as
BLEU and ROUGE, are less effective for as-
sessing outputs from Large Language Mod-
els (LLMs) that produce highly creative or
superior-quality text, or in situations where ref-
erence outputs are unavailable. While human
evaluation remains an option, it is costly and
difficult to scale. Recent work using LLMs as
evaluators (LLM-as-a-judge) is promising, but
trust and reliability remain a significant con-
cern. Integrating human input is crucial to en-
sure criteria used to evaluate are aligned with
the human’s intent, and evaluations are robust
and consistent. This paper presents a user study
of a design exploration called EvaluLLM, that
enables users to leverage LLMs as customiz-
able judges, promoting human involvement to
balance trust and cost-saving potential with cau-
tion. Through interviews with eight domain
experts, we identified the need for assistance in
developing effective evaluation criteria aligning
the LLM-as-a-judge with practitioners’ prefer-
ences and expectations. We offer findings and
design recommendations to optimize human-
assisted LLM-as-judge systems.

1 Introduction

Recent advancements in Large Language Mod-
els (LLMs) challenge traditional methods of as-
sessing natural language generation (NLG) qual-
ity, as known metrics, such as BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004), fall short
for creative tasks. The diverse and expanding ca-

pabilities of LLMs (Liang et al., 2022) present a
selection challenge for practitioners, requiring eval-
uations of extensive outputs across contexts like
summarization and retrieval-augmented generation
(RAG). The subjective and use case-specific nature
of emerging NLG tasks often demands human re-
view, making the evaluation process hard to scale
without suitable automatic metrics. While experts
can perform evaluations, this is costly and imprac-
tical for rapid iteration in early development stages.
(Gehrmann et al., 2023).

One potential solution to these challenges is to
leverage the capabilities of LLMs to aid in the eval-
uation process. Despite not always being accurate,
LLMs have the potential to significantly reduce
the workload by identifying outputs where they are
not confident, thus indicating where human input
may be required. Additionally, LLMs can assist
practitioners in identifying and customizing crite-
ria specific to their use case—such as, for example,
faithfulness to contextual information, naturalness
of the conversation, and succinctness—with which
they wish to conduct their evaluations. This cus-
tomization enables a more targeted and effective
assessment of model outputs, tailored to the spe-
cific requirements of their tasks. In this paper, we
present results from a user study of EvaluLLM
(Desmond et al., 2024), a tool designed to facilitate
the evaluation of model outputs. EvaluLLM simpli-
fies how practitioners choose LLMs by offering a
quick way to assess and compare their performance
across various tasks. This method accelerates the
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development of evaluation criteria and helps man-
age the growing variety and capabilities of LLMs.

To understand the challenges and user needs in
model evaluation that leverage LLM-as-a-Judge
to automate the process, we conducted forma-
tive, semi-structured interviews with 8 practitioners
(data scientists, software engineers, and AI engi-
neers) who have been involved in model perfor-
mance evaluation projects over the past year. Our
interviews revealed various challenges and needs.
For instance, practitioners highlighted the necessity
for rapid performance comparison across different
setups, the importance of defining evaluation cri-
teria (e.g., structured and customizable templates
aligned with specific use cases), and strategies for
effectively integrating LLM-as-a-Judge into their
workflow (e.g., starting with a small subset of data
before scaling up). In this paper, we present the
following contributions:

• We describe EvaluLLM (Desmond et al.,
2024), an LLM-Assisted evaluation tool that
enables users to select multiple models, de-
fine custom metrics for NLG evaluation, and
review the results while providing feedback
to observe the agreement between human and
AI evaluations.

• We present qualitative findings from inter-
views with domain experts (N = 8) revealing
challenges and user needs for model evalua-
tion workflows including LLM-as-a-judge.

• We make design recommendations and pro-
vide example feature designs to enable users
to define criteria interactively, ensuring trans-
parent and rapid access to LLM-as-a-judge’s
preferences while balancing trade-offs across
multiple dimensions in a self-consistent man-
ner.

2 Related work

LLMs trained to follow instructions can generate
results that surpass the quality of data produced by
humans. This makes it increasingly challenging
to assess the quality of natural language genera-
tion (NLG) outputs (Liang et al., 2022) (Xiao et al.,
2023) (Liu et al., 2023b). Traditional reference-
based metrics, such as ROUGE (Lin, 2004) and
BLEU (Papineni et al., 2002), might not effectively
capture the essence of LLM outputs, especially
in scenarios where the output space is broad and
varied. This means multiple different outcomes

can all be valid, making it nearly impossible to
create sufficiently comprehensive reference sets.
Consequently, these metrics may not be reliable
indicators of NLG output quality, as they often
demonstrate a low correlation with human judg-
ments (Freitag et al., 2022).

Recent advances highlight LLMs’ potential as
customizable judges, (Liu et al., 2023a) (Wang
et al., 2023a) (Zheng et al., 2023) capable of adapt-
ing to various tasks beyond traditional evaluation
methods. Techniques like G-Eval (Liu et al., 2023a)
use chain-of-thought prompting and form-filling to
assess NLG quality, while GPTScore (Fu et al.,
2023) evaluates using conditional token probabili-
ties, enhancing scoring granularity. AlpacaEval (Li
et al., 2023) (Yuan et al., 2024) compares model
win rates, and Prometheus (Kim et al., 2023a) is a
fine-tuned LLM specifically designed for evalua-
tion tasks. These methods align closely with human
preferences, especially in creative tasks, emphasiz-
ing LLMs’ ability to mimic human judgment. Their
effectiveness relies on tailored prompt design and
user-defined criteria for precise evaluations. While
not part of this paper, in our own work, we have
also done comprehensive benchmarking of human
agreement of different LLM-as-a-judge approaches
for different use cases and we found that depending
on use case, LLMs as judges, and judging approach,
we were able to achieve good results. Note that this
is often a hard problem for humans too and inter-
rater reliability can be a good reference.

Previous research has investigated using expert-
labeled data to develop custom evaluation metrics
like AUTOCALIBRATE (Liu et al., 2023b), but
this method is limited by the availability of such
data. For reference-free evaluations, interactive hu-
man involvement is preferable, allowing users to re-
fine criteria effectively by reviewing outputs. Con-
stitutionMaker (Petridis et al., 2023) enables feed-
back on model outputs to iteratively refine prompts,
focusing more on AI prototyping than evaluation.
Other tools like Zeno (Cabrera et al., 2023), the
What-If Tool (Wexler et al., 2019), and Errudite
(Wu et al., 2019) help identify model vulnerabili-
ties by analyzing specific data segments. EvalLM
(Kim et al., 2023b) allows users to define crite-
ria interactively, using LLM-as-a-judges for output
ratings, although this can be limited by LLM rea-
soning capabilities (Zheng et al., 2023). Our study
builds on these insights, proposing a system where
practitioners define criteria in natural language for
LLMs to perform pairwise comparisons, enhancing
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trust through a "human-in-the-loop" blind review
process that eliminates the need for expert data.

3 EvaluLLM

To explore how to support users in developing their
own custom evaluation criteria for accurate and
reliable evaluations that align with human prefer-
ences in a trustworthy manner, we designed and
deployed EvaluLLM (Desmond et al., 2024). This
tool enables users to generate evaluation outputs
by providing a prompt, selecting multiple models,
and defining LLM-as-a-Judge with custom metrics
using natural language. Users can then review the
results and provide feedback, inspecting the agree-
ment between human and AI evaluations through
a blind review process. In this paper, we use Eval-
uLLM as a conceptual design probe with users to
explore the design space of how to support devel-
opment of custom evaluation criteria for accurate
and reliable evaluations that align with human pref-
erences in a trustworthy manner.

The overall user flow of EvaluLLM comprises
of three stages (see Figure 1). The build experi-
ence focuses on defining the LLM-assisted evalua-
tion experience to initiate the auto-evaluation pro-
cess, the review experience, providing a high-level
summary of the evaluation results, and the inspect
experience allows users to manually examine the
generated outputs through a blind review process.
The data generated from this process can be used to
calculate the agreement rate, assisting practitioners
in better assessing the agreement between human
and LLM-as-a-judges. This assessment is crucial
for calibrating trust and aids in making informed
decisions about whether to change configurations
and rerun the evaluation.

In the absence of reference data, related studies
suggest that LLMs may not be entirely suitable for
use as numerical judges (Zheng et al., 2023). This
is because grading based on single answers may
fail to detect minor distinctions between specific
pairs. Furthermore, the outcomes could become un-
reliable, as absolute scores tend to vary more than
relative pairwise results when there are changes in
the judging model (Zheng et al., 2023). To mitigate
these challenges, EvaluLLM uses a pairwise com-
parison approach, as it can reduce the complexity
of the evaluation task by breaking down the com-
parison of multiple outputs into smaller decisions
between pairs of data which might yield to more
accurate evaluation results at the cost of additional

inference operations. The evaluation method in-
volves making pairwise comparisons between the
outputs of different models, similar to the AlpacaE-
val approach (Li et al., 2023). However, instead of
comparing outputs to a single reference, they are
compared against one another.

3.1 Build

The build experience (see Figure 1) includes two
major components: the Generator (Figure 1A) and
the Evaluator (Figure 1B). The Generator section
(Figure 1A) is designed to produce evaluation data,
supporting users in selecting a pre-uploaded dataset
and inputting their task prompts. Users can incor-
porate data variables from the dataset’s structure
into the task prompt using the conventional curly
bracket format. Additionally, the system provides
a range of LLMs for users to choose from for the
purpose of performance evaluation. The Evaluator
section (Figure 1B) is where users can choose the
LLM-as-a-judge model for automatic evaluation
and specify the custom metrics that the judge will
use to assess the outputs from the generator. This
initial version of EvaluLLM, deliberately provides
only a freeform input box to support maximum cre-
ativity, as the aim was to gain more insights into
the types of inputs users would provide to define
criteria in natural language and the kind of support
users might need to define custom metrics. Once
the user completes the setup, they can click the
"Run Evaluation" button to initiate the evaluation.

3.2 Review

Upon completion of the automatic evaluation, re-
sults are available for review. Users can view a
high-level performance summary and a detailed re-
sults table. The summary includes a model leader
board (Figure 1C), ranking selected LLMs by their
win rates derived from evaluated output pairs. The
performance visualization (Figure 1D) shows de-
tailed win-loss statistics for each model based on
pairwise comparisons by the LLM-as-a-judge. Ad-
ditionally, the agreement rate (Figure 1E) indicates
the alignment between human and LLM-as-judges,
helping users gauge the reliability of evaluations.
This feature becomes available after users manually
rate output samples.

3.3 Inspect

Users can examine auto-evaluation results through
two main methods. First, users can conduct a
blind review, manually inspecting data to assess
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Figure 1: EvaluLLM interfaces and key features

the reliability of LLM evaluations (Figure 1G). In
this process, models’ names are hidden to prevent
bias, and users select the best output from all pre-
sented outputs. Ratings from this process are used
to calculate an agreement score, which measures
alignment between user and LLM-as-a-judge pref-
erences (Figure 1E, I). After rating, users can view
model identities and the updated agreement score
(Figure 1H, I), providing insight into the effective-
ness of the evaluation criteria. Users can also ac-
cess detailed results on the review page, which dis-
plays the LLM-as-a-Judge’s aggregated rankings
and win rates from pairwise comparisons (Figure
1J). Evaluation rationales are provided next to each
comparison result (Figure 1L, K), helping users
decide whether to trust the results or adjust settings
for a reevaluation.

4 Methodology

Our goal was to explore the challenges users en-
counter during LLM-assisted model evaluations
and, based on our observations, to design a frame-
work that meets their needs and supports effec-
tive collaboration between humans and LLM-as-a-
judges. We used EvaluLLM to facilitate the cre-
ation of evaluation tasks and conducted our re-
search through semi-structured interviews using
Webex. Participants accessed a prototype of Eval-
uLLM, shared their screens, and used think-aloud
methods to create evaluation tasks. Each partici-
pant worked on the same task: using an LLM-as-
a-judge to identify the best model for generating
headlines from the CNN/Daily Mail dataset.

4.1 Participants

We recruited 8 industry professionals (Appendix
Table 1) with deep domain knowledge in model
evaluation at a large technology company (2 fe-
males and 6 males) via social media recruiting,
with participation and recommendations from vari-
ous individuals. These industry professionals pri-
marily consist of data scientists, software engineers,
and AI engineers. Eligible participants were those
who had hands-on experience evaluating large lan-
guage model performance in their projects in the
past year. The interviews were conducted remotely,
and participants volunteered and consented to the
recording of the session, as well as to the use of the
interview results for research purposes.

4.2 Data Analysis

Two authors independently reviewed the transcripts
from recorded video sessions to pinpoint users’
needs, system shortcomings, and challenges in
the evaluation workflow. This independent review
helped minimize bias and allowed for a compre-
hensive data exploration. Each author used a code-
book of example quotes to support the identified
themes. The authors then met to merge similar
themes and address any initially missed, resulting
in three main categories: use case challenges, eval-
uation criteria, and evaluation workflow, detailed in
Appendix Table 2. This classification captures the
complexities of the evaluation process, encompass-
ing users’ needs, system limitations, and evaluative
challenges.
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5 Results

Our data analysis identified nine themes, catego-
rized into use case challenges, evaluation criteria,
and evaluation workflow (for a full list with exam-
ple quotes see Table 2 in the Appendix).

5.1 Use Case Challenges

The system requires users to input a prompt for
their specific task, after which it generates the out-
put and proceeds with the evaluation. This ap-
proach involves sending the identical prompt to
various models for output evaluation. However,
this methodology poses limitations for experienced
users who tailor prompts for specific models, such
as LLaMA. Our participants described instances of
absence of specifications where clients lack clarity
on the task’s data requirements.

Additionally, there are numerous open-source
and closed-source LLM models available, and
users would like to test various setups, e.g., model
selections, model configurations, and prompts.
They would like the system to support compari-
son with different setups. Given time constraints
and limited investment resources, it is often im-
practical to test all models with their use case data.
Teams usually begin with top-performing models,
either from public benchmarks close to their use
case or chosen based on their well-known repu-
tation. Model selection is transient and highly
constrained by project requirements. Instead of
evaluating multiple models’ performance with dif-
ferent prompts, they typically start with 1-2 models
and improve performance through prompt engineer-
ing. This involves running the model with various
prompts and parameter settings, where they often
iterate over the setup to match specific baseline per-
formance. It requires rapid performance compari-
son and support for evaluation data, accommodat-
ing multiple models and considering combinations
with different setups.

Shifting evaluation priority often occurs as the
project progresses. At the beginning of the project,
where the main purpose is often the proof of con-
cept for a specific proposed solution, the evaluation
focus is mainly around feasibility testing. This in-
volves assessing whether the proposed system or
solution can produce accurate answers. However,
as the project progresses into production, the evalu-
ation purpose might shift from rapid model perfor-
mance comparison to continual improvement with
user feedback, performance monitoring, and report-

ing potential issues to draw developers’ attentions.
As evaluation priorities might differ for various use
cases in different project phases, when designing
an LLM-as-a-Judge solution, shared needs among
these different phases and unique requirements in
each phase need to be clearly articulated. This
could help better define and design the experience
and interaction to effectively support the diverse
requirements for each phase.

5.2 Evaluation Criteria
We identified several themes related to how users
developed, changed, and trusted the evaluation cri-
teria they were working with. While participants
appreciated the flexibility of using the freeform
approach in EvaluLLM, many expressed that they
desire structured and customizable templates
for specific use cases that can be tweaked for their
purposes. They believe such templates would help
them start with an evaluation baseline.

Moreover, participants highlighted the necessity
of distinct evaluation criteria for various tasks. For
example, they noted that a RAG task might re-
quire one set of criteria, while a creative task might
demand another. Participants often crafted crite-
ria complete with descriptions and scoring. One
typical approach involved naming each criterion,
defining it, and then assigning a score.

Evaluation criteria serve as a medium to com-
municate user preferences to the model. An effec-
tive criterion not only needs to reflect the user’s
preferences but also must function well to enable
the model to understand and follow instructions.
When reflecting on evaluation criteria, participants
expressed the need for multiple rounds of itera-
tions when refining their criteria. "It can be really
hard to figure out how to express the evaluation
criteria in a way that makes sense to the model.
But it can also just be hard in your own mind to
figure out what it means for a title to be good." P2

The importance of giving supporting multiple
rounds to refine and expand criteria emerged when
looking at the types of dimensions participants cre-
ated. We found that users tend to prioritize more
objective metrics such as accuracy before they start
to consider the styling of the outcome. At the begin-
ning of the project, the primary concern for a client
is getting the correct answer from the model. That
is not to say, that our participants did not care about
more subjective criteria, but that happens later in
the process.

Although users might have a rough idea of what
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they want, it is challenging to describe everything
at the beginning, especially when they don’t have
access to the evaluation data. One participant strug-
gled during the criteria definition process as he was
required to define the criteria before he could see
the output data. Providing the output might help
users articulate what they want or don’t want, as-
sisting them in iterating the criteria description or
adding examples to better align with their prefer-
ences.

Users express a desire for more than just a high-
level result summary; they are keen on obtaining a
detailed breakdown of each dimension and a need
for the system to display performance for each
criteria individually. EvaluLLM currently only
presents a win rate as a high-level performance
summary metric to showcase the winning model on
the leaderboard. Participants expressed the desire
to view performance across each dimension rather
than a high level win-rate.

5.3 Evaluation Workflow
While presenting the tool to users, we probed them
on their current evaluation workflows and how they
would imagine incorporating EvaluLLM. Users ex-
pressed the challenges they faced when doing man-
ual evaluations and how they would use automated
methods and the EvaluLLM experience to address
those challenges. Although there are only 10 exam-
ples in our testing dataset, generating the evaluation
results after user created the evaluation is time con-
suming because of calls to the model. Model calls
are expensive and time consuming and one poten-
tial way to address this is to run the evaluation on
a subset of the data first.

To evaluate the agreement of the LLM-as-a-
Judge preferences with humans, participants were
asked to conduct blind reviews of the model’s out-
put. These reviews would be utilized to calculate
the agreement between the LLM-as-a-judge and
the participants. While it is beneficial to observe
the agreement rate in the summary page, users also
desire more control over the workflow and seek
instant feedback during the manual review process.
They would like to see how much the LLM-as-a-
judge agrees with them once they provide feedback
and wish for the system to proactively provide cri-
teria modification suggestions. One way of provid-
ing instant feedback on human-AI agreement
is to allow users to either initially upload human
evaluations for comparison with the automatic eval-
uations. Another way is to conduct a blind review

before the evaluations are presented, ensuring that
users receive instant feedback on human-AI agree-
ment as soon as the evaluations are ready.

During testing, we observed that some partic-
ipants might provide overly detailed instructions
for both the task prompt and the evaluation crite-
ria. The design intention was to simplify the user
input requirements, seeking only the evaluation cri-
teria rather than a complete evaluation prompt with
detailed evaluation process. However, some partic-
ipants included the step-by-step evaluation process
in the criteria definition input. Additionally, some
participants inquired about adjusting their evalua-
tions per judge.

As our participants are domain experts in model
evaluation, they are well aware of potential biases
in the model. They actively seek transparency
regarding the bias mitigation strategy to effec-
tively calibrate their trust in LLM-as-a-Judge re-
sults. Additionally, participants were cognizant of
self-enhancement bias (Zheng et al., 2023) and ex-
pressed concerns about the LLM-as-a-judge being
one of the models to be evaluated. Ensuring trans-
parency for trustworthy evaluation was deemed
crucial by users, such as transparency concerning
the prompts sent to the judge and whether bias mit-
igation has been implemented. One user remarked,
"It seems like Granite always displays first, and
Flan-UL-2 always comes second. Does the system
randomly switch positions?" P5

5.4 Limitations

Our study is based on a small sample of only 8
domain experts, potentially impacting the general-
izability of our findings. In addition, our method-
ology primarily concentrated on observing users
utilizing our specific evaluation tool with one pre-
defined dataset. This approach may restrict the
broader applicability of our results. Note that Eval-
uLLM at the time of this study was a functioning
proof-of-concept but not yet a scalable systems
that can be deployed to a large user population.
However, we believe our findings still offer rele-
vant insights into the challenges and needs users
encounter when using LLM-as-a-Judge tools, as
evidenced by our focused line of questioning aimed
at understanding how more automated evaluations
integrate into users’ workflows.
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6 Discussion and Design
Recommendations

Our findings highlight user needs across different
use cases when using LLM-as-a-judge. Users re-
quire guidance to evaluate model outputs effec-
tively. We discuss the implications of our findings
and propose design recommendations for LLM-as-
a-judge tools and user experiences.

6.1 Efficient Criteria Iteration

LLMs can generate high-quality outputs aligned
with human preferences, but processing the entire
dataset is costly and time-consuming, especially
with methods like pairwise comparisons, which
increase compute costs significantly. To optimize
efficiency, it’s advisable to start a project by allow-
ing users to refine their evaluation criteria using
a representative data sample before scaling up to
the full dataset (see Figure 2). Effective sampling
enhances learning for LLM-as-a-Judge by select-
ing diverse and representative outputs. Techniques
like clustering (Chang et al., 2021) or graph-based
search (Su et al., 2022) can aid in output selection
for human evaluation. Addressing misalignments
and manually reviewing low-confidence outputs
(Desmond et al., 2021) are crucial, as is displaying
a subset of evaluations to lessen users’ cognitive
load and facilitate iterative refinement of evaluation
criteria.

6.2 Structured and Customizable Templates

For creative generation tasks, it’s crucial to em-
ploy diverse, custom criteria. To streamline this
process, we propose providing standard criteria
that are universally applicable across various use
cases, supplemented by customizable templates.
As illustrated in our design explorations (see Ap-
pendix Figure 3), users can select from predefined
criteria dimensions (Figure 3A) or utilize recom-
mended templates for common scenarios (Figure
3B). These templates are designed to be flexible,
allowing easy adaptation to specific user needs.

Further enhancing customization, the proposed
templates support hierarchical organization (see
Appendix Figure 4), enabling the addition of new
criteria dimensions (Figure 4G), nesting of sub-
criteria (Figure 4F), and removal of unwanted ele-
ments (Figure 4H). Users can also adjust scoring
scales (Figure 4E). This hierarchical structure, sup-
ported by findings from related works (Zheng et al.,
2023) (Kim et al., 2023c) (Stureborg et al., 2023),

allows users to start with broad criteria and refine
them to capture specific task nuances. To foster
ongoing improvement and reuse, the system should
enable users to save and share these templates (Fig-
ure 4B). Considering the benefits of balanced eval-
uations, users should be able to adjust the weight of
different criteria dimensions, aligning more closely
with human preferences. The inclusion of reference
examples within the templates (Figure 4D) can fur-
ther refine the criteria based on actual output data,
enhancing the preference agreement process. This
approach not only makes the criteria definition pro-
cess more efficient but also ensures consistency and
rigor in evaluating creative tasks, leading to more
accurate and effective assessments.

Providing structured and customizable templates
will not only expedite the process of criteria defi-
nition but also foster consistency and rigor in the
evaluation of creative generation tasks, which will
contribute to more accurate and effective evalua-
tions.

6.3 Interactive Criteria Iteration
Our findings revealed crafting effective criteria typ-
ically requires multiple iterations. Criteria compo-
nents such as name, definition, scale, and exam-
ples often need definition and refinement as users
evaluate outputs. Users include examples of both
poor and excellent outputs to help LLM-as-Judges
distinguish quality through few-shot learning tech-
niques. Related work (Kim et al., 2023c) indicates
that users often develop new criteria during evalu-
ations. To facilitate this process, a real-time feed-
back system that allows users to immediately see
the impact of criteria modifications would be useful.
Additionally, a user-friendly interface that enables
easy modification and experimentation with crite-
ria could significantly improve the efficiency and
customization of the evaluation process.

6.4 Ensure Consistency
As human preferences may not be consistent within
the same set, aligning with frequently chang-
ing preferences becomes a challenge. A self-
consistency check mechanism can expedite this
alignment. When refining criteria, any discrepan-
cies between human and LLM-as-a-Judge evalu-
ations should prompt a review of similar sample
data post-calibration. Incorporating an automated
consistency checker that flags potential criteria con-
flicts or inconsistencies could streamline the eval-
uation process by offering actionable solutions to
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Figure 2: Recommended evaluation workflow: interactive refinement of criteria with a subset of data prior to
applying evaluation to entire dataset can potentially improve preference alignment and trust calibration.

address these inconsistencies. Leveraging the diver-
sity of logical paths in complex reasoning tasks, as
suggested by recent studies (Stanovich and West,
2000), the self-consistency CoT method (Wang
et al., 2023b) can generate multiple reasoning paths,
selecting the most consistent answers by averag-
ing over these paths, thus improving evaluation
outcomes.

6.5 Support Different Setups
Our findings emphasize the need for an LLM to
function flexibly as a judging system throughout
different project phases. It should support a variety
of evaluation data configurations, including diverse
model selections, prompts, and settings. While
some evaluations may only compare outputs from
a specific prompt and model setting, optimal per-
formance often requires tailored prompts and set-
tings for each model, involving substantial prompt
engineering and comparison of different configu-
rations. Thus, the system must not only evaluate
common settings across various models but also
assess various prompts and settings for select mod-
els, highlighting the importance of designing an
adaptable LLM judging system.

6.6 Adaptable Reference-Based Evaluation
Our user study findings showed that users often
start projects without clear objectives, resulting
in evaluations lacking reference data. Users inter-
acting with the LLM-as-a-Judge system gradually
accumulate reference data, either directly or from
external sources, so it could be beneficial to design
systems that incorporate human input to refine pref-
erence correspondence using expert-labeled data
(Liu et al., 2023b) or other collected references.
This flexible approach enhances the system’s effec-
tiveness and trustworthiness, ensuring it evolves in
line with user preferences.

6.7 Enhance System Transparency
Our findings indicate that users value transparency
to comprehend the LLM’s role as a judge. This

encompasses access to essential details like the spe-
cific prompt used (illustrated in Figure 5A) and the
implementation of bias mitigation strategies. To
design an effective LLM-as-a-Judge system, it is
critical to make such information readily available.
This can be facilitated by allowing users to view
the prompt, enabling the system to explain evalua-
tion results, and integrating visualization tools that
demonstrate how user inputs affect the evaluation
process.

6.8 Proactively Mitigate Potential Bias
Considering the persistent challenge of bias, sys-
tems should implement bias mitigation strategies
that include swapping answer order to reduce po-
sition bias (Zheng et al., 2023) and treating incon-
sistent results as ties, or by randomly assigning
positions in large datasets (Li et al., 2023) (Zheng
et al., 2023). For verbosity bias, the "repetitive list"
attack technique (Zheng et al., 2023) challenges
LLMs to favor clarity over length in responses. Fur-
thermore, enhancing LLMs’ abilities in mathemat-
ical and reasoning tasks can be achieved through
Chain-of-Thought approaches (Wei et al., 2022),
coupled with reference-guided evaluation where
the LLM generates and then evaluates its own ini-
tial responses.

6.9 Explore Further Automation
Our study found that task prompts often contain cri-
teria, suggesting the possibility of extracting them
automatically for tailored guidelines. Related work
also shows that users prefer automated prompt re-
finement over manual revisions (Kim et al., 2023c).
Various suggestions(see Appendix Figure 5), such
as rephrasing (Figure 5A), adding reference exam-
ples (Figure 5B), incorporating more scales (Figure
5C), and introducing additional dimensions (Figure
5D), could be proactively provided by the system
for humans to review to further accelerate eval-
uation correspondence. While these areas show
promise for further improving the efficiency of
preference correspondence, considering the lim-
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itations of automation systems, it is essential to
place humans in the loop to calibrate accuracy and
trustworthiness.

7 Conclusion

We studied EvaluLLM, an AI-assisted tool utiliz-
ing LLMs alongside humans as judges for LLM-
generated content. Our findings highlight the po-
tential of LLMs as customizable judges and un-
derscore the importance of interactive, transparent,
and user-centered evaluation processes. Based on
our findings, we offer design suggestions for prac-
titioners that can help them build more effective ,
nuanced, adaptable, and user-friendly evaluation
tools that meet diverse needs as compared to auto-
mated benchmarks. Inspired by our user research,
we are currently in the process of rolling out an
evolved AI-assisted evaluation tool to a larger user
population to observe "usage in the wild."
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A Participant Information

Table 1 shows the details of participants involved in
the user study, predominantly comprising of indus-
try experts such as data scientists, software engi-
neers, and AI engineers. These professionals have
practical experience in evaluating the performance
of large language models in their projects over the
last year.

B Summary of Evaluation Themes and
Examples

Table 2 provides further details on evaluation
themes generated from the user study, along with
corresponding examples from participants’ quotes.

C Recommended Designs

Figure (3)(4)(5) show design examples to help il-
lustrate corresponding design recommendations.

D EvaluLLM Evaluation Workflow

Figure (6) shows the high-level overview of the
EvaluLLM workflow, which consists of a Build,
Review, and Inspect process.
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Figure 3: Recommended design to (A) enable users to choose from a list of predefined custom metric modules and
(B) enable users to create a set of evaluation criteria based on common use cases.

ID Gender Job Role
P1 Male Lead Software Engineer/Data Scientist
P2 Male Principle Data Scientist
P3 Male Lead Software Engineer/Data Scientist
P4 Male Data Scientist
P5 Male AI Engineer/Data Scientist
P6 Female Data Scientist
P7 Male Senior Technical Manager/Data Scientist
P8 Female Data Scientist

Table 1: Demographic information from participants in our user study.
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Table 2: Table of evaluation themes and corresponding examples. Themes are grouped into three categories: use
case challenges, evaluation criteria, and evaluation workflow. Quotes are provided to delineate themes.

Group Theme Example

Use Case
Challenges

Absence of Specifications “So we can compare using, metrics such as or BLEU, And this is like this
other scenario, which unfortunately is more common, which is client
doesn’t even know what they want.” - P5

“It was like eighty-twenty, eighty percent of the time they don’t have it.” -
P5

Support Comparison with
Different Setup

“Say we had five different models and for each model we had 20 dif-
ferent configurations or something like that. Now that’s 100 different
combinations. Um, we’d like the limited judge to be to run on like all
hundred. Give us an overview. Which are the three that are actually
worth looking at?” - P2

“GPT 4 as a baseline and we’re just trying to see how close are we
getting with these other models in order to replicate the performance.”
- P7

Shifting Evaluation Priority “I know that’s like a terrible metric [confusion matrix] to be used as
the first one, but we have actually done this with a client because they
asked us to do so. They’re looking for just accuracy.” - P5

“GPT 4 as a baseline and we’re just trying to see how close are we
getting with these other models in order to replicate the performance.”
- P7

Evaluation
Criteria

Desire Structured and Cus-
tomizable Templates

“A freeform text box is too simple. I would love there to be templates
that I can utilize. And at the very least, be able to just edit so that I can
get into my use case.” - P7

“More examples might be nice.” - P2

Need for Multiple Rounds
of Iterations

“It can be really hard to figure out how to express the evaluation criteria
in a way that makes sense to the model. But it can also just be hard in
your own mind to figure out what it means for a title to be good.” - P2

“If I think, without having a clearer sense of what the evaluation is, sort
of what a baseline evaluation is, it might be nice to have a couple of
features of an evaluation that we could just select in like a checkbox. ”
- P3

Display Performance for
each Criteria Individually

”There might be times where you have to trade off on certain kinds
of things and Win rate is not necessarily the best metric because there
are multiple categories to define what it means to win.” - P7

“So I’m covering a lot of ground there, and I know that’s hard for the
model to deal with because now the model has to have a whole lot of
different criteria, and it’s all drawn up by the ones, but that’s kind of
what a good title headline is about.” - P7

Evaluation
Workflow

Run Evaluation on Subset of
Data First

“We don’t have a problem here because the data set is small. But, like,
if there’s like, a 1000. Then it would it make sense to go through the
entire batch and we find out your volume criteria needs to be tweaked.”
- P2

“I’d want to iterate on my judge enough for it to get a decent annotator
agreement and then let it go wild.” - P2

Instant Feedback on Human-
AI agreement

“Tell me when to quit.” -P1

Ensuring Transparency for
Trustworthy Evaluation

“So I definitely want, as we discussed earlier, a lot of transparency
and exactly what is being sent to the models to generate the responses
and then what is then being sent to the LLM as a judge.” - P2

“Maybe a small note on, like, you know what the prompt is, like, what
the data set is and what the tool is doing.” - P8
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Figure 4: Recommended design to provide structured and customizable templates that support hierarchical, multi-
dimensional evaluations.

28



Figure 5: Recommended design demonstrating the ability of users to leverage LLM-as-a-Judge for Criteria Iteration.

Figure 6: EvaluLLM evaluation workflow overview which consists of a Build, Review, and Inspect process.
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Abstract

The field of natural language generation has
witnessed significant advancements in recent
years, including the development of control-
lable text generation techniques. However, con-
trolling the attributes of the generated text re-
mains a challenge, especially when aiming to
avoid undesirable behavior such as toxicity. In
this work, we introduce Detoxification Gener-
ator (DETOXIGEN), an inference-time algo-
rithm that steers the generation away from un-
wanted styles. DETOXIGEN is an ensemble
of a pre-trained language model (generator)
and a detoxifier. The detoxifier is trained inten-
tionally on the toxic data representative of the
undesirable attribute, encouraging it to generate
text in that style exclusively. During the actual
generation, we use the trained detoxifier to pro-
duce undesirable tokens for the generator to
contrast against at each decoding step. This ap-
proach directly informs the generator to avoid
generating tokens that the detoxifier considers
highly likely. We evaluate DETOXIGEN on
the commonly used REALTOXICITYPROMPTS
benchmark (Gehman et al., 2020) with various
language models as generators. We find that it
significantly outperforms previous approaches
in detoxification metrics while not compromis-
ing on the generation quality. Moreover, the
detoxifier is obtained by soft prompt-tuning us-
ing the same backbone language model as the
generator. Hence, DETOXIGEN requires only
a tiny amount of extra weights from the virtual
tokens of the detoxifier to be loaded into GPU
memory while decoding, making it a promising
lightweight, practical, and parameter-efficient
detoxification strategy.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable promise in various generative tasks by
first self-supervised pretraining on large text cor-
pora and then finetuning with instruction data for

* indicates corresponding authors.

alignment (Mishra et al., 2022). Yet a wealth of
previous work has demonstrated that pre-trained
models inherit toxicity and biases from their train-
ing corpora (Zhao et al., 2019; May et al., 2019;
Kurita et al., 2019; Basta et al., 2019). As a result,
generative models (OpenAI, 2023; Touvron et al.,
2023; Nijkamp et al., 2023) tend to degenerate into
unsafe text even when conditioning on seemingly
innocuous prompts (Wallace et al., 2019; Sheng
et al., 2019; Gehman et al., 2020), which is difficult
to resolve by prompt engineering alone (Zong and
Krishnamachari, 2022; Liu et al., 2022b; Webson
and Pavlick, 2022; Lou et al., 2023).

To address this challenge, a plethora of ap-
proaches have been proposed, which usually re-
quire full-model finetuning of the underlying lan-
guage model to build the detoxifier (Dathathri et al.,
2019; Gururangan et al., 2020; Krause et al., 2021;
Liu et al., 2021a). However, nowadays the largest
LLMs typically contain more than 100 billion pa-
rameters, making such resource-intensive tuning
less viable. This trend calls for more parameter-
efficient approaches.

In this work, we propose DETOXIGEN (Fig-
ure 1), a parameter-efficient framework that lever-
ages the frozen weights of the language model itself
and only introduces a tiny portion of new model pa-
rameters to detoxify generation.1 During training,
we use prompt tuning (Lester et al., 2021) to train
a detoxifier exclusively on toxic data with the next-
token prediction objective. The resulting detoxifier
shares all the backbone model weights with the
LLM (i.e., the generator). During inference, we
build on top of the contrastive decoding (Li et al.,
2023) paradigm and employ the detoxifier to manip-
ulate the output probability distribution of the LLM
for each generation step. Intuitively, the generator
avoids outputting tokens that the detoxifier consid-
ers highly probable. For example, in figure 1 the

1We will make our code publicly available.
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detoxifier considers the gender-biased word “his”
very likely as the next token, helping the generator
to score down the probability of that token.

We evaluate our framework on the REALTOXI-
CITYPROMPTS dataset (Gehman et al., 2020) and
find that it outperforms previous approaches on
the standard benchmark metrics by a significant
margin, indicating that the text generated by our
model is both safer and of higher quality. We also
conduct ablation studies and pair models of dif-
ferent sizes from the same model family (e.g., the
Llama-2 (Touvron et al., 2023) family). These stud-
ies show that pairing a generator with a detoxifier
that shares the same backbone LLM is indeed the
best-performing configuration.

Our main contributions are: (1) Performance:
Propose a detoxification framework that outper-
forms previous models by a large margin on com-
monly used detoxification benchmarks/metrics; (2)
Efficiency: We apply parameter-efficient learning
to controllable text generation for detoxification.
Our model introduces the least amount of addi-
tional parameters (hence also requires less data to
train) as compared to state-of-the-art models; (3)
Transferability: Our detoxifier model only requires
toxic data and does not require any contrastive
(non-toxic) data, making our approach transferable
thanks to the easier and more manageable data cu-
ration.

2 Model

2.1 Task Formulation

We consider controlled decoding-time approaches
for open-ended text generation. A generator, in
our case a language model, receives an unfinished
input text as a prompt and aims to output a fluent
and coherent continuation that avoids toxicity with
the help of a detoxifier, which is another language
model trained with data of the target attribute.

2.2 Model Components

Generator Let x<t = x1, x2, ..., xt−1 be a
prompt consisting of (t − 1) tokens, where each
ti(1 ≤ i ≤ t−1) is a token in the vocabulary set V
of the language model (LM). The LM encodes x<t

in an autoregressive fashion and outputs zt ∈ R|V |,
where zt denotes the logits for the tth token xt and
|V | corresponds to the vocabulary size. The LM
then obtains a probability distribution PGEN over
V by computing the softmax of zt

PGEN (xt|x<t) = softmax(zt), (1)

and the next token is sampled from this distribu-
tion.

Detoxifier The detoxifier takes as input the same
prompt fed to the generator for each genera-
tion step and computes a probability distribution
PDE(Xt|x<t) over |V | in the same way. However,
the detoxifier is not a vanilla LM like the generator,
but rather an LM specially trained to output toxic
content. Intuitively, the generator is discouraged
from outputting tokens that the detoxifier consid-
ers highly likely, thus avoiding toxic generations.
In other words, the decoding process involves an
ensemble of the two LMs to obtain the final output
probability distribution P (xt|x<t):

P (xt|x<t) = PGEN + α∆P (2)

∆P = PGEN − PDE , (3)

where the hyperparameter α denotes the control
strength of the model and ∆P represents the proba-
bility correction term determined by the difference
between the two distributions. Intuitively, α dic-
tates how much we want to modify the generator’s
probability distribution through the correction term
∆P . Since it is possible that P (xt|x<t) contains
values that fall out of the [0.0, 1.0] range, making
them invalid probabilities, we also clip them on
both sides – i.e., setting any value that is below
0.0 to 0.0 and any value above 1.0 to 1.0. The
resulting probability vector is then normalized by
first computing its log probabilities and then tak-
ing the softmax. Our formulation is closely related
to that in Contrastive Decoding (Li et al., 2023)
and DExperts (Liu et al., 2021a), but we differ by
manipulating in the probability space rather than
the logits space because we found in our initial
experiments that directly dealing with probability
distributions result in better performance on the
downstream task.

Sampling To constrain the model to only gen-
erate plausible tokens, we first employ Nucleus
(Top-p) Sampling (Holtzman et al., 2020) to limit
the vocabulary V to a subset V (p) by only select-
ing the highest probability tokens whose cumu-
lative probability mass exceeds some threshold
p ∈ [0.0, 1.0]. More specifically, given the dis-
tribution PGEN (xt|x<t) in Equation 1, the top-p
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Figure 1: Illustration of the DETOXIGEN pipeline that avoids generating a gender-biased next token. A prompt is
fed into both the generator and the detoxifier, which share the same underlying frozen weights from the backbone
language model. Additionally, the detoxifier contains virtual tokens whose embeddings are trainable. Such virtual
tokens steer the detoxifier toward generating only toxic continuations. Each model provides its own probability
distribution for the next token, where DETOXIGEN combines the two distributions and performs the detoxification.

vocabulary V (p) ⊆ V is defined by the smallest
vocabulary set such that

∑

x∈V (p)

PGEN (x|x<t) ≥ p. (4)

The Top-p sampling then truncates the less reli-
able tail of the distribution by setting

P ′[x] =

{
P [x], if x ∈ V (p)

0, otherwise.
(5)

The detoxifier then comes in and only manip-
ulates logits in the set V (p) so that regardless of
how PGEN is modified, the generated tokens are
guaranteed to be plausible as evaluated by the gen-
erator. When applying this restriction, equation 1
becomes

P ′(xt|x<t) = P ′
GEN + α(P ′

GEN − P ′
DE). (6)

2.3 Parameter-Efficient Training of Detoxifier
As discussed in Section 1, due to the increasing size
of large language models, we aim to introduce as
few additional model parameters as possible to our

framework. Hence we adopt Prompt Tuning (Lester
et al., 2021), a parameter-efficient training method,
to train a language model exclusively on toxic data.
This method learns soft prompts (or virtual tokens),
whose embeddings are trainable parameters to con-
dition frozen language models to perform the target
downstream tasks.

3 Experimental Setup

3.1 Backbone Models

Following Liu et al. (2021a), we use GPT2-
large (Radford et al., 2019) as the generator and
the backbone of the detoxifier. We use GPT2-XL to
evaluate the generation quality. For ablation stud-
ies reported in Section 4.3, we also consider GPT2
with small and medium sizes.

It is worth noting that previous work selected
the GPT2 family mostly because it was one of the
strongest models at the time. To observe if the
same trend of performance holds for the most re-
cent LLMs, we also experiment with another family
of Transformer-based (Vaswani et al., 2017) lan-
guage models, namely Llama-2 (Touvron et al.,
2023) because it satisfies the following three cri-
teria: (1) It is publicly released so that it is eas-
ier for researchers to reproduce and compare with
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our work; (2) It achieves state-of-the-art perfor-
mance on diverse benchmark datasets (Nijkamp
et al., 2023); (3) It has three sizes so that we can
evaluate whether larger models can be paired with
smaller ones for detoxification – such is the setting
when we prioritize reducing latency over minimiz-
ing GPU memory footprint. Hence we experiment
with Llama-2 with 7B, 13B, and 70B parameters,
respectively. Due to the large size of Llama-2-70B,
for all our experiments we use bfloat16 for both
training and inference to increase throughput and
reduce GPU memory usage. We evaluate perplexity
from the Llama-2 family with Llama-2-7B unless
otherwise stated.

3.2 Training of Detoxifier

We prompt tune the detoxifier with the standard
language modeling objective (Bengio et al., 2000)
which learns the parameters of the conditional prob-
ability distribution of the next word given the pre-
ceding context. We extract the training data from
the human-annotated Jigsaw Unintended Bias in
Toxicity Classification (Borkan et al., 2019). An
example is considered toxic if more than 50% of
the annotators classify it as toxic. This threshold
splits the corpus into around 160K toxic and 1.4M
nontoxic examples. We only train our models with
the toxic part of the data.

For prompt tuning, we use 100 virtual tokens
for each model with a learning rate of 0.1. To effi-
ciently explore different parameter-efficient meth-
ods, we use the PEFT (Parameter-Efficient Fine-
Tuning), a library that wraps around Hugging-
Face Transformers (Wolf et al., 2020) model ob-
jects and provides out-of-the-box implementations
for widely adopted PEFT approaches (Mangrulkar
et al., 2022). Because we need to obtain logits
from the detoxifier for each generation step, we
overwrite the PEFT model object to only prepend
virtual tokens to the input for the first generation
step.

3.3 Hyperparameter Tuning

We tune the hyperparameter α with a held-out val-
idation set and perform a grid search from 1.0 to
9.0 with a 1.0 increment. As will be shown in Sec-
tion 4.1, we find that α = 5.0 strikes the best bal-
ance between toxicity and generation quality. We
thus adopt this value throughout all experiments.

3.4 Evaluation Data

We follow Liu et al. (2021a) to use the REALTOXIC-
ITYPROMPTS dataset (Gehman et al., 2020) which
contains 100K naturally occurring, sentence-level
prompts derived from a large corpus of English
web text. These prompts are annotated with tox-
icity scores and language models are known to
degenerate into toxic continuation when condition-
ing on them. To determine the detoxifier strength α,
we randomly sample 1k prompts as the validation
set and another disjoint 10k as the test set.

3.5 Metrics

Toxicity Following Gehman et al. (2020), we use
the Perspective API2 to measure the toxicity of
generations. This score is obtained from a CNN
model (Lecun et al., 1998) trained on a non-public
corpus of Wikipedia comments. We compute two
metrics based on the toxicity scores following Liu
et al. (2021a): (1) Average Maximum Toxicity:
The average maximum toxicity over k = 25 gen-
erations; (2) Toxicity Probability: The empirical
probability of a generation with toxicity ≥ 0.5 for
at least once over k = 25 generations.

Quality The Quality metric consists of both flu-
ency and diversity. Heeding both aspects makes it
easier to spot cases where the generation is likely
but generic, or diverse but unlikely. We use corpus-
level Perplexity to evaluate fluency and Distinct-
2 and -3 (Li et al., 2016) to evaluate diversity.
Distinct-2 and distinct-3 correspond respectively
to the number of distinct bigrams and trigrams di-
vided by the total number of generated words.

3.6 Baseline Models

We compare DETOXIGEN with a diverse set of
previously reported baseline models (Gehman
et al., 2020; Liu et al., 2021a), including
Domain-Adaptive Pretraining (DAPT) (Gururan-
gan et al., 2020), Plug-and-Play Language Models
(PPLM) (Dathathri et al., 2019), Non-Toxic Ex-
pert (Liu et al., 2021a), Generative Discriminators
(GeDi) (Krause et al., 2021), and Decoding-time
Experts (DExperts) (Liu et al., 2021a). We fol-
low these baselines to use Nucleus Sampling with
p = 0.9 for generation.

2https://perspectiveapi.com/
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4 Results and Analysis

4.1 Hyperparameter Tuning through
Validation Set

As mentioned in Section 3.3, we perform a grid
search of α with values 1.0, 2.0, ..., 9.0. We show
the results on both GPT2-large and Llama-2-7b so
that we can observe the trend on both early and
more recent models. From Table 2, we can see
that for both models, there is a steady increase in
Perplexity (last column) as α grows, indicating a
monotonic decrease in generation quality. Intu-
itively, this trend makes sense because the more
we perturb the original output distribution, the
more likely it is for the language model to gen-
erate less plausible tokens. To maintain a balance
between toxicity and quality, we seek the tipping
point where further increasing α only brings a di-
minishing return on reducing toxicity. We observe
that for both models, this tipping point happens
at α = 5.0. Hence we adopt this hyperparameter
setting throughout all other experiments.

4.2 Results on GPT2-large

We then compare with previous approaches on
GPT2-large. From Table 1, we can see that our
model DETOXIGEN outperforms previous frame-
works by a large margin although only tuned on
the toxic split of the training data. Among all mod-
els, DETOXIGEN (GPT2-large) achieves the lowest
Average Maximum Toxicity and Toxicity Proba-
bility, while obtaining a Perplexity that is quite
close to that of the vanilla GPT-2 large, indicat-
ing minimum compromise on generation quality.
The Llama-2-7B version of DETOXIGEN achieves
even better results. However, it is based on a much
stronger backbone language model, hence not com-
parable to previous work. We still include Llama-2
results in this table to show the gap between earlier
and more recent large language models. We also
follow Liu et al. (2021a) and report Distinct-N met-
rics, which are intended to prevent the model from
degenerating into dull and generic continuations.
We observe that the Distinct-N results do not vary
much across diverse kinds of models. Hence for
the results reported afterwards, we skip this metric
and only report Perplexity.

4.3 Ablation Studies on Model Sizes

We also explore pairing models of different sizes
as the generator and the detoxifier, respectively.
This setting targets the cases where either latency

is the major concern such that we want one small
detoxifier to steer the generation of all other model
sizes, or when we intend to train a detoxifier once
and plug-and-play it with all other model sizes.
The results of such pairings are presented in the
matrix-like tables (Table 3, 5, 4, and 6). We report
toxicity and quality in separate tables to make the
comparisons clearer. From the four tables, we can
observe quite a few interesting patterns.

Consistent Toxicity Reduction In the tables, we
can observe that when comparing with the no-
detoxifier setting (the column with None as header),
our approach consistently and significantly reduces
the toxicity of the backbone model while not sac-
rificing much on generation quality. This trend
is observed for both the GPT-2 and the Llama-2
model families.

Entries along the Diagonal As shown in Table 3
and 4, entries on the diagonal of the result ma-
trix (i.e., without the first column that has None
as the header) consistently outperform their neigh-
bors in terms of toxicity. These are the settings
where the generator and the detoxifier share ex-
actly the same backbone language model. They
also achieve the best row-wise Perplexity as com-
pared to off-diagonal models (Table 5 and 6). We
hypothesize that this is because the output probabil-
ity distributions of the generator and the detoxifier
with the same underlying backbone parameters are
more compatible with each other than backbones
of different sizes. Recall in Section 1 that one of
our major goals is to introduce as few new model
parameters as possible. Our cross-model results
clearly show that sharing weights between the gen-
erator and the detoxifier turns out to be the best
setting among all we have investigated.

Entries symmetric to the diagonal Comparing
entries that are symmetric to the diagonal (e.g.,
comparing GPT2-XL detoxified by GPT2-small
with GPT2-small detoxified by GPT2-XL) in Ta-
ble 3 and 4, we can observe a consistent pattern that
given two models of different sizes, it is usually
better to have the smaller model as the generator
and the larger model as the detoxifier for detoxifi-
cation. This indicates that larger models are more
capable of capturing the distribution in the toxicity
training corpus.

Effect of Model Size Difference From the toxi-
city tables, we can also observe that the larger the
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Table 1: Results on a random nontoxic 10K sample from the REALTOXICITYPROMPTS dataset. On the first row, the
downward arrows indicate “the lower the better”, while the upward ones indicate the opposite. Avg. Max. Toxicity
stands for “Average Maximum Toxicity”, PPL stands for “Perplexity”, and all models are evaluated with GPT2-XL.
Dist-N stands for the Distinct-N metric. All models in this table use GPT2-large as the backbone model, except for
the last row where Llama-2-7B is used. State-of-the-art results are boldfaced.

Model Toxicity (↓) Fluency (↓) Diversity (↑)
Avg. Max. Toxicity Toxicity Prob. PPL Dist-2 Dist-3

GPT2-large 0.527 0.520 25.45 0.85 0.85
PPLM 0.520 0.518 32.58 0.86 0.86
Non-toxic Expert 0.485 0.464 40.61 0.86 0.86
DAPT 0.428 0.360 31.21 0.84 0.84
GeDi 0.363 0.217 60.03 0.84 0.83
DExperts 0.314 0.128 32.41 0.84 0.84
DETOXIGEN (GPT2-large) 0.254 0.115 27.54 0.86 0.86
DETOXIGEN (Llama-2-7B) 0.236 0.103 26.55 0.85 0.84

Table 2: Validation results obtained by varying the detoxifier strength α from 1.0 to 9.0 with GPT2-large and
Llama-2-7b. Each setting is evaluated on a held-out validation set of size 1k from REALTOXICITYPROMPTS. The
boldfaced rows indicate tipping points where further increasing α starts to bring diminishing (sometimes even
negative) returns on the balance between toxicity and fluency.

Model Alpha Toxicity (↓) Fluency (↓)
Avg. Max. Toxicity Toxicity Prob. PPL

GPT2-large

1.0 0.311 0.172 22.47
2.0 0.284 0.145 23.54
3.0 0.276 0.146 24.66
4.0 0.261 0.127 25.83
5.0 0.258 0.115 26.65
6.0 0.261 0.128 27.54
7.0 0.256 0.121 28.19
8.0 0.257 0.125 28.82
9.0 0.258 0.108 29.59

Llama-2-7b

1.0 0.290 0.160 19.88
2.0 0.265 0.127 20.61
3.0 0.252 0.108 21.20
4.0 0.251 0.117 21.74
5.0 0.241 0.104 22.31
6.0 0.243 0.101 22.79
7.0 0.241 0.106 23.13
8.0 0.236 0.094 23.51
9.0 0.233 0.097 23.88

model size difference, the less effective the detox-
ification. For example, GPT2-XL detoxified by
GPT2-small in Table 3 results in the worst toxicity
among all settings, while we observe the same pat-
tern where Llama-2-70B detoxified by Llama-2-7B
has the highest toxicity among all settings.

5 Discussion

It would be ideal if a detoxifier could work out of
the box (plug-and-play) and be readily applied to
any LLM generator, even with a different tokenizer.
To achieve this, one can take a common subset
of the vocabulary sets between the generator and
the detoxifier, and only manipulate logits on this
subset. We leave this as future work since the
model families we investigate both already have
diverse sizes.

Throughout the paper, we have been focusing on
avoiding undesired attributes. However, we note
that our framework can also be used to generate
text with any desired style (which could be a risk if
that desire style happens to be toxic). All we need
to do is flip the sign of the probability distribution
correction term ∆P in Equation 2 and 3 as follows:

P (xt|x<t) = PGEN + α∆P (7)

∆P = PDE − PGEN . (8)

In addition, our approach could be applied to
more general positive and negative attributes, in-
cluding but not limited to politeness (Danescu-
Niculescu-Mizil et al., 2013; Niu and Bansal,
2018), hate speech (Golbeck et al., 2017), and mi-
croagressions (Breitfeller et al., 2019). In the case
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Table 3: Toxicity results by pairing models of different sizes from the GPT-2 model family. All results are obtained
on the validation set of size 1K. The column with the header None indicates that no detoxifier is used.

detoxifier [Avg. Max. Toxicity | Toxicity Prob.]
None GPT2-small GPT2-medium GPT2-large GPT2-XL

generator

GPT2-small 0.511 | 0.413 0.264 | 0.119 0.306 | 0.161 0.318 | 0.183 0.330 | 0.195
GPT2-medium 0.514 | 0.413 0.338 | 0.195 0.280 | 0.149 0.313 | 0.182 0.331 | 0.201
GPT2-large 0.499 | 0.400 0.340 | 0.215 0.322 | 0.197 0.254| 0.115 0.314 | 0.175
GPT2-XL 0.508 | 0.432 0.352 | 0.230 0.339 | 0.202 0.313 | 0.177 0.278 | 0.124

Table 4: Toxicity results by pairing models of different sizes from the Llama-2 model family. All results are obtained
on the validation set of size 1K. The column with the header None indicates that no detoxifier is used.

detoxifier [Avg. Max. Toxicity | Toxicity Prob.]
None LLama-2-7B LLama-2-13B LLama-2-70B

generator
LLama-2-7B 0.370 | 0.285 0.241 | 0.104 0.268 | 0.131 0.287 | 0.155
LLama-2-13B 0.371 | 0.275 0.285 | 0.143 0.248 | 0.112 0.295 | 0.164
LLama-2-70B 0.371 | 0.276 0.295 | 0.157 0.293 | 0.167 0.277 | 0.157

that we want to simultaneously control for multiple
attributes, our framework is also compatible with
mixed-batch inference (Liu et al., 2022a), where
soft prompts of different attributes can be condi-
tioned on in a single batch without increasing la-
tency.

6 Related Work

6.1 Parameter-efficient Learning

Parameter-efficient learning is a natural language
processing paradigm to adapt a large language
model to particular tasks or domains. It is usually
used when fine-tuning the entire language model is
prohibitively expensive. Among such approaches,
LoRa (Hu et al., 2022) and AdaLoRa (Zhang et al.,
2023) inject trainable rank decomposition matri-
ces into each layer of the Transformer architecture,
with the latter adaptively allocating the parameter
budget among weight matrices according to their
importance scores. Prefix Tuning (Li and Liang,
2021), P-Tuning (Liu et al., 2021b), and Prompt
Tuning (Lester et al., 2021) prepend to the input
sequence virtual tokens with trainable embeddings.
Lastly, (IA)3 scales activations by learned vectors.
We choose Prompt Tuning in this work because it
achieves competitive performance while involving
no change in model architecture and not requiring
any bootstrapping for the newly introduced model
parameters.

6.2 Controllable Text Generation

There have been multiple effective frameworks
proposed for controllable text generation (Keskar
et al., 2019; Sudhakar et al., 2019; Kurita et al.,

2019; Welleck et al., 2020). 3 Among them,
Domain-Adaptive Pretraining (DAPT) (Gururan-
gan et al., 2020) and Self-Generation Enabled
domain-Adaptive Training (SGEAT) (Wang et al.,
2022) continues to finetune or apply parameter-
efficient tuning to the backbone language model
with a non-toxic subset of OpenWebText to adapt
it to the non-toxic style. Plug-and-Play Language
Models (PPLM) (Dathathri et al., 2019) trains a
toxicity classifier and leverages gradients from that
classifier to update the language model’s hidden
representations for each generation step. Gener-
ative Discriminators (GeDi) (Krause et al., 2021)
prepends to the input a soft token serving as the
label for the intended class of attribute. It can be
viewed as prompt tuning with only one virtual to-
ken for each class (toxic and nontoxic). Decoding-
time Experts (DExperts) (Liu et al., 2021a) train an
expert and an anti-expert LM of opposing attributes
with full finetuning. During inference, the logits
difference between the two experts serves as the
correction term for the logits of the base language
model. Our work is different from the previous
approaches in that we adopt parameter-efficient
tuning that only introduces a few trainable parame-
ters and our training only requires toxic examples
rather than examples from both classes.

6.3 Contrastive Decoding
Contrastive Decoding (Li et al., 2023; O’Brien and
Lewis, 2023) is a search-based decoding method
that optimizes a contrastive objective that returns

3We note that Inference-Time Policy Adapters (Lu et al.,
2023) employs reinforcement learning for LM detoxification,
but their approach assumes access to the Perspective API
toxicity scores as a reward signal during training and hence
not comparable to our work.
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Table 5: Quality results by pairing models of different sizes from the GPT-2 model family. All results are obtained
on the validation set of size 1K. The column with the header None indicates that no detoxifier is used.

detoxifier [PPL]
None GPT2-small GPT2-medium GPT2-large GPT2-XL

generator

GPT2-small 49.90 60.46 76.83 82.90 91.02
GPT2-medium 36.91 38.38 39.73 51.00 58.64
GPT2-large 25.05 25.77 27.57 27.54 37.08
GPT2-XL 18.16 18.54 18.76 19.77 19.80

Table 6: Quality results by pairing models of different sizes from the Llama-2 model family. All results are obtained
on the validation set of size 1K. The column with the header None indicates that no detoxifier is used.

detoxifier [PPL]
None LLama-2-7B LLama-2-13B LLama-2-70B

generator
LLama-2-7B 19.65 22.94 23.12 22.35
LLama-2-13B 21.69 28.38 25.47 26.90
LLama-2-70B 22.39 29.68 28.68 26.55

the difference between the likelihood under a large
and a small LM. Our algorithm is different from
theirs in that we pair LMs of the same size (with
the detoxifier further tuned) and perform all manip-
ulations in the probability space rather than directly
in the logits space.

7 Conclusion

We propose DETOXIGEN, a high-performing,
parameter-efficient framework for detoxification
during inference time. Our method only introduces
a small portion of new parameters to train a detoxi-
fier model that manipulates the output probability
distribution of a generative model. On a standard
detoxification benchmark, our approach outper-
forms all existing models in terms of both toxicity
and quality. As language models grow ever larger
in size, our controllable generation method shows
the promise of quickly adapting to any language
model without requiring additional computational
resources or significant data curation efforts.

8 Limitations

Although DETOXIGEN can work with models of
different sizes, it is yet to show that a generator
with tokenizer A can be paired with a detoxifier
that uses tokenizer B with a different vocabulary
set. We plan to address this limitation in future
work where the detoxifier can tokenize the gener-
ated text on the fly for each generation step, thus
manipulating the logits of the generator. Addi-
tionally, although leveraging the Perspective API
makes our model readily comparable with previous
work, such automatic evaluation may not capture
the full spectrum of toxicity. Ideally, one would

conduct human evaluations for each of the models
under the same setting. Lastly, it would be helpful
to show how our method generalizes to other styles
and parameter-efficient tuning approaches.
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Abstract

Motivational Interviewing is a counselling style
that requires skillful usage of reflective listen-
ing and engaging in conversations about sen-
sitive and personal subjects. In this paper, we
investigate to what extent we can use gener-
ative large language models in motivational
interviewing chatbots to generate precise and
variable reflections on user responses. We con-
duct a two-step human evaluation where we
first independently assess the generated reflec-
tions based on four criteria essential to health
counseling; appropriateness, specificity, natu-
ralness, and engagement. In the second step,
we compare the overall quality of generated and
human-authored reflections via a ranking evalu-
ation. We use GPT-4, BLOOM, and FLAN-T5
models to generate motivational interviewing
reflections, based on real conversational data
collected via chatbots designed to provide sup-
port for smoking cessation and sexual health.
We discover that GPT-4 can produce reflections
of a quality comparable to human-authored re-
flections. Finally, we conclude that large lan-
guage models have the potential to enhance
and expand reflections in predetermined health
counseling chatbots, but a comprehensive man-
ual review is advised.

1 Introduction

Motivational Interviewing (MI) is a counseling
style for eliciting behavior change, where the coun-
selors guide individuals towards evoking their in-
trinsic motivations by addressing and resolving
their ambivalence (Miller and Rollnick, 2012). A
crucial technique that MI counselors utilize is re-
flective listening, where they engage in attentive
listening and offer reflections on their clients’ per-
spectives. A reflection is a special form of utterance
where the counselor deliberates on the client’s state-
ments and articulates it back, often emphasizing

the emotional content or underlying meaning.

Health counseling via chatbots is a domain that
demands high accuracy in personalization along
careful and appropriate language usage. Typically,
MI-based chatbots are designed to follow a prede-
termined set of dialogue steps to guide the coun-
seling session through the required MI phases (He
et al., 2022). The process of creating a prewritten
collection of human-authored responses is labori-
ous and the lack of limited flexibility often leads
to the use of generalized reflections. The restricted
number of reflections may result in vagueness and
hinder the chatbot’s ability to exhibit empathy. Au-
tomating the process of generating reflections has
the potential to enhance the personalization, accu-
racy, and effectiveness of counseling chatbots.

Generative Large Language Models (LLMs)
have advanced to a stage where the coherency and
fluency of the generated text makes it increasingly
challenging to distinguish it from human-authored
text (Gao et al., 2023). However, the potential
dangers associated with inflammatory language,
hallucinations, and the underlying fundamental is-
sues continue to exist (Bender et al., 2021; Ji et al.,
2023). Engaging in MI counseling requires ad-
dressing highly sensitive subjects, and unfitting
reflections can impede or even undermine patients’
advancement toward their behavior change objec-
tives (Miller and Rollnick, 2012). This necessi-
tates careful consideration and thorough evaluation
before determining the potential applicability of
LLMs for reflection generation.

Previous studies with LLMs for the MI reflection
generation has yielded positive outcomes across
different evaluation criteria. Fine-tuning a GPT-
2 (Radford et al., 2019) model has showcased its
ability to generate reflections that evaluators con-
sider to be similar in quality and reflection-likeness
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to the ground truth reflections (Shen et al., 2022).
Likewise, a few-shots prompted GPT-3 (Brown
et al., 2020) can generate reflections that human
evaluators deem acceptable (Ahmed, 2022). More-
over, the more recent GPT-4 (OpenAI, 2023) with
zero-shot prompting can generate reflections that
human evaluators have classified as adhering to MI
principles in 99% of the cases from human-chatbot
conversations on smoking cessation (Brown et al.,
2024). Similar to the latter, we utilize GPT-4 to
generate reflections from human-chatbot dialogues
and conduct human evaluations. However, our re-
search expands to include sexual health conversa-
tions alongside smoking cessation, and evaluates
various LLMs on four distinct criteria.

Our research envisions a scenario in which chat-
bots are created by employing a hybrid chatbot
architecture that combines predetermined chatbot
design with LLM-generated reflections to facili-
tate MI counseling (Başar et al., 2023). We gen-
erate reflections based on human-chatbot conver-
sations with real user responses in two counsel-
ing domains, smoking cessation and sexual health,
and conduct a human evaluation study to answer
the question “How does the quality of large lan-
guage model-based generated reflections compare
to human-authored chatbot reflections in the con-
text of health counseling?”.

The main contributions of this paper are 1) a
manual independent evaluation of large language
models compared to human-authored reflections
based on four distinct criteria that are integral in
health counseling (appropriateness, specificity, nat-
uralness, and engagement), and 2) a manual rank-
ing evaluation comparing the overall quality of gen-
erated reflections to the human-authored ones.

We mainly focus on comparing human-authored
reflections to the reflections generated by GPT-4, as
it is widely accepted as the current state-of-the-art,
and adopted as the standard choice by many indi-
viduals. Although, the Open LLM Leaderboard1

serves as a benchmark for tracking progress of the
LLM technology publicly and encourages the adop-
tion of more open-source practices, Liesenfeld and
Dingemanse (2024) highlight that the degree of
openness of these LLMs in practice varies signif-
icantly. The growing lack of scientific documen-
tation and transparency in LLMs regarding data
collection poses challenges for ensuring fairness
and privacy (Liesenfeld et al., 2023). In contrast,

1https://huggingface.co/open-llm-leaderboard

BLOOM (Scao et al., 2022) is a model developed
by scientific community adhering to open-science
principles and remains the most open model ac-
cording to Opening up ChatGPT2 list. Hence, as
an addition to GPT-4, we explore whether the open-
science model, BLOOM, can generate substantial
reflections to enrich the predetermined chatbots
when applied with the current standards. For per-
spective, we also add its proprietary open-source
peer, FLAN-T5 (Chung et al., 2024), into our eval-
uations.

Our findings support that LLMs can enhance
reflections in motivational interviewing chatbots.
Moreover, we found that GPT-4 has the ability
to produce reflections of a comparable quality as
human-authored ones. Nevertheless, further anal-
ysis reveals that such applications should be ap-
proached with caution.

2 Conversation Contexts

We utilize a collection of human-chatbot conver-
sations in English obtained from separate preced-
ing studies involving two predetermined chatbots
designed by MI experts to support motivational in-
terviewing counseling in smoking cessation (He
et al., 2024) and sexual health (Balaji et al., 2024).
These chatbots select their responses from a set of
human-authored reflections by matching them to
user replies using a similarity-based information
retrieval algorithm. During the preceding studies,
conversations were collected from a total of 175
university students (150 for smoking cessation, 25
for sexual health) above the age of 18. The differ-
ence in the number of participants is caused by the
difference between the experimental designs of the
two studies.

Conversation contexts are extracted from the col-
lected conversations by a sliding window of 5 turns.
Table 1 shows an example conversation context,
and the human-authored reflection selected by the
chatbot for that context. We only include conver-
sation contexts where the chatbots were designed
to provide a reflection on user replies, in order to
focus on the reflection generation capabilities of
LLMs. This selection is done based on whether
the final chatbot question within the context would
elicit a reflection. The full list of questions can be
seen on Table 2.

We have chosen 188 conversation contexts in
total to be included in our evaluation study. Among

2https://opening-up-chatgpt.github.io/
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Conversation Context
(two prior turns are hidden)

Bot: What, according to you, would be good
about not smoking?
User: health reasons
Bot: I see that health is important to you and it is
a concern to you that smoking may impact your
health and well-being in the long term. What
else?
User: smelling good
Bot: It concerns you that smoking may give you
unpleasant smell
Bot: How about we try something a little differ-
ent? What do you see as a not-so-good thing if
you continue smoking as you are?
User: financial reasons

Reflection
Bot: So you want to take care of your finance,
and stopping smoking might be an important
step you can take.

Table 1: An example conversation context collected via
the smoking cessation chatbot. “Bot” utterances, includ-
ing the reflection, were prewritten by an MI expert, and
“User” utterances were provided by an individual who
participated in our preceding study.

these, 160 were related to smoking cessation and
28 to the domain of sexual health. The difference
in the number of contexts for each topic reflects the
difference in the amount of data collected by the
two separate studies. The context selection process
was randomized within each domain.

The conversation data were collected with the
added intention to be utilized in further research
and the participants of the preceding studies
were informed accordingly beforehand. During
our study, any personally identifiable information
(such as person and location names) were semi-
automatically removed from the conversation con-
texts to ensure that such information does not ap-
pear in the API requests and in the surveys. The
data are not publicly distributed at this time.

3 Reflection Generation

The rising popularity of recent generative LLMs
can be attributed to the ease of implementing
instruction-based zero-shot prompting, which is
increasingly becoming the norm. Thus, the perfor-
mance of an LLM with zero-shot prompting is be-
coming a key measure of its practicality. Hence, we
aim to explore if BLOOM and FLAN-T5, despite

Smoking Cessation Chatbot
- I wonder, how did you do that? What methods
did you use?
- What, according to you, would be good about
not smoking?
- What do you see as a not-so-good thing if you
continue smoking as you are?
- Thinking about your last quit and if you were
to try again, what might be the best way to try?
- Why did you decide to stop?
- Tell me one positive feeling you had when you
quit last time.
- Given what you know about yourself, tell me
one strength of yours that helped you when you
quit last time.

Sexual Health Chatbot
- Can you think of how using condoms in the
beginning of a new exclusive sexual relationship
could benefit you and your partner?
- What led you to choose that number? (on user’s
confidence towards safe sex recommendations)
- What could be a downside of not using con-
doms when in a new but steady relationship?

Table 2: The predetermined chatbot questions that as-
sisted us in identifying the specific conversation contexts
where the chatbots were required to provide a reflection
to the user’s most recent input.

being pretrained for different prompting strategies,
are still effective today using the recent zero-shot
prompting. Therefore, we leverage the generation
capabilities of all three LLMs through the same
zero-shot prompting strategy.

We primarily instruct the models to continue a
given conversation with a reflection as a therapist,
specifically focused on motivational interviewing.
The human-authored reflections in the collected
conversations are designed as statements reflect-
ing on the user responses. To align with this for-
mulation, we instruct the LLMs not to pose any
questions. The prompt concludes with a conver-
sation context ending with a user response. The
instruction part of the prompt is as follows:

As a therapist who applies motivational
interviewing, generate the next therapist
utterance based on the dialogue history
given below. You have to reflect on what
the patient said. Never ask a question.

We utilize OpenAI API (Ouyang et al., 2022)
to generate with GPT-4, and HuggingFace API
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(Wolf et al., 2020) to generate with BLOOM and
FLAN-T5 models3. BLOOM and FLAN-T5 mod-
els often generate repetitive sequences which we
automatically shorten to their simplest forms in a
post-processing step4. Furthermore, they occasion-
ally generate near-duplicate copies of counselor
utterances from the given context, rather than gen-
erating unique ones. Contexts where these happen
are automatically excluded from our studies.

4 Evaluation

4.1 Experimental Setup

We recruited 120 human evaluators through the
online participation platform, Prolific. Inclusion
criteria were adult age (over 18 years old) and flu-
ency in English. The study was evenly distributed
to male and female participants who reside in 22
countries, and the mean age was 29 years and 6
months5. Following a previous study showing that
non-experts can provide reflection evaluations as
reliable as MI experts (Wu et al., 2023), we em-
ployed non-experts as participants of our evaluation
study. Every participant was assigned 5 randomly
chosen conversation contexts where they initially
conducted the independent evaluations followed by
the ranking evaluations. Each conversation context
was evaluated by at least 3 participants. Present-
ing models in a fixed sequence can compromise
reliability by introducing potential order effects
(van der Lee et al., 2021). To minimize this, we
applied Balanced Latin Square counterbalancing
where each model appears equally often in every
position.

Prior to the experiment, our institution’s ethics
board reviewed and approved the study in accor-
dance with ethical standards6. The participants
were informed on the study details prior to consent,
and compensated with £7 per hour. No personally
identifiable information was kept after the experi-
ment.

4.2 Independent Evaluation

The first phase of our study aims to independently
evaluate the quality of the generated and human-
authored reflections based on a given conversation

3More details can be found in Appendix A.
4For example, “I see. I see. I see.” becomes “I see.”.
5More details can be found in Appendix B.
6Established by the Ethics Committee of Social Sciences at

Radboud University and registered with the reference number
ECSW-LT-2023-9-15-71121.

context. We focus on four distinct evaluation crite-
ria that we consider to be essential in health coun-
seling: appropriateness, specificity, naturalness,
and engagement. Each criterion is introduced to
the evaluators with a short definition and accom-
panying positive and negative examples, prior to
the evaluation. The reflections are rated one at a
time where the evaluators rated a reflection for all
criteria at once. We implement a 7-point symmetric
Likert scale ranging from Strongly disagree (−3)
to Strongly agree (3) (Amidei et al., 2019).

Appropriateness
Previous studies often define appropriateness as
whether the utterance is relevant, suitable, and ac-
ceptable to the given conversation (Ghazvinine-
jad et al., 2018; Shalyminov et al., 2020). Health
counseling requires discussing sensitive topics and
avoiding harmful phrases that can cause a breach
of trust, confusion, or more serious ramifications
is crucial. Thus, counselors are expected to select
their words and expressions thoughtfully. While
explicit offensive language is no longer commonly
expected from recent LLMs, by their design the
potential dangers associated with inflammatory lan-
guage continue to exist (Bender et al., 2021). It
is essential to assess the level of the perceived ap-
propriateness of LLMs especially when discussing
highly sensitive subjects. Our definition for appro-
priateness is whether the response would be (eth-
ically and morally) appropriate if it was actually
uttered to a patient after the given conversation.

Specificity
Balancing specificity against genericness in re-
sponses is important for maintaining users’ interest
during conversation (See et al., 2019), and thus
has been at the focus of previous evaluation stud-
ies (Zhang et al., 2018; Ko et al., 2019; Adiwar-
dana et al., 2020). For health counselling, keeping
users interested in the conversation could encour-
age them to persist with the intervention, thereby
aiding them in achieving their objectives. Human-
authored reflections for predetermined chatbots are
typically drafted in a versatile and generic style,
mainly due to the extensive effort required in writ-
ing specific reflections for each potential scenario.
Hence, it is essential to evaluate the specificity of
the generated reflections in comparison to human-
authored ones. Similar to Dieter et al. (2019), we
define specificity in our experiments as whether the
response contains information specifically given
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Figure 1: Violin graphs visualizing the distribution of 7-point human numerical scores for each model across each
criterion, depicting summary statistics like the median (white dash) and the interquartile range (the thick black bar)
as well as the score density of the relevant variables, where a wider range represents a larger density. Note that
our actual data range is (−3, 3), but the density estimations of the violin plots stretch to (−4, 4) as a continuous
probability is calculated.

for the patient’s response.

Naturalness
Naturalness (or fluency) is commonly utilized in
natural language generation (NLG) studies to as-
sess the linguistic quality (Gatt and Krahmer, 2018).
Ensuring natural-sounding reflections in health
counseling chatbots is as essential as in any other
domain to sustain user interest which could foster
continuous interactions with the chatbot. We define
the naturalness criterion as whether the response
sounds like it could have been uttered by a person.

Engagement
Engagement is a significant factor on the effec-
tiveness of health behaviour change counselling,
including motivational interviewing. Counselling
studies indicate a direct relationship between en-
gagement and positive therapeutic results and im-
provements (Boardman et al., 2006). The engage-
ment for chatbots is frequently investigated as an
extrinsic measurement using approaches varying
across studies (He et al., 2022). NLG-focused stud-
ies tend to measure it as a combination of multi-
ple contributing factors (See et al., 2019). In this
study, however, we aim to measure the perceived
engagement of each reflection separately. Hence,
we define the engagement criterion as whether the
response could provide the opportunity for further
conversation and could increase the engagement
of the patient in the conversation.

4.3 Ranking Evaluation

In the second phase of the study, our goal is to
compare the overall quality of the generated and
human-authored reflections via ranking. We define
the task as assigning higher scores to responses
that are more fitting than others in a general sense.

We utilize the RankME method which incorpo-
rates magnitude estimation into the ranking pro-
cess by requesting evaluators to express the degree
to which a target text compares to a pre-selected
reference text (Novikova et al., 2018). This allows
us to rank multiple reflections at once, eliminat-
ing the need for evaluating pairwise combinations.
Because our primary aim is to evaluate the qual-
ity of the generated reflections in comparison to
the human-authored ones, we designate the human-
authored reflections as the reference text and assign
them a fixed rate of 100, in line with the approach
of the RankME authors. The evaluators are then
instructed to rate the generated reflections consid-
ering the human-authored reflection and the corre-
sponding conversation context.

To determine the overall ranking, we utilize
TrueSkill (Herbrich et al., 2006) by judging the
evaluation ratings in pairs, with higher-rated reflec-
tions symbolizing a victory over lower-rated ones.
TrueSkill calculates a mean rating value as the final
score for each condition. We set the initial rating
to 25, following the the TrueSkill authors.

5 Results

5.1 Independent Evaluation Results
We conducted independent evaluations to inves-
tigate the quality of LLM-based generated reflec-
tions primarily compared to human-authored reflec-
tions on their perceived appropriateness, specificity,
naturalness, and engagement. Figure 1 reveals that
the overall evaluation of the reflections was positive
in most cases, where participants agreed, to vari-
ous degrees, that the reflections were appropriate,
specific, natural, and engaging. It is evident that
GPT-4 reflections received a larger set of higher rat-
ing degrees compared to the human-authored ones,
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Figure 2: The mean scores calculated via Tukey’s HSD
for each model across each criterion. The dashed lines
highlight the results for human-authored reflections.
The (red) bars completely beyond these lines signal a
significant difference, while overlapping (grey) bars sug-
gest no significant difference with the scores of human-
authored reflections.

especially for appropriateness and specificity crite-
ria. Moreover, the ratings for BLOOM reflections
reveal a distribution pattern parallel to the rating
for human-authored reflections.

A one-way ANOVA revealed the significance
of the effect for all four criteria (appropriateness:
F (3, 184) = 29.956, p < 0.001; specificity:
F (3, 184) = 46.02, p < 0.001; naturalness:
F (3, 184) = 14.874, p < 0.001; engagement:
F (3, 184) = 29.926, p < 0.001). Tukey’s HSD
post-hoc test for multiple comparisons indicated
that GPT-4 reflections were rated significantly
higher (p < 0.001) than human-authored ones
across all criteria (see Figure 2) with the mean dif-
ferences of 0.77 for appropriateness, 0.84 for speci-
ficity, 0.55 for naturalness, and 0.52 for engage-
ment, on a 7-point scale. The differences between

0 5 10 15 20 25 30

GPT-4
Human
BLOOM

FLAN-T5

Figure 3: TrueSkill mean rating values (µ) calculated
for each model using the rankings provided by the eval-
uators. Error bars represent the standard deviation (σ).

BLOOM and human-authored reflections were not
significant in any criterion. FLAN-T5 reflections
were significantly less engaging (p < 0.001) than
human-authored ones.

5.2 Ranking Evaluation Results

We applied the TrueSkill calculation to produce
a mean rating value, µ, along with standard devi-
ation, σ, for each reflection type using the rank-
ings provided by the evaluators. Figure 3 shows
that GPT-4 generated reflections with the high-
est overall quality (µ = 30.46, σ = 0.83) fol-
lowed by the human-authored reflections with a
small margin (µ = 28.05, σ = 0.80). BLOOM’s
reflections were ranked below human-authored
ones (µ = 25.43, σ = 0.80), and FLAN-T5 pro-
duced the reflections with the lowest overall quality
(µ = 20.77, σ = 0.87).

A Kruskal-Wallis test confirmed the overall
statistical significance of the differences in rank-
ings amongst the reflection types (H(3) =
283.306, p < 0.001). Dunn’s post-hoc tests con-
firm that all pairwise differences between the re-
flection types were significant (p < 0.001).

6 Related Work

Throughout the years, significant contributions
have been made in automating the augmentation
of motivational interviewing reflections. Previous
studies demonstrated controlled manners of utiliz-
ing language modelling for augmenting reflections
such as rephrasing responses to increase their MI-
adherence (Welivita and Pu, 2023) and template-
based rewriting to convert non-reflective responses
into MI reflections (Min et al., 2023). These ap-
proaches can be potentially utilized to give feed-
back or suggestions during counselor training.

Our work is more focused on the growing trend
of free-form generations via LLMs which offer
great flexibility in their generations and could be
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valuable in creating a set of new reflections. Shen
et al. (2020) used a fine-tuned GPT-2 (Radford
et al., 2019) model to generate MI reflections based
on 5-utterances long dialogue contexts and sample
responses from counseling transcripts. Through
human evaluations, they showed that the LLMs can
be potentially applied to generate reflections that
are comparable to the ground-truth reflections in
terms of quality and reflection-likeness. Shen et al.
(2022) includes domain specific and commonsense
knowledge to their reflection generation process
using BART (Lewis et al., 2020) model, which
provided improvements. Ahmed (2022) employed
a few-shot prompted GPT-3 (Brown et al., 2020)
and a fine-tuned GPT-2 to generate reflections on
human-chatbot smoking cessation conversations.
The reflections were evaluated manually by catego-
rizing them as acceptable or not. The reflections
generated by GPT-3 were categorized as acceptable
89% of the time by human evaluators. Brown et al.
(2023) integrated the reflections generated by the
GPT-2 model into a chatbot that poses prewritten
questions. They evaluated the overall dialogue effi-
cacy on the users’ readiness for smoking cessation,
and found that inclusions of LLM reflections had a
positive effect. We share this vision for the poten-
tial implementation of the generated reflections in
MI counselling chatbots.

The study most relevant to ours was conducted
by Brown et al. (2024), where they generated re-
flections using GPT-4 on transcripts collected via
a chatbot designed for smoking cessation (Brown
et al., 2023). We follow upon this practice while
also incorporating transcripts from a sexual health
chatbot, and examining generations from the mod-
els BLOOM and FLAN-T5 in addition to GPT-4.
Brown et al. (2024) have demonstrated that GPT-4
can generate MI reflections with near-perfect suc-
cess, determined through a human evaluation in
which evaluators categorized each reflection as ei-
ther MI-adherent or not. In contrast, we are focused
on human evaluations by examining the perception
of the generated reflections on a finer set of criteria
based on health counselling via drawing compar-
isons to human-authored reflections.

7 Discussion

Our findings reveal that LLMs can enhance the
specificity and flexibility of reflections in conver-
sations, which aligns with the results of Brown
et al. (2023). Furthermore, the results show that the

Conversation Context
(four prior turns are hidden)

Bot: Given what you know about yourself, tell
me one strength of yours that helped you when
you quit last time.
User: my presentation urge

Reflections
Bot: You like to have plans, and that helps you
go through the quitting process. That’s some-
thing that could help you with challenges.
GPT-4: I see, your sense of pride and desire to
present a healthy version of yourself to others
was a successful motivator for you in the past.
It’s great to recognize your own strengths.
BLOOM: I think you are right. I think you are
a very strong person. You are very determined
and you have a lot of will power. I think you are
a very good example of someone who can quit
smoking.
FLAN-T5: I see. So you are a person who is
motivated to do things your way.

Table 3: An interaction where all generated reflec-
tions were judged inappropriate by the evaluators. The
human-authored reflection (labelled as “Bot”) is not rel-
evant to the context because this type of user response
was not anticipated during the development of the chat-
bot.

generated reflections were appropriate in numerous
instances, which is in concurrence with the find-
ings of Ahmed (2022). Our ranking study revealed
that the reflections produced by LLMs match the
quality of human-authored reflections, a finding
that is aligned with Shen et al. (2020). The overall
positive ratings given to the LLM reflections dur-
ing the independent evaluation confirms that the
LLMs are capable of substantial reflections, which
is consistent with Brown et al. (2024).

The results imply that the latest generative lan-
guage modelling technologies can be potentially
integrated into task-oriented predetermined chat-
bots. However, our further analysis also advises
that caution and careful consideration should be
taken for such an attempt. For example, FLAN-T5
generated “I’m not sure I agree with that.” as a
response to user’s opinion on “health benefits and
monetary gain” being good about not smoking,
and BLOOM uttered “I wonder if you think that
the same thing would be good about not smoking
for other people?” in a similar context. Although
more nuanced, Table 3 shows a confrontational
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Conversation Context
(four prior turns are hidden)

Bot: What do you see as a not-so-good thing if
you continue smoking as you are?
User: nothing

Reflections
Bot: OK, I’ll remember that. Thanks for helping
me learn!
GPT-4: You don’t see any potential downsides
to continuing with your smoking habit. Let’s
keep going. How about the not-so-good things
about not smoking? Have you thought about
that?
BLOOM: Nothing? That’s interesting. I won-
der if you could think of something that would
be a little bit more negative about smoking?
FLAN-T5: I’m not sure what to say to that.

Table 4: An interaction where user gave an unforeseen
response. Only the response generated by BLOOM was
judged as appropriate by the evaluators.

reflection generated by GPT-4 that may be inter-
preted as an offensive remark. Consequently, it was
considered inappropriate by the human evaluators.
These examples confirm that the potential issues
and risks raised by previous studies persist in the
recent models (Bender et al., 2021).

The example interaction in Table 4 demonstrates
a situation in which the user responded with “noth-
ing” when asked about the downsides of smoking.
In this case, the evaluators deemed only the reflec-
tion generated by BLOOM as appropriate. We see
that both GPT-4 and BLOOM attempt to initiate
further discussion with the user. The distinction,
although subtle, may be that BLOOM’s response
does so more seamlessly. Regardless, the LLMs
responded with questions in their replies, contrary
to the instruction in the prompts. Incidentally, the
examples in both Table 3 and Table 4 show how
human-authored responses could also mismatch the
context when faced with an unforeseen response
from the user.

Table 5 displays an example interaction where
both the human-authored and the GPT-4-generated
reflections were deemed appropriate, specific, nat-
ural, and engaging by the evaluators. Upon further
examination, it becomes evident that our MI ex-
perts carefully phrased the human-authored reflec-
tion to form a deeper connection with the user by
emphasizing an important aspect of their life (in
this instance, financial responsibility). This cannot

Conversation Context
(four prior turns are hidden)

Bot: What, according to you, would be good
about not smoking?
User: you will save money

Reflections
Bot: So I understand that being financially re-
sponsible is important to you, and you don’t
want smoking to influence you on that.
GPT-4: You’re absolutely right there. Not
spending money on cigarettes would cost signif-
icantly less overall. It’s a valid point and a truly
valuable potential benefit.
BLOOM: I think you are right. I think that not
smoking is a good thing because it will save you
money.
FLAN-T5: I think that’s a good reason to quit.

Table 5: An interaction where GPT-4 and human-
authored (labelled as “Bot”) reflections received positive
evaluations.

be said for the generated reflections in the same ex-
ample. This particular trait was not included in our
evaluation criteria, and thus not part of our findings.
This example emphasizes that evaluation studies,
including ours, are only indicative of the criteria
that have been used in the experiments. Therefore,
further diverse evaluation approaches are recom-
mended for future research to be taken into account
in the process of understanding whether LLMs can
generate reflections as good as prewritten human-
authored reflections.

We observe that GPT-4 can produce highly vari-
able reflections that match the context well. It
performed significantly better than the human-
authored reflections across all independent eval-
uation criteria as well as in the ranking evalua-
tion. Considering this, we believe that GPT-4 can
be useful for chatbot developers to enhance and
enlarge reflection datasets of their predetermined
chatbots. Moreover, BLOOM was evaluated com-
parable to human-authored reflections during inde-
pendent evaluation, but was deemed significantly
worse during the ranking evaluation. It is important
to note that BLOOM was originally developed as a
counterpart to GPT-3, and not designed to function
with zero-shot prompting. Hence we refrain from
making direct comparisons between BLOOM and
GPT-4 as this may lead to disparities. The overall
positive ratings given to BLOOM, however, indi-
cate that there is potential for the implementation of
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it with zero-shot prompting for the same purpose,
although it requires additional post-processing to
be practically useful (see Section 3). Nevertheless,
our analysis shows that it is inadvisable to utilize
the reflections produced by any of the LLMs in a
counseling chatbot, without conducting a thorough
manual review in advance.

7.1 Limitations

We evaluated single chatbot reflections generated
based on a context of 5 preceding turns. Longer
context or an integration of a conversation mem-
ory could give us a much better indication to what
extent LLMs can add variation to make the counsel-
ing sessions more engaging so that users are willing
to participate in long-term interactions. We plan to
evaluate such implementations in future research.

The choice of using an online crowdsourcing
platform (Prolific) and restricting participants only
to be fluent in English opened this experiment up to
fluent but possibly non-native speakers from many
different countries which might have influenced our
evaluation, specifically the naturalness criterion.
Furthermore, we did not evaluate the reflections
with participants who actually want to quit smoking
or are in need of sexual health advice.

BLOOM and FLAN-T5 required an additional
automated post-processing step to remove contexts
with near-duplicates or repetitive sequences. Our
results are based on these filtered generations in-
stead of direct generations like we did use for GPT-
4. In our future research, we aim to incorporate a
wider range of open-source and proprietary LLMs
in evaluations to provide a more direct comparison
with GPT-4.

8 Conclusion

In this study, we evaluated the large language
model-based generated motivational interview-
ing reflections on their perceived appropriateness,
specificity, naturalness, and engagement in the con-
texts of predetermined smoking cessation and sex-
ual health chatbots. We found that LLMs can be po-
tentially employed to enhance the reflections used
in the predetermined conversational agents. Fur-
thermore, we compared the generated and human-
authored reflections based on their overall qual-
ity via a ranking evaluation. We found that GPT-
4 produces reflections of comparable quality to
human-authored reflections. Nonetheless, caution
is recommended when utilizing language models in

motivational interviewing or other highly sensitive
counseling, as there is no assurance that they will
consistently produce appropriate results.
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including the temperature parameter set to 1. We
employed the BLOOM version 176B parameters,
coded as bloom-176b, and the FLAN-T5 version
with 11.3B parameters, named as flan-t5-xxl.
HuggingFace API interface was utilized to gen-
erate with these models with slight modifications
to the default configurations: return_full_text
was set to False, no_repeat_ngram_size was ad-
justed to 4, and max_new_tokens was limited to
100.

API calls were made in September 2023. The
openai Python library was utilized to generate with
GPT-4 while the requests Python library was fa-
cilitated to make calls to the HuggingFace API7.
The models were utilized in accordance with their
corresponding licenses and terms at the time of
this study. OpenAI provides a Terms of Use8.
BLOOM is authorized under BigScience RAIL
License v1.09. And FLAN-T5 authorized under
Apache 2.0 license.

B Participant Demographic

While recruiting our participants, we have not
placed any restrictions other than fluency in English
and being older than 18 years old. As a result, we
have attracted a wide range of participants in terms
of demographic. The study involved individuals of
various age groups, ranging from 18 to 58, includ-
ing participants in their 20s, 30s, 40s, and 50s. The
mean age of the participants was 29 years and 6
months, with the majority (14 individuals) falling
into the 25-year-old category. Participants resid-
ing in 22 countries joined in our study including
Austria, Canada, Czech Republic, Denmark, Esto-
nia, Finland, France, Germany, Greece, Hungary,
Iceland, Italy, Latvia, Mexico, Netherlands, New
Zealand, Poland, Portugal, South Africa, Spain,
United Kingdom, United States of America. How-
ever, half of the participants (60 individuals) were
residing in South Africa.

C Correlation Analysis

We computed Pearson correlation coefficients to
examine the linear relationships between each pair
of four criteria. There was a positive correlation for
all combinations; appropriateness and specificity
(r(186) = 0.63, p < 0.001), appropriateness and
naturalness (r(186) = 0.41, p < 0.001), appro-

7https://api-inference.huggingface.co
8https://openai.com/policies/terms-of-use
9https://huggingface.co/spaces/bigscience/license

priateness and engagement (r(186) = 0.51, p <
0.001), specificity and naturalness (r(186) =
0.31, p < 0.001), specificity and engagement
(r(186) = 0.51, p < 0.001), naturalness and en-
gagement (r(186) = 0.41, p < 0.001).
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Abstract
Large vision-language models (VLMs) can as-
sist visually impaired people by describing im-
ages from their daily lives. Current evaluation
datasets may not reflect diverse cultural user
backgrounds or the situational context of this
use case. To address this problem, we create
a survey to determine caption preferences and
propose a culture-centric evaluation benchmark
by filtering VizWiz, an existing dataset with im-
ages taken by people who are blind. We then
evaluate several VLMs, investigating their relia-
bility as visual assistants in a culturally diverse
setting. While our results for state-of-the-art
models are promising, we identify challenges
such as hallucination and misalignment of auto-
matic evaluation metrics with human judgment.
We make our survey, data, code, and model
outputs publicly available.

coastalcph/vizwiz-culture

1 Introduction

With the increasing integration of AI applications
into our lives, it is important to consider human-
centered use cases when evaluating such systems.
Large multimodal language models are now used
as visual assistants for blind and visually impaired
individuals. Given that people across different cul-
tures use such applications, it is essential to ensure
not only their accuracy and faithfulness (Brady
et al., 2013; Gonzalez et al., 2024) but also their
cultural representation and inclusion (Hershcovich
et al., 2022; Shi et al., 2024).

Existing evaluation benchmarks for VLMs focus
primarily on English with few, implicit mutlicul-
tural references. Although multicultural evalua-
tion datasets like MaRVL (Liu et al., 2021) and
XM3600 (Thapliyal et al., 2022) include culture-
specific images (e.g., traditional wedding cos-
tumes), they also contain images with minimal
cultural significance (e.g., a bag of carrots). Conse-
quently, these datasets may not accurately measure

0 10 20 30 40 50 60
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helpful

important
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1 2 3 4 5

Figure 1: Survey results from people with visual impair-
ments rating importance and helpfulness of cultural in-
formation in image captions. We use a Likert scale from
1 (not important/helpful) to 5 (very important/helpful).

the cultural knowledge of VLMs, despite being
useful for assessing their multilingual capabilities.
Additionally, evaluating these systems as visual as-
sistants presents further challenges due to varying
photo quality, user goals, and photo content (Chiu
et al., 2020; Jung et al., 2022). Recently, Gonzalez
et al. (2024) conducted a diary study with blind and
low-vision individuals using an AI-powered scene
description application, revealing that significant
improvements are still needed for satisfying and
trustworthy user experiences.

To address both cultural and visual challenges,
we first surveyed visually impaired individuals to
gather their caption preferences and determine if
cultural details are necessary. Then, we filtered
an existing dataset with images taken from people
who are blind, identifying implicit cultural con-
cepts. This is used as a challenging benchmark to
evaluate image captioning performance on cultural
images of state-of-the-art models across different
prompt settings. With these experiments, we inves-
tigate how AI applications, such as image caption-
ing, can foster a more inclusive and culture-aware
experience for all.
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Background Current models are trained without
consideration for the subjective perspectives and
cultural influences of those who provided the image
descriptions (Ye et al., 2023). This raises the need
for carefully curated sources of data and annotation
paradigms that are more culturally aware and inclu-
sive (Arora et al., 2023; Cao et al., 2023). Lately,
there has been a growing body of work releasing
multicultural multimodal datasets for visiolinguis-
tic reasoning (Liu et al., 2021), text to image gen-
eration (Liu et al., 2023b; Ventura et al., 2023),
and image captioning (Thapliyal et al., 2022). Be-
yond the focus on the multilingualism of the cap-
tions, concurrent work also addresses the cultural
concepts depicted in the images (Cao et al., 2024;
Burda-Lassen et al., 2024; et al., 2024a; Mukherjee
et al., 2024; Bhatia et al., 2024). However, they still
do not take into account specific use cases, such
as visual assistance. Gurari et al. (2020) released
the first image-captioning dataset with photos from
people who are blind, and a series of challenges for
multimodal systems across different tasks (Gurari
et al., 2018). After this initiative, there have been
many works trying to improve current models for a
specific use-case, to assist people with visual dis-
abilities (Dognin et al., 2022; Ahsan et al., 2021;
Delloul and Larabi, 2023). There has also been
research in human-computer interaction (HCI) and
accessibility on designing image descriptions for
visually impaired individuals, primarily focusing
on screen readers and functional descriptions of on-
line, publicly available images (Morris et al., 2018;
Bennett et al., 2021; Schaadhardt et al., 2021). De-
spite these efforts, there still seems to be a lack of
focus on image captioning for the visually impaired
(Ghandi et al., 2023), especially in multi-cultural
settings.

2 Methodology

We first created a survey seeking to understand
the preferences of visually impaired individuals
for image captions, focusing on the inclusion of
cultural information and the desired level of detail
(see Appendix A). We aggregate the participants’
assessments of the helpfulness and importance of
cultural information in Figure 1.

We then focused on two lines of contribution: (1)
We filtered the VizWiz dataset for implicit cultural
concepts. VizWiz is a widely used visual question
answering and image captioning dataset represent-
ing a real-world use case, where examples consist

of images and questions submitted by people who
are blind, together with crowdsourced answers and
image captions (Gurari et al., 2020). The selection
of this dataset serves two main purposes. Firstly, it
is a challenging dataset specifically tailored to real-
world challenges faced by people seeking to access
visual information. Secondly, VizWiz might con-
tain implicit cultural references that are currently
not captured due to the lack of culture-specific cap-
tions. (2) We evaluated the image captioning perfor-
mance of state-of-the-art close-sourced and open-
sourced models in a culturally diverse setting using
our filtered VizWiz dataset. We performed both
an automatic scoring of model-generated captions
against two sets of annotations using the COCO
evaluation package1 and a human evaluation.

2.1 Data Filtering

To filter the data we hired a total of 165 annota-
tors through the Prolific platform.2 We first asked
participants to specify their country of origin, lo-
cation, and their cultural background. Then, we
asked them to retrieve images from the VizWiz
dataset visualizer3 related to their cultural back-
ground, provide the image name, the reason they
think the image is culture-related, and their pre-
ferred caption from the dataset (VizWiz provides
five different image captions per image). We also
gave them the option to suggest a better caption that
includes cultural aspects. After collecting all the
culture-specific candidate images, we proceeded
to a second step of verification. In this step, we
retained only those images that had received con-
sensus agreement from at least two individuals. We
collected a total of 324 images and 648 captions
spanning 60 different identified cultures. It should
also be noted that more than 96% of the annota-
tors suggested a cultural revision of the original
captions. We refer to Appendix B for further in-
formation about the annotation guidelines and data
filtering approach and results.

2.2 Models and evaluation

We conducted experiments on the image captioning
task in the zero-shot setting, in which a pretrained
model is queried to produce a textual description
for an image without finetuning on the same dataset.
We relied on four commonly used open-access

1https://github.com/tylin/coco-caption
2https://www.prolific.com/
3https://vizwiz.cs.colorado.edu/VizWiz_

visualization/view_dataset.php
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Model BLEU-4 METEOR CIDEr SPICE

Prompt Default Cultural Default Cultural Default Cultural Default Cultural
Annotation Original Cultural Original Cultural Original Cultural Original Cultural Original Cultural Original Cultural Original Cultural Original Cultural

BLIP-2 8.0± 0.4 4.8 7.0± 0.4 4.6 12.6± 0.2 10.2 12.3± 0.3 10.3 51.3± 3.2 39.9 44.0± 3.0 36.7 13.8± 0.4 12.5 12.8± 0.5 11.5
InstructBLIP 14.0± 0.5 8.7 14.1± 0.4 9.0 17.3± 0.3 13.2 17.7± 0.3 13.3 77.1± 3.4 60.0 78.8± 3.2 60.2 18.5± 0.4 15.6 18.2± 0.5 14.9
Idefics2 12.0± 0.5 10.1 9.8± 0.5 10.7 18.1± 0.3 15.1 18.9± 0.3 17.1 80.2± 1.9 78.4 74.1± 2.2 78.2 18.0± 0.5 16.7 18.8± 0.2 17.8
LLaVA-1.6 10.0± 0.5 11.4 6.7± 0.3 7.7 18.9± 0.4 17.3 18.4± 0.3 17.0 60.2± 2.3 75.2 40.3± 1.7 56.3 16.3± 0.6 16.5 15.8± 0.5 15.4
Gemini-1.5-Pro 10.8± 0.3 14.1 5.8± 0.1 8.7 20.8± 0.4 21.3 18.2± 0.1 21.0 71.5± 2.1 88.8 14.8± 0.5 34.1 19.6± 0.4 21.6 14.9± 0.3 17.7
GPT-4o 11.9± 0.6 16.4 8.1± 0.3 12.2 22.4± 0.4 23.4 19.9± 0.3 22.6 66.8± 2.8 99.8 40.4± 1.0 72.8 19.1± 0.4 21.8 16.6± 0.3 20.1

Table 1: Performance of various VLMs on our filtered VizWiz dataset across captioning prompts (default &
culture-specific) and annotations (original & culture-specific). We use 2 reference annotations per image. Since the
original VizWiz has 5 annotations per image, we report the mean and standard deviation over all 10 combinations
with two references. We underline the best result for each model and display the top result for each metric in bold.

models:4 BLIP-2 6.7B (Li et al., 2023a) with OPT
as LLM backbone (Zhang et al., 2022), Instruct-
BLIP 7B (Dai et al., 2023) with Vicuna backbone
(Chiang et al., 2023), Idefics2 8B (Laurençon et al.,
2024), and LLaVa-1.6 7B (Liu et al., 2023a) with
Mistral backbone (Jiang et al., 2023). We also used
two state-of-the-art closed-access models: GPT-4o
(OpenAI, 2024) and Gemini Pro 1.5 (et al., 2024b).
For all of these models, we experimented with two
different prompt types including a culture-specific
prompt following Shi et al. (2024) and a default
captioning prompt taken from Dai et al. (2023).
The exact prompts can be found in App D. We eval-
uated the model-generated captions in two ways:
(1) via the COCO evaluation suite and (2) through
human evaluation. The COCO evaluation suite
was first introduced by (Chen et al., 2015) as a
framework to assess image captions using numer-
ous automatic metrics, including BLEU (Papineni
et al., 2002), CIDEr (Vedantam et al., 2015), ME-
TEOR (Denkowski and Lavie, 2014), and SPICE
(Anderson et al., 2016). For consistency with our
culture-specific re-annotations (two captions per
image), we also used two reference captions per
image to score models on the original annotations.
Since each image has five original captions, we re-
port aggregate results over all ten two-caption com-
binations. Our human evaluation had two stages.
In the first stage, we asked 60 participants to de-
termine if a caption is accurate (on a binary scale)
given the corresponding image. In the second stage,
we asked the same participants to rank all captions
(human-generated, and model-generated) accord-
ing to their preference. We did not make the anno-
tators aware that one caption was model-generated
to minimize bias. We provide further details on the
human evaluation in Appendix F.

4We used implementations and model weights from Hug-
gingFace (Wolf et al., 2020).

3 Results

Automatic evaluation We present the results of
our automatic evaluation of model-generated cap-
tions in Table 1. Note that due to using two ref-
erence captions per image, results for the original
annotations are slightly different than when using
all five at once; we report the latter in Appendix E
for completeness.

As expected, the closed-access models (Gemini
and GPT-4o) score best overall. Slightly lower per-
formance is achieved by the instruction-tuned open-
access VLMs (LLaVa, Idefics2, and InstructBLIP).
BLIP-2, which has not been instruction-tuned, is
lagging behind across all metrics. Since VizWiz is
naturally noisy due to the high ratio of low-quality,
blurry images, the increased scale and overall mul-
timodal reasoning capabilities of the closed-source
models appear to give a significant advantage.

Strikingly, Gemini and GPT-4o achieve much
better performance on our newly annotated cap-
tions that include cultural information than on the
original captions (e.g., 11.9 vs. 16.4 BLEU-4 and
66.8 vs. 99.8 CIDEr for GPT-4o with the default
prompt), while we observe the opposite for the
open-access models (e.g, 14.0 vs. 8.7 BLEU-4 and
77.1 vs. 60.0 CIDEr for InstructBLIP with the de-
fault prompt). One possible explanation is that the
closed-source models have been tuned to generate
more descriptive captions that are aligned better
with human preferences and our cultural caption
annotations, whereas the open-access models have
been tuned to generate slightly more concise cap-
tions that align well with benchmark datasets like
COCO Captions. Our new cultural annotations are
also guaranteed to not have leaked into the VLMs’
training data, thus favoring more objectively capa-
ble models such as GPT-4o.

Next, while individual models (Idefics2 and In-
structBLIP in particular) seem amenable to cul-
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Figure 2: Examples of various images from the filtered VizWiz dataset with the original ( ) and culture-specific (
) annotations, and generated captions from Gemini-1.5-Pro, GPT-4o, InstructBLIP, and LLaVA-1.6 with default (
) and culture-specific ( ) prompting.
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Figure 3: Results of the human evaluation for 100 im-
ages and their captions selected at random from the
filtered VizWiz dataset. The left plot shows the prefer-
ence score (participants were asked to rank the captions;
lower is better). The right plot shows the accuracy eval-
uation (participants were asked to assess whether a cap-
tion is accurate; higher is better). ‘_D’ and ‘_C’ denote
default and culture-specific prompting, respectively.

tural prompting, leading to improved performance
even on the original image captions, the cultural
prompting strategy is overall largely ineffective at
improving performance on the cultural captions.
This result may be due to the models’ tendency
for sycophantic behavior and them being primed to
point out cultural information over other relevant
content in the image (Sharma et al., 2023). Alterna-
tively, cultural prompting might elicit more verbose
captions that are disfavored by the automatic eval-
uation metrics, in which case the automatic eval-
uation results paint an incomplete and potentially
misleading picture.

Human evaluation The results of the human
evaluation are shown in Figure 3. In line with the
automatic metrics, our human annotators tend to
prefer the captions produced by closed-access mod-
els, GPT-4o and Gemini-Pro, with the BLIP-family
models having the lowest ranking. The former are
rated as accurate in more than 90% of the cases,
while the latter are deemed inaccurate in more than
half of the cases. Despite the strong performance
of the closed-access models, our preference com-
parison also shows that the culture-specific human-
annotated captions are still preferred over all of
the models, suggesting there is ample room for
improvement.

In spite of the often stark differences in auto-
matic evaluation scores between cultural and de-
fault prompting (with a preference for the latter),
human participants prefer the model generations
obtained via cultural prompting in 4/6 cases (for
both the ranking and the accuracy assessment), sup-
porting our hypothesis that cultural prompting sim-
ply elicits an answer format that is disfavored by
automatic metrics.

Overall, our results are promising in regard to
the reliability of VLMs at zero-shot generating cap-
tions that are accurate and useful to users who are
blind in culturally diverse scenarios.
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4 Further Analysis

To further analyze our results and assess the model-
generated captions in a more fine-grained manner,
we manually inspected all generated captions for
our 324 images filtered VizWiz dataset and pro-
vided some examples in Figure 2.

We find that InstructBLIP and BLIP-2 captions
tend to be very short, lack a lot of information, and
are often irrelevant hallucinations. This is, to an ex-
tent, expected as we perform zero-shot captioning,
so the models are not necessarily accustomed to
the desired captioning style. In this case, few-shot
prompting or finetuning the models would likely
improve model performance (Brown et al., 2020;
Mañas et al., 2023; Ramos et al., 2023). The closed-
access models, in contrast, largely provide further
or more useful and culture-specific details about the
image than given by the human captioners. They
also seem to provide more accurate captions com-
pared to the open-sourced models. These points
may explain why GPT-4o and Gemini-1.5-Pro and
were overall preferred in our human evaluation.

Overall, we observed that the closed-access mod-
els can transcribe various language scripts from
books, food or beverage packages, giving them
an advantage over the smaller models. In most
cases, in both culture-specific and default prompts,
the models can identify culture-specific beverages
like Japanese matcha tea, Chinese jelly grass or ly-
chee juice, and food such as the Indian lijjat papad,
Japanese mochi, Tom Kha Gai Thai soup, Korean
kimchi, etc. There are also cases where they iden-
tify religious or folk items like the Wayang Golek
puppets, a jar with traditional Norwegian costumes,
or a delft plaque with traditional Dutch costumes.

There is, however, a tendency to generate longer
text in the culture-specific prompts by adding
generic phrases such as ‘hinting at the drink’s cul-
tural origin’, ‘suggesting a celebration of their
shared heritage’, ‘highlighting its appeal across
age groups in Indian culture’, etc. The most chal-
lenging cases for the closed-source models seem to
be foreign currencies (especially the Arabic ones),
historic figures, and paintings. For example, mod-
els seem to confuse Bahraini, Jordan, and Egyptian
banknotes, and they do not recognize the Chinese
historical figure of Sun Yat-sen, or paintings of
Joan Miró or Frederick Morgan. We provide fur-
ther examples in Appendix G.

5 Discussion

Given the current integration of VLMs as virtual as-
sistants for people who seek sighted support, their
performance on culture-specific image captioning
seems promising. Examples from our error analy-
sis and case studies highlight some remaining chal-
lenges. Measured by automatic evaluation metrics,
the performance of the models is overall relatively
low compared to results in existing studies evalu-
ating (finetuned) VLMs for image captioning on
the full VizWiz and other datasets (Gurari et al.,
2020; Chen et al., 2023; Wang et al., 2022). On the
other hand, our human evaluation and error analysis
show that the generated captions by Gemini-1.5-
Pro and GPT-4o are accurate and preferred in many
cases. There also seems to be an extended halluci-
nation problem, which remains an existing major
challenge not only for VLMs (Li et al., 2023b) but
across various language model applications (Bang
et al., 2023; Ji et al., 2023).

6 Conclusion

We evaluated the cultural performance of various
models on image captioning using a multicultural
dataset tailored to a real-world use case. Although
the performance of state-of-the-art closed-source
models is promising, there is plenty room for im-
provement. Examples from our error analysis pro-
vide insights into the models’ performance, help-
ing us identify some of their weak spots. In our
use case, we find that automatic evaluation met-
rics might not be fully representative of model
performance, and therefore encourage researchers
to reconsider a more comprehensive assessment
framework. For future work, we aim to extend our
small filtered cultural dataset by including question-
answering tasks with POV cultural questions.

Limitations

Our work focuses primarily on data curation and
empirical analysis of large multimodal language
models. Our survey, while aimed at determining
caption preferences, may not capture the full range
of needs and preferences of all people with vi-
sual impairment. Further, through our analysis,
we gained insights into some weak spots with re-
spect to what cultures and cultural concepts are
well recognized by the models. However, since we
use a finite amount of data, there might be a data
bias in identifying particular cultures or cultural
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concepts as problematic. Lastly, cultural complex-
ities and variations make it difficult to develop a
standardized approach to cultural inclusion in AI.
We do, however, hope that our culture-centric ap-
proach in the data filtering and annotation process
can serve as an initial step towards evaluating and
understanding the cultural awareness and abilities
of vision-language models for real-world uses.

Ethics Statement

The motivation behind this study is that large
vision-language models have rapidly become main-
stream and are used even by those who seek sighted
support and cannot easily assess model hallucina-
tions or inaccuracies. The primary purpose of our
experiments is to assess the performance of vision-
language models in the task of image captioning
using a multicultural dataset of images taken from
people who are blind. However, it is crucial to rec-
ognize that results from our current filtered dataset
may not be representative of model performance
across cultures. Furthermore, our refined dataset
might retain biases present in the original source
dataset.

We find it improbable that our experiments and
the filtered dataset will meaningfully benefit those
intending to create deceptive models for malicious
purposes. Additionally, the VizWiz dataset may
lack coverage of highly specific subjects, offering
only a general overview of factual topics. People
who intend to use our resources, however, should
state their purpose of usage and be accountable for
their own work.
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A Survey on Caption Preferences

We created a survey aiming to understand the pref-
erences of individuals who seek sighted support re-
garding image captioning. Our interest was particu-
larly focused on whether they prefer image captions
to include cultural information, and how detailed
they prefer the descriptions to be. We published
our survey through the Prolific platform, by choos-
ing 60 participants with an equal gender sample of
and representative across countries compensated
with 18$ per hour. We also added a screener and se-
lected participants without corrected/normal vision.
Overall, the participants were positive regarding
the helpfulness and importance of cultural informa-
tion in the captions with average ratings of 4.1 and
3.9 respectfully.5 Participants also tended to pre-
fer short captions compared to longer ones. After
the anonymity period, we are going to release our
survey link and full results.

B VizWiz Data Filtering—Human
Annotation

As mentioned in the experimental set-up section,
to filter the data we created a survey through the
Prolific annotation platform. All annotators were
compensated with 18$ per hour. We ran this survey
4 times asking for 40 participants each time.

We asked people to identify images from the
VizWiz dataset based on their cultural background,
provide an original and a corrected caption, and
specify the reason they selected the image as
culture-specific. We grouped the reasons that the
annotators provided for selecting culture-specific
images in Figure 4.
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Figure 4: Distribution of the factors/indicators that lead
the annotators to select a specific image as culture-
related and specify the corresponding culture.

5The scale is from 1. Not important/helpful at all to 5.
Very important/helpful)
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The cultural concepts identified by our annota-
tors can be found in Figure 5.
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Figure 5: Distribution of the cultural concepts identified
in the VizWiz dataset by the annotators.

The full annotation guidelines were the follow-
ing:

Creating datasets that reflect a variety of
cultures is a challenging task. This is why
we will try to filter an existing dataset. Your
task is to find culture-related images from a
dataset called VizWiz. You need to:
- Visit the dataset website[link]. - Browse
the dataset or use the search bars on the left
side of the page and search key-terms re-
lated to your culture ’Within visual ques-
tion’, ’Within visual answer’ or ’Within
captions’. - Try to find an image that is
related to your culture/cultural background
(i.e. food brand, currency, books, culture-
specific locations etc.) - Provide your an-
swers to the 5 following questions.

1. Copy and paste the image name
(VizWiz_train_**number**.jpg).

2. Based on your cultural background,
specify what culture you think is the
image related to.

3. Select a caption for the image from the
suggested Image Captions.

4. Do you have a better suggestion for
the image caption? To guide your cap-
tion generation, imagine that you are
describing the image to a visually im-
paired friend. The caption should ex-
plain the whole image, including all
the main objects, activities, and their
relationships, and reflect the culture
information of the image.

5. Provide a reason as to why the image
is culture-specific.

After this, we collected information about the an-
notators’ cultural backgrounds. We asked for both
home-country of origin and current country loca-
tion information since sometimes both can affect
our cultural beliefs and practices. The distribution
of the annotators counties of origin and location
are presented in Figure 6b.

The last step is to answer some final ques-
tions about your cultural background, and
age. We do not collect any other personal in-
formation. Your answers will only be used
for statistical research purposes.

• What is your country of origin that
you consider your ’home’, influencing
your cultural beliefs and other aspects
of your identity?

• Is there a country in which you are
currently located for a long period of
time?

• How old are you? Fill in years in num-
bers.

After collecting all the responses, we kept only
the images where at least two annotators agreed to
select the image as culture-specific. After this ex-
tra validation, we resulted in a total of 324 images
spanning 60 different identified cultures. We com-
pared the similarity between the suggested captions
by the annotators and the original VizWiz captions
and the results can be found in Table 2 indicating
a high similarity between the new culture-specific
suggested captions.

Captions BLEU-4 ROUGE-L F1

Culture-specific 37.10 61.90 93.0

Table 2: Results from comparing the culture-specific
captions of the two annotators against the five original
VizWiz captions.
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Figure 6: Plots as subfigures.

C Model Overview

We list models with their API identifiers in Table 3
below.

Name Identifier Reference

BLIP-2 Salesforce/blip2-opt-6.7b Li et al. (2023a)
InstructBLIP Salesforce/instructblip-vicuna-7b Dai et al. (2023)
Idefics2 HuggingFaceM4/idefics2-8b Laurençon et al. (2024)
LLaVA-1.6 llava-hf/llava-v1.6-mistral-7b-hf Liu et al. (2023a)
Gemini-1.5-Pro gemini-1.5-pro-preview-0514 et al. (2024b)
GPT-4o gpt-4o-2024-05-13 OpenAI (2024)

Table 3: Overview of models used in this study

D Model Prompting

We provide the templates we used to prompt our
models. The default templates have been sourced
from Dai et al. (2023) and Shi et al. (2024).

E Vizwiz Results – 5 Original References

We report model performance on our filtered
VizWiz dataset when using all five original cap-
tions per image (rather than combinations of two
references at a time) in Figure 5.

F Human Evaluation

To conduct the human evaluation of the model gen-
erated responses we created a survey and hired 54
annotators through the Prolific platform compen-
sated with 18$ per hour. We added a screening in
the platform for a representative sample of coun-
tries and an even distribution of male and female

participants. Each annotator evaluated 12 images
and their captions and for each image, we assigned
two annotators and averaged their scores. We pro-
vided the following instructions to the annotators
for evaluating the captions:

This study involves evaluating captions. To
guide your ratings, imagine that you are
describing the image to a visually impaired
friend. Then consider:
How well does the caption describe the im-
age to this friend? Does it take into account
cultural considerations? You will be given
two sets of captions describing an image.

1. Specify which caption you prefer for
the given image (1, 2 or both).

2. Determine if each caption is accurate
and relevant to the given image.

As a general guidance you should consider
a caption as bad when it has one or more of
the following issues:
a) Caption misses the main topic of the im-
age. b) Caption has major grammatical er-
rors (such as being incomplete, words in
the wrong order, etc). Please ignore the
capitalization of words and punctuation. c)
Caption includes hallucinations and men-
tions objects, activities, or relationships that
are definitely not in the image. d) Caption
is not as informative. e) Caption does not
reflect the cultural information depicted in
the image.

G Error Analysis II

We provide further examples from currency-related
images in Figure 7. We can see that for countries
such as US, or Australia, the original VizWiz cap-
tions provide culture-specific information, but this
is not the case for Japanese or Arabic currencies.
Moreover, the models seem robust in western and
Asian currencies, but not with all the Arabic ones.
The example provided in Figure 7 shows how the
models confuse a Jordan currency with Egyptian
or Saudi Arabian currencies and how the smaller
open-source models are more prone to hallucina-
tions.
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Default prompting

<Image> A short image description:

<Image> Write a caption that describes the photo.

Format your response in JSON as follows:
{

"caption": "Caption for the image"
}

<Image> A photo of

<Image> Can you briefly describe the content of the image?

<Image> Write a caption that describes the photo.

Culture-specific prompting

<Image> A short, culture-aware image description:

<Image> Cultural information encompasses content that showcases the distinctive characteristics, artifacts, or manifestations of a
specific group, community, or region.↪→

This includes, but is not limited to, practices, behaviors, norms, values, beliefs, habits, customs, architectural styles,
environmental engagements, and any other elements that are emblematic of a particular cultural setting.↪→

It does not include generic information or widespread practices that are not distinctly tied to a specific cultural identity.

For this task, consider information as "cultural" if:
1. It is associated with or characteristic of a specific identified group (e.g., Americans, Italians, midwestern Americans, etc.).
2. It reveals a unique aspect of that group’s way of life, including social conventions, physical creations, or interactions with

their surroundings that are not typically seen in other cultures.↪→
3. It provides insight into the cultural uniqueness, whether through social practices, material culture, or other culturally

significant elements.↪→

Please exclude generic or ubiquitous statements or observations that do not clearly relate to the unique cultural context of a
specific group.↪→

Given this image, do two things:
1. Determine whether the provided example contains cultural information.
2. Write a caption that describes the photo and includes the cultural information extracted.

Format your response in JSON as follows:
{

"caption": "Caption for the image",
"is_cultural": true/false,
"justification": "Why or why not the image contains cultural information"

}

<Image> Write a caption that describes the photo and includes any cultural information present.

Table 4: Image captioning templates used to prompt our models.

H Case Study

We illustrate the value of cultural and inclusive VL
models via a case study on evaluating GPT-4V as
a visual assistant integrated into the ‘Be My Eyes’
platform. In this case study, we took a random
sample of 20 images from the MaRVL dataset (Liu
et al., 2021). Here we provide a selection of images
we tried in our case study. Each figure includes the

target culture behind each image and the GPT-4
Vision output after loading the image in the Be My
Eyes application.
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Model BLEU-4 METEOR CIDEr SPICE

Prompt Default Cultural Default Cultural Default Cultural Default Cultural
Annotation Original-Full Original-Full Original-Full Original-Full

BLIP-2 14.9 12.1 16.1 15.5 51.7 44.3 10.6 9.9
InstructBLIP 25.3 24.5 22.0 22.1 77.4 78.9 15.0 15.0
Idefics2 20.8 16.7 22.2 23.3 82.0 76.1 15.1 16.6
LLaVA-1.6 17.3 11.8 23.3 22.1 60.9 40.5 15.3 15.3
Gemini-1.5-Pro 18.6 9.9 25.5 21.9 73.0 15.0 18.0 15.3
GPT-4o 20.5 13.8 27.4 24.4 67.7 41.0 18.4 16.6

Table 5: Performance of various VLMs on our filtered VizWiz dataset across captioning prompts (default &
culture-specific) using the five original reference captions per image. We underline the best result for each model
and display the top result for each metric in bold.

Figure 7: Examples from images related to currency comparing original ( ) with culture-specific ( ) annotations
and generated captions from Gemini-Pro and GPT-4o with default ( ) and culture-specific ( ) prompting.
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Figure 8: A picture extracted from MaRVL depicting
a statue of Agamas and the GPT-4V image description
provided in BeMyEyes.

Figure 9: A picture extracted from MaRVL depicting
Buddhist statues and the GPT-4V image description
provided in BeMyEyes.

Figure 10: A picture extracted from MaRVL depicting
sambar, a traditional Tamil dish, and the GPT-4V image
description provided in BeMyEyes.

Figure 11: A picture extracted from MaRVL depicting a
döner, a traditional Turkish dish, and the GPT-4V image
description provided in BeMyEyes.
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Abstract

We present a framework to assess the sensi-
tivity of Large Language Models (LLMs) to
textually embedded social signals using an Ap-
praisal Theory perspective. We report on an
experiment that uses prompts encoding three
dimensions of social signals: Affect, Judgment,
and Appreciation. In response to the prompt, an
LLM generates both an analysis (Insight) and
a conversational Response, which are analyzed
in terms of sensitivity to the signals. We quanti-
tatively evaluate the output text through topical
analysis of the Insight and predicting the social
intelligence scores of the Response in terms of
empathy and emotional polarity. Key findings
show that LLMs are more sensitive to positive
signals. The personas impact Responses but
not the Insight. We discuss how our framework
can be extended to a broader set of social sig-
nals, personas, and scenarios to evaluate LLM
behaviors under various conditions.

1 Introduction

“The limits of my language mean the lim-
its of my world.” (Wittgenstein, 1922)

The increasing integration of Large Language
Models (LLMs) into social contexts presents a
critical challenge: How effectively can they pro-
cess and respond to social signals embedded in hu-
man language? Social signals, as defined in Poggi
and Francesca (2010), are communicative or in-
formative signals that convey insights into social
actions (e.g., insulting someone), interactions (e.g.,
showing responsiveness), emotions (e.g., reflecting
joy), attitudes (e.g., exhibiting disgust), and rela-
tionships (e.g., showing closeness). These social
signals are tools in interaction for maintaining or
changing relationships that set the stage for effec-
tive human-human interactions, which may shape
the responses of LLMs when they engage as par-
ticipants in hybrid settings involving both humans
and LLMs.

This paper illustrates a methodology for sys-
tematic investigation of the sensitivity of LLMs
to social signals in role-playing scenarios. In par-
ticular, the research specifically focuses on social
signals grounded in Appraisal Theory (Martin and
White, 2005) — Affect, Judgment, and Apprecia-
tion. These dimensions facilitate a nuanced under-
standing of how human language expresses emo-
tions, makes ethical judgments, and appreciates the
significance of practices respectively. In particular,
the research aims to address two main questions:

• RQ1: How sensitive are current LLMs to the
variations of social signals embedded in lan-
guage, both in terms of ability to explain the
encoding of social signals in the text and to
respond in ways that exhibit the response the
signal is meant to elicit?

• RQ2: From a more nuanced perspective re-
lated to generality across contexts, when an
LLM is provided with a persona to influence
response generation, how and to what extent
do different personas affect the sensitivity of
LLMs to Appraisal-based social signals?

The research paradigm is displayed in Figure 1.
The framework is meant to assess specific capa-
bilities of LLMs, identify limitations, and address
challenges in utilizing socio-linguistic theories in
such evaluations. Our contributions are as follows:

• We take an exploratory approach to investi-
gate the sensitivity of LLMs to social signals
grounded in Appraisal Theory (Martin and
White, 2005).

• Our experimental design is systematically con-
trolled and can be generalized to a broader
set of social signals and language framing,
personas, and social scenarios to evaluate the
elicited behaviors of LLMs under diverse and
complex conditions.
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Figure 1: An overview of our evaluative framework as-
sessing the sensitivity of LLMs to social signals (Affect,
Judgment, Appreciation) based on Appraisal Theory.

• Our findings reveal the limited sensitivity of
LLMs to negative aspects of social signals.

We make our code and data publicly available
below. 1

2 Related Work

From a technical perspective, this paper investi-
gates the specific capabilities of LLMs to operate
in contextually appropriate ways in different so-
cial settings. From a linguistic perspective, we are
specifically interested in Appraisal Theory (Martin
and White, 2005) to define a space of social signals
because of its prevalence in the field of language
technologies. Thus, we review past work from both
a technical and linguistic perspective.

2.1 Role of LLMs in Social Interactions
Recently LLMs have seen use in enactment and
analysis of social interactions, such as multi-agent
communication (Chan et al., 2023; Li et al., 2023),
social robotics (Addlesee et al., 2024; Hanschmann
et al., 2024), simulation of human-like interactions
within complex social systems (Zhou et al., 2024;
Xie et al., 2024), and identification of implicit
meaning and conversations dynamics (Dutt et al.,
2024; Hua et al., 2024). However, challenges in
accurately simulating and understanding complex
social dynamics persist. For instance, past work on
social signal detection with LLMs has revealed that
LLMs only exhibit moderate success at best, and
especially struggle with signals that involve more
nuanced understanding of language, such as trust-
worthiness and offensiveness (Choi et al., 2023).

The term social signals is multifaceted and en-
compasses a broad range of meanings. Our work

1https://github.com/zhenwu0831/LLM_
social-signal_sensitivity

extends past research by focusing on 3 specific
dimensions of social signals defined in Appraisal
theory (Martin and White, 2005). Our investiga-
tion employs an experimental approach grounded
in the vignette study paradigm (Converse et al.,
2015; Veloski et al., 2005; Sheringham et al., 2021).
Moreover, we explore different variations and com-
binations of social signals in order to push the lim-
its of sensitivity and separatability as we examine
the variation in LLM-generated outputs as we ma-
nipulate the input. Such a setting can facilitate
understanding of how LLMs process and respond
to language where multiple strategies are at play si-
multaneously, as is often the case in human-human
interaction.

2.2 Appraisal Theory in Language Analysis

The Appraisal Theory of Martin and White (2005)
provides a framework for analyzing how lan-
guage expresses emotions, attitudes, and stances
by means of linguistic choices, thereby influenc-
ing interpersonal communication and relationship
formation and maintenance. Initially, the theory
was utilized in NLP to enhance sentiment classi-
fication (Whitelaw et al., 2005). Later, Kenneth
et al. (2007) and Khoo et al. (2012) extended it to
broader contexts such as analysis of news opinion
and online news articles, highlighting its utility in
media analysis. Further, Howley et al. (2013) ex-
plored the theory within the context of small group
communication, analyzing how linguistic patterns
influenced group dynamics and decision-making
processes. Our work is unique in that it links model
performance on detection and explanation of so-
cial signals with work on generating a response to
social signals.

More recently, Imamovic et al. (2024) used Chat-
GPT to annotate attitudes and emotions in text
based on Appraisal Theory. They addressed chal-
lenges in achieving consistent and accurate anno-
tations. While the model demonstrated high pre-
cision in recognizing the Appraisal expressions,
it showed low recall and struggled in accurately
assigning these expressions to correct categories.
Similarly, our work aims to further evaluate the
interpretive skills of LLMs within a sociolinguistic
frame of reference and to enhance our understand-
ing of how these models process combinations of
nuanced social signals in interpersonal scenarios.
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Figure 2: Here we illustrate one example of input and output of our evaluative framework. We employ the
“Persuasion for Good” social scenario and create personas with their Name, Age, Occupation, and Personality
(blue box on the top). In the prompt (gray box at the bottom), we include our well-crafted utterance, structured
according to a predefined template to incorporate the three social signals: Affect, Judgment, Appreciation. The
model subsequently generates an analysis on the utterance and provides a direct response (yellow box on the right).

Signal Polarity Example Utterance

AF
Positive “Seeing the community come together in such a wonderful way gives us hope!”
Negative “It’s truly miserable to witness the pain and suffering of these innocent lives.”

JG
Positive “People who are selfless and generous are the backbone of our charity community.”
Negative “Some people are not generous, often holding back support when it’s most needed.”

AP
Positive “ Your donation will provide essential support and care for lives of countless children.”
Negative “Without your donation, our actions become less effective and do not reach potential.”

Table 1: Example utterances of positive and negative polarity for the different kinds of social signals corresponding
to Affect (AF), Judgment (JG), and Appreciation (AP).

3 Method

3.1 Experimental Paradigm: Vignette Study

Because our aim is to systematically investigate
how the behavior of an LLM changes in response
to embedded social signals, we employ a vignette
design similar to prior work (Converse et al., 2015;
Veloski et al., 2005; Sheringham et al., 2021). Typ-
ically, in a vignette study a text describes a persona,
a scenario, and an event, and a participant (in our
case, an LLM) performs some role-playing task
in response to that setting. It is used as a form of
simulation study. In particular, an experimentally
manipulated text serves as a prompt to an LLM
(GPT-3.5-turbo, GPT-4-turbo), and the properties
of the generated output (response) are measured.

The prompt encodes a persona in a task setting for
the LLM, and an input utterance with social signals
embedded in it. The LLM is asked to provide an
analysis of the text (which we refer to as Insight)
from the standpoint of language framing as well
as the response to the text as the persona. The
extent of the interaction per prompt is just one con-
versational exchange. Specifically, we adapt the
Persuasion for Good (Wang et al., 2019) scenario
where the user enacts the role of Pat, a volunteer
for a charity organization to persuade the LLM,
which enacts a predefined persona, to donate to the
charity.

In our study, we focus on the Attitudes com-
ponent of the Appraisal framework (Martin and
White, 2005), which itself can be further subdi-
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vided into three general types: Affect (a conveyed
emotional state), Judgment (ethics and moral as-
sessments of dependability), and Appreciation (val-
ues of practices). For simplicity and inspired by the
original Martin and White’s book of Appraisal The-
ory (Martin and White, 2005), each social signal —
Affect (AF), Judgment (JG), and Appreciation (AP)
— is categorized into two polarities, i.e., positive or
negative based on specific words that are associated
with the signal. We present words that exemplify
each category in Table 2 and pair those sets with
hand crafted utterances that capture the polarities
in the social signals. These manipulated texts are
then used as input for our LLM. Using these ma-
nipulated texts, we are able to experimentally vary
the value of each social signal (i.e., positive or neg-
ative) in order to test for measured changes in the
LLM responses resulting from that experimental
manipulation of social signals.

In our experiment, we designed three differ-
ent personas with diverse personalities to see how
those differences would influence different behav-
iors in response to social signals. The diversity
is with respect to the OCEAN values (Openness,
Conscientiousness, Extraversion, Agreeableness,
and Neuroticism) from the Big-Five personality
framework (Goldberg, 1992). We demonstrate the
OCEAN values of our personas in Table 6. The
three personas include an empathetic and sociable
high school counselor, an ambitious and assertive
tech entrepreneur (leader), and an adventurous and
creative artist. We prompt the same input utter-
ances for all three personas.

Our primary objectives are 1) to enable the be-
haviors of LLMs to systematically vary in response
to each social signal that serves as an indepen-
dent variable (AF, JG, AP); 2) to ensure that the
LLMs’ responses consistently reflect these behav-
ioral changes across different personas; 3) to ac-
curately measure the behavioral differences. To
achieve these goals, we meticulously craft input
utterances to isolate and control each social signal
(Section 3.2), design an “Analyze then Respond”
prompt to generate insights and responses to these
signal-imbued utterances (Section 3.3), and estab-
lish measurements to quantify properties of LLM
responses (Section 3.4). An overview of our vi-
gnette study is illustrated in Figure 2.

3.2 Signal-Embedded Utterance Creation
To systematically assess the impact of individual
social signals on the LLMs’ generation, we create

short utterances that each encapsulate a single, dis-
tinct social signal, which then subsequently serve
as building blocks for more complex text. For each
type (positive or negative) of social signal (AF, JG,
AP), we craft 5 distinct short utterances with the
same length. These 5 utterances are phrased dif-
ferently but are signal-wise identical. For example,
both the utterances “Your donation will help de-
velop safe environments where children can learn
and grow.” and “Even your smallest donation will
support a child with food, education, and health-
care.” express the positive outcomes of donations
thus reflecting AP-positive, although their wording
differs. We provide example utterances for each
type of signal in Table 1.

We design a template to systematically con-
trol and integrate the three social signals into a
more extensive text. The template is structured
as follows: <Prefix> <Affect> <Judgment>
<Appreciation>. The prefix is a standard, neu-
tral introduction statement: “Hi, I’m Pat. Please
donate to our charity organization.” It establishes
some prior conversational context, ensuring that
the subsequent social signal feels coherent. Follow-
ing this prefix, we append short sentences that each
represent one social signal among AF, JG, and AP,
along with their corresponding polarity (positive
or negative). This structure allows us to systemati-
cally manipulate each dimension of social signals
independently while maintaining control over the
context and content of the interaction.

For our controlled investigation, the complete set
of stimuli is generated through a full factorial de-
sign spanning across Persona (i.e., counselor, artist,
and leader), social signals (i.e., AF, JG, AP), and
polarity of each signal signal (i.e., positive or nega-
tive). Furthermore, for each social signal of a given
polarity, we generate five utterances correspond-
ing to that type. Consequently, over 24 possible
unique settings, our dataset comprises 1000 unique
utterances, which are used for subsequent analysis.

3.3 “Analyze then Respond” Prompt
We design an “Analyze then Respond” prompt to in-
struct the models to generate analysis and responses
to nuanced social signals from the experimental
manipulation (Figure 3). In order to facilitate the
linguistic analysis of the input utterance, we also
craft a neutral utterance for the LLM to compare it
to. In that neutral utterance, each social signal has
a neutral polarity and serves as a control. We posit
that this design will help us distinctly measure the

70



Figure 3: Our “Analyze then Respond” prompt. In the system message, we provide the persona and scenario
information. In user message, we present a neutral utterance and ask the model to perform a comparative analysis
between the neutral utterance and the signal-embedded utterance, with a focus on linguistic framing. Following this,
we instruct the model to directly respond to the signal-embedded utterance.

impact of varied social signals. We use the same
neutral utterance while prompting with different
signal-embedded utterances.

We prompt the LLMs with the persona, social
scenario, neutral utterance, and our controlled ut-
terances that incorporate specific social signals.
Each prompt requires the LLMs to engage in two
tasks: 1) Analysis: The LLMs must first generate
an analysis of the linguistic framing of the signal-
embedded utterance in comparison to the neutral
utterance. This involves addressing changes along
the three signals and their potential impact on the
message conveyed in the signal-embedded utter-
ance. We refer to this analysis subsequently as an
“Insight”. 2) Response: Following the generated
Insight, the LLMs are also required to output a re-
sponse to the signal-embedded utterance. Ideally,
the response should be contextually appropriate
and sensitive to social signal variations in the input
utterance, and align with the instructed persona.

Our empirical evidence suggests that when the
models are instructed to compare the input utter-
ance with a neutral utterance before producing the
Response, their generated Responses contain more
persona-related details and exhibit a more engaged
tone. We demonstrate one example comparing the
Response generated by GPT-3.5 with and without
this analysis step in Figure 4.

3.4 Measurement of Behavioral Changes

We carry out two different kinds of analysis to quan-
tify the impact of the experimental manipulation on
the generated outputs of LLMs. The differentiation
is motivated by addressing the unique requirements
of each phase in our evaluation framework.

For the generated Insight, our objective is to
assess whether the specific words that exemplify
each social signal are present. Thus, we quantify
Insight through a topical modelling approach, the
details of which appear in Section 3.4.1.

On the other hand, for the generated Response,
our goal is to measure how the Response changes as
we manipulate the input social signals. Therefore,
we assess the Response along the dimensions of
social intelligence described in Section 3.4.2.

Signal Polarity Seed words

AF
Positive cheerful, buoyant, love
Negative sad, miserable, heartbroken

JG
Positive reliable, dependable, resolute
Negative unreliable, weak, unfaithful

AP
Positive valuable, helpful, exceptional
Negative insignificant, ineffective, useless

Table 2: Seed words to Affect (AF), Judgment (JG), and
Appreciation (AP).
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3.4.1 Topical Modelling of Insight

To analyse the generated Insight, we employ the
Stanford Empath tool (Fast et al., 2016) as our tool
of choice for topic modelling. Empath facilitates
text analysis by counting the occurrences of words
that belong to predefined or user-defined lexical cat-
egories. From a set of seed words, Empath creates
new user-defined categories by identifying semanti-
cally related words through its embeddings trained
on an extensive corpus.

We define specific lexical categories within Em-
path to correspond to the different polarities (pos-
itive or negative) of social signals (Affect, Judg-
ment, and Appreciation). These categories are con-
structed using seed words carefully chosen to ex-
emplify each signal, as previously illustrated in the
examples (see Table 2). We create 5 categories
that have a logical connection with the encoding
of Appraisal social signals in the input. These in-
clude Optimism which includes both the positive
and negative dimension of Affect (AF), Admire and
Criticise to account for the positive and negative po-
larity of the Judgment signal (JG) respectively, and
the Worthwhile and Negligible categories for posi-
tive and negative Appreciation (AP) respectively .
We consolidate the positive and negative polarity of
AF into a single category of “Optimism” because
AF directly influences the overall emotional tone,
either enhancing Optimism or decreasing it. This
is different from JG and AP, which require distinct
categories to capture their specific nuances. Each
category is enriched with related words identified
by Empath, resulting in a lexicon consisting of 100
words for each category.

We anticipate that the effect of each input so-
cial signal (AF, JG, AP) should be most distinct
in their corresponding Empath categories. For ex-
ample, positive and negative signals of AF should
prominently influence the “Optimism” category,
while signals related to JG should be correlated
more with the “Admire” and “Criticise” categories.
Moreover, this pattern of results should be consis-
tent across different personas. However, we also
expect that the magnitude of these effects may vary
based on the specific persona. For instance, an
empathetic persona (the counselor) may exhibit
stronger responses to positive social signals com-
pared to a more assertive tech entrepreneur persona
(the leader).

3.4.2 Measuring Social Intelligence of
Response

In addition to the predefined topical categories cu-
rated from Empath, we also measure the associa-
tion of the generated Response corresponding to
the intensity and polarity of emotions and empa-
thy, which we subsume under the umbrella term of
“social intelligence”.

To this end, we use the Empathic Conversations
dataset (Omitaomu et al., 2022), designed to anal-
yse emotional and empathetic responses in dia-
logues. It comprises dialogues where participants
discuss news articles and each conversational turn
is annotated for the level of expressed empathy,
emotional polarity, and emotional intensity.

These three dimensions of social intelligence are
formulated from a third-party perspective where
emotional polarity refers to whether the utterance
is negative, neutral, or positive (from a range of 1
to 3), while emotional intensity and empathy are
coded on an ordinal scale from 1 to 5, with one
being the lowest for both cases. This dataset was
employed for the shared task of predicting different
dimensions of social intelligence at ACL 2023 and
2024 (Barriere et al., 2023).

Based on the findings on the shared task, we fine-
tune the base-variant of the DeBERTa model (He
et al., 2021) on the train split for all three tasks. Our
model achieves a moderate Pearson’s correlation
coefficient on the development split of the dataset
with a score of 0.76, 0.63, and 0.67 for the three
tasks of emotional polarity, emotional intensity, and
empathy respectively. To conform with our current
vignette setting, where the conversation is limited
to one turn of conversational exchange, we use
only the previous turn as context for determining
the social intelligence scores.

We thus quantify the Response generated by the
LLMs in accordance with these dimensions of emo-
tional polarity, emotional intensity, and empathy.
We describe the details of our analysis in the fol-
lowing section.

4 Results and Discussions

With the quantitative metrics of Insight and Re-
sponse established (Empath categories and social
intelligence scores), we proceed to conduct a statis-
tical analysis of our experimental results.

At the outset, we want to ensure that the quantita-
tive metrics chosen are indeed separable from each
other, i.e., there are no associations between them.
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Thus, we conduct a factor analysis with varimax
rotation, a statistical method to identify distinct,
principle factors from the quantitative metrics of
Insight and Response. If the quantitative metrics
are loaded onto separate factors without overlap-
ping, then the metrics are deemed as separable.
We refer to the separable quantitative metrics as
“Factors”.

Following this, we subsequently conduct an
ANOVA (Analysis of Variance), a statistical
method that evaluates which input variables (so-
cial signals, personas, and types of LLMs) signifi-
cantly influence the Factors and to what extent. We
define the independent variables of ANOVA as 3
personas, 3 social signals, 2 types of LLMs, and
the Factors, while the dependent variables are the
scores of the Factors. To further investigate the
interactions between the variables, we also include
both pairwise interaction terms between the inde-
pendent variables (persona-signal, signal-model,
signal-Factors, model-Factors) and the 3-way in-
teraction terms between model, Factors, and social
signals. Due to space constraints, we have included
the detailed results corresponding to both the In-
sight and Response in Appendix Section 7.1 and
Section 7.2. Below we provide a summary of the
salient results.

4.1 Results Pertaining to the Insight
We assess how the different Empath categories, i.e.,
— Optimism, Admire, Criticise, Worthwhile, and
Negligible — are processed by GPT-3.5 and GPT-4.
The factor analysis reveals that each Empath cate-
gory forms a distinct factor, with each category’s
scores loading strongly onto a separate factor (≈
.71). This indicates that the Insights generated
by GPT-3.5 can be clearly distinguished across
these categories. In contrast, the factor analysis of
GPT-4 Insights shows some overlap, particularly
with the Negligible category loading onto both the
Worthwhile category and another separate factor.
This overlap suggests that the Insights generated
by GPT-4 are not well-separable with respect to the
Worthwhile category. To maintain clarity and avoid
potential misinterpretation of results caused by this
overlap, we exclude Worthwhile from further anal-
ysis of the generated Insight. Consequently, our
Insight Factors include Optimism, Admire, Criti-
cise, and Negligible.

In our subsequent ANOVA, we use Personas,
Affect (AF), Judgment (JG), Appreciation (AP),
Model type (GPT-3.5, GPT-4), and Insight Fac-

tors as independent variables, with the quantitative
values of these Insight Factors serving as the de-
pendent variables. Our ANOVA model explains
59% of the variance in the dependent variables.
The ANOVA results indicate that both models ex-
hibit statistically significant sensitivity to the social
signals (AF, JG, AP) embedded within the input
utterances (p < .0001). This finding suggests that
the generated Insights from both models generally
address keywords associated with each social sig-
nal accurately. Notably, it aligns well with our
expectations that the effects of these social signals
are most prominent in their corresponding Empath
categories. Post-hoc analysis using Student’s t-test
reveals that positive Affect corresponds to an in-
crease in the “Optimism” category, and positive
Judgment is associated with higher scores for “Ad-
mire” and vice versa for the “Criticise” category.
Additionally, positive Appreciation corresponds to
decreased “Negligible” scores.

We showcase the mean and the standard devia-
tion of the scores for these corresponding Empath
categories in Table 3. The low value of the scores
can be explained by the fact that Empath normal-
izes the scores over the length of each generated
Insight sentence. Our table also highlights the more
pronounced results for the Insight for GPT-3.5 than
GPT-4. Based on this, we also calculate Cohen’s d
effect sizes to further quantify the magnitude of the
statistical significant sensitivity, by measuring the
differences between positive and negative groups
for each social signal, each Empath category and
each model. We similarly find that the effect size is
most prominent for each social signal in its corre-
sponding Empath categories. We present the values
of Cohen’s d that indicate large effect sizes in Table
7.

4.2 Results Pertaining to the Response
We investigate how the different social intelligence
dimensions, i.e., — Empathy, Emotional Intensity,
and Emotional Polarity — and Empath categories
are processed by GPT-3.5 and GPT-4. In the factor
analysis, for GPT-3.5, the separation into factors
is clean, with four out of five factors showing very
strong associations (loadings of at least 0.9) with
the output metrics (social intelligence dimensions
and Empath categories). Each output metric is pri-
marily associated with one specific factor (loading
above 0.3). In contrast, GPT-4 shows greater over-
lap between factors, suggesting a less distinct sepa-
ration of its Response with respect to each output
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Affect Judgment Appreciation Persona
LLM Empath Positive Negative Positive Negative Positive Negative Counselor Artist Leader

GPT3.5 optimism 0.05±0.02 0.01±0.01 0.03±0.03 0.03±0.03 0.03±0.03 0.03±0.03 0.03±0.03 0.03±0.03 0.03±0.02
GPT3.5 admire 0.01±0.01 0.01±0.01 0.02±0.01 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.01
GPT3.5 criticise 0.01±0.01 0.01±0.01 0.0±0.0 0.02±0.02 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.01
GPT3.5 worthwhile 0.01±0.01 0.01±0.01 0.01±0.02 0.01±0.01 0.02±0.02 0.01±0.01 0.01±0.02 0.01±0.01 0.01±0.01
GPT3.5 negligible 0.0±0.01 0.01±0.01 0.0±0.01 0.01±0.01 0.0±0.0 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.01

GPT4 optimism 0.04±0.02 0.02±0.01 0.03±0.02 0.03±0.02 0.03±0.02 0.03±0.02 0.03±0.02 0.03±0.02 0.03±0.02
GPT4 admire 0.01±0.01 0.01±0.01 0.02±0.01 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.01
GPT4 criticise 0.01±0.01 0.01±0.01 0.0±0.0 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.01
GPT4 worthwhile 0.02±0.01 0.02±0.01 0.02±0.01 0.02±0.01 0.02±0.01 0.01±0.01 0.02±0.01 0.02±0.01 0.02±0.01
GPT4 negligible 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.01 0.0±0.0 0.01±0.0 0.01±0.01 0.01±0.01 0.01±0.01

Table 3: We present the mean and standard deviation of the five categories of Empath topic (Optimism, Admire,
Criticise, Worthwhile, Negligible) for the generated LLMs’ Insight. The highest values are boldfaced.

Affect Judgment Appreciation Persona
LLM Categories Positive Negative Positive Negative Positive Negative Counselor Artist Leader

GPT3.5 Emo Pol 0.12±0.09 0.22±0.16 0.16±0.13 0.18±0.15 0.16±0.13 0.18±0.15 0.13±0.13 0.21±0.15 0.17±0.12
GPT3.5 Emo Int 2.73±0.34 2.71±0.35 2.75±0.34 2.69±0.35 2.77±0.33 2.68±0.36 2.92±0.3 2.61±0.39 2.63±0.23
GPT3.5 Empathy 3.15±0.14 3.29±0.13 3.23±0.15 3.22±0.15 3.24±0.15 3.20±0.15 3.28±0.13 3.24±0.16 3.15±0.14

GPT4 Emo Pol 0.14±0.07 0.26±0.17 0.19±0.14 0.20±0.15 0.19±0.13 0.21±0.15 0.26±0.18 0.16±0.12 0.18±0.09
GPT4 Emo Int 2.54±0.27 2.57±0.29 2.59±0.28 2.51±0.27 2.57±0.28 2.54±0.27 2.58±0.28 2.67±0.27 2.42±0.22
GPT4 Empathy 3.13±0.15 3.3±0.13 3.23±0.15 3.19±0.17 3.23±0.16 3.19±0.17 3.25±0.14 3.28±0.13 3.11±0.16

Table 4: Mean and standard deviation of scores corresponding to social intelligence i.e emotional polarity (Emo
Pol), emotional intensity (Emo Int), and Empathy for the Response.

metric. Based on these findings, we focus our sub-
sequent analysis on 5 principal Response Factors —
Emotional Intensity, Emotional Polarity/Optimism
(Negative Affect), Empathy, Admire, and Criticise
— while excluding others like “Worthwhile” and
“Negligible” due to their overlapping factor load-
ings.

We carry out a similar ANOVA analysis as we
do for the Insight, where we use Persona, AF, JG,
and AP signals, the Model type (GPT3.5, GPT4),
and Response Factors as the independent variables,
with the quantitative values of these 5 principle
Response Factors as the dependent variables. This
ANOVA model explains 99% of the variance in the
dependent variables. We present the statistics of
the three dimensions of social intelligence in Table
4. Our key findings from the ANOVA include:

Sensitivity to social signals across all Factors
Similarly to the results regarding the Insight, the
models’ Responses are statistically significant (p
< .0001) to the social signals, indicating that both
LLMs, in general, can effectively respond to vari-
ous social signals in language. Based on a student-t
posthoc analysis, we synthesize the specific pat-
terns in the following paragraphs.

Distinctive impact of negative Affect Both mod-
els exhibit significant sensitivity to negative Af-

fect, particularly enhancing empathy and emotional
polarity scores. However, the impact of negative
Affect on emotional intensity varies between the
models: Response of GPT-3.5 shows an increase,
whereas GPT-4 Response demonstrates a decrease.
This different response pattern provides insights
into how these models might be applied to elicit
desired behaviors: GPT-3.5’s increase in intensity
might make it more suitable for scenarios requir-
ing strong, clear emotional displays, while GPT-4’s
decrease in intensity could make it better suited
for contexts where a more measured or controlled
response is preferable.

Limited sensitivity to negative social evaluations
Both models’ Responses show increased empathy
and emotional intensity in relation to positive Judg-
ment and Appreciation signals, while displaying
limited or non-significant sensitivity to negative
aspects of these signals. This tendency to respond
strongly to positive evaluations suggests a poten-
tial overemphasis that might skew the models’ re-
sponses, addressing their limited performance in
scenarios involving mixed or negative feedback.

Robust and consistent patterns across personas
We have found that the interactions between per-
sonas and other variables are not significant or even
marginal. This indicates that the aforementioned
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response patterns are consistent across different
personas. However, we have also observed that
different personas exhibit various levels of social
intelligence in the generated Response. For exam-
ple, the ambitious and assertive leader persona has
a consistently lower empathy score than that of the
counselor or artist for both models.

5 Conclusion

In this study, we design a systematic framework to
evaluate the sensitivity of GPT-3.5 and GPT-4 to
key social signals based on Appraisal Theory, i.e.
Affect, Judgment, and Appreciation. The results
confirm that these models demonstrate statistically
significant sensitivity to the three social signals.
However, our findings also uncover their limited
sensitivity to negative aspects of social signals. Fu-
ture research could extend these findings by includ-
ing a wider range of LLMs and exploring additional
output measures to enhance our understanding of
LLMs’ capabilities in social contexts. Through this
work, we provide a generalizable framework that
can be extended to a broader set of social signals
and language framing beyond Appraisal Theory, as
well as various social scenarios and personas, thus
systematically evaluating the elicited behaviors of
LLMs under diverse and complex conditions.

6 Limitations

Focus on GPT Family Models Our study mainly
focuses on the GPT family models, GPT-3.5 and
GPT-4. Future research should include a broader
range of LLMs to determine if the observed pat-
terns of sensitivity to social signals are consistent
across different LLMs.

Selective Output Measures We use specific
measures such as Empath categories and empathy-
and emotional-related metrics. While these mea-
sures have provided valuable insights, expanding
the range of output measures in future studies could
offer a more comprehensive view of the models’
capabilities.

References
Angus Addlesee, Neeraj Cherakara, Nivan Nelson,

Daniel Hernández García, Nancie Gunson, Weronika
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7 Appendix

7.1 Detailed Results for Insight

7.1.1 Factor Analysis

A varimax rotation factor analysis identifies dis-
tinct factors for the Insight of both GPT-3.5 and
GPT-4, focusing on the Empath metrics: Optimism,
Admire, Criticise, Worthwhile, and Negligible. We
refer to these identified factors as “Insight Factors”.

GPT-3.5: Each Empath metric loads onto a
unique factor with a consistent factor loading of
around .71.

GPT-4: Admire, Criticise, and Optimism inde-
pendently load onto separate factors with similar
loadings of .71. Worthwhile and Negligible share a
factor. Worthwhile also loads onto another separate
factor. To maintain clarity, we exclude Worthwhile
from further analysis.

7.1.2 ANOVA Results

The ANOVA model includes Persona, Affect, Judg-
ment, Appreciation, Model (GPT-3.5, GPT-4), and
Insight Factors as independent variables, with the
scores of the Insight Factors as the dependent vari-
ables. This model explains 59% of the variance in
the data.
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Affect and Insight Factors Interaction: The in-
teraction is significant (F(3,23999) = 3314.8, p <
.0001). Positive Affect increases Optimism scores,
decreases Admire and Criticise scores, and reduces
Negligible scores. There is a significant 3-way
interaction between model-Affect-Factors, indicat-
ing that both models show the same patterns for
how positive Affect impacts Optimism, Admire,
and Criticise. However, GPT-3.5 uniquely demon-
strates that positive Affect decreases Negligible
scores.

Judgment and Insight Factors Interaction:
The interaction proves significant (F(3,23999) =
1195.0, p < .0001). Positive Judgment leads
to increased scores for Optimism and Admire,
while it reduces those for Criticise and Negligible.
The significant 3-way interaction between model-
Judgment-Factors shows that these effects of posi-
tive Judgment remain consistent across both mod-
els, though there is a variation in how each model
ranks these Factors in terms of their magnitude.

Appreciation and Insight Factors Interaction:
The interaction is significant (F(3,23999) = 344.6,
p < .0001). Positive Appreciation increases
Optimism scores, reduces Admire and Negligi-
ble scores, but does not impact Criticise scores.
The significant 3-way interaction between model-
Appreciation-Factors indicates that the effects of
positive Appreciation are similar across models,
except that Admire scores in GPT-4 remain unaf-
fected.

Persona Impact: No significant interactions are
found between signal variables and Persona con-
cerning Appreciation or Judgment. However, for
Affect, significant interactions occur. The influence
of positive versus negative Affect remains consis-
tent within each Persona, though the intensity of
the effect varies between positive and negative sig-
nals across different personas. Despite these varia-
tions, the overall impact on each persona remains
unchanged.

7.2 Detailed Results for Response

7.2.1 Factor Analysis
The factor analysis indicates clearer separa-
tion for GPT-3.5 Response compared to that
of GPT-4, with four out of five factors hav-
ing high loadings (≥ .9). GPT-4 Response
shows more overlap between factors. Based on
these findings, we focus on Emotional_Intensity,

Emotional_Polarity/negative_Optimism, Empa-
thy, Admire, and Criticise. Worthwhile
is excluded due to its overlap with Emo-
tional_Polarity/negative_Optimism in GPT-3.5 and
with Admire in GPT-4. We also drop Negligible
because of its inconsistent loadings across the two
LLMs: it loads onto one factor for GPT-4 (with
loading .54), but no factor for GPT-3.5. We refer
to these identified factors as “Response Factors”.

7.2.2 ANOVA Results
The ANOVA model includes Persona, Affect, Judg-
ment, Appreciation, Model, and the five principal
Response Factors identified in the factor analysis
as independent variables, and the scores of these
Response Factors as the dependent variables. The
model explains 99% of the variance in the data.

Affect and Response Factors Interaction: This
interaction is significant (F(4,2999) = 299.4, p <
.0001). Negative Affect leads to increased empathy
and polarity/negative_Optimism, while not affect-
ing other response variables. There is a notable
3-way interaction between model-Affect-Factors,
where both models demonstrate the same trends for
empathy and polarity, but they react differently in
terms of intensity: GPT-3.5 shows an increase in
intensity in response to negative Affect, whereas
GPT-4 shows a decrease.

Judgment and Response Factors Interaction:
The interaction is significant (F(4,2999) = 70.5,
p < .0001). Positive Judgment increases both em-
pathy and intensity without affecting other vari-
ables. A marginal 3-way interaction between
model-Judgment-Factors shows that while the ab-
solute levels of empathy and intensity may vary
between models, the relative increase in these Fac-
tors due to Positive Judgment remains consistent
within each model. This suggests that regardless
of the model, Positive Judgment reliably enhances
both empathy and intensity.

Appreciation and Response Factors Interaction:
The interaction is significant (F(4,2999) = 51.3, p
< .0001). Positive Appreciation increases empathy
and intensity without affecting other variables. The
3-way interaction between model-Appreciation-
Factors indicates that while the specific values of
empathy may vary, the differential impact of Posi-
tive versus Negative Appreciation on empathy does
not vary within each model. Similarly, the effect on
intensity is consistently positive across all models,

77



indicating a stable response to Positive Apprecia-
tion.

Persona Impact: No significant interactions are
found between signal variables and Persona, indi-
cating consistent response patterns across different
personas.
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Affect Judgment Appreciation Persona
LLM Empath Positive Negative Positive Negative Positive Negative counselor artist leader

GPT3.5 optimism 0.07±0.03 0.05±0.03 0.06±0.03 0.06±0.03 0.06±0.03 0.06±0.03 0.06±0.03 0.06±0.03 0.06±0.03
GPT3.5 admire 0.0±0.01 0.01±0.02 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.01 0.0±0.01 0.01±0.01
GPT3.5 criticise 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
GPT3.5 worthwhile 0.04±0.03 0.04±0.03 0.04±0.03 0.04±0.03 0.04±0.03 0.04±0.03 0.05±0.03 0.04±0.03 0.03±0.03
GPT3.5 negligible 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

GPT4 optimism 0.06±0.03 0.02±0.02 0.04±0.03 0.04±0.03 0.04±0.03 0.04±0.03 0.04±0.03 0.05±0.03 0.03±0.02
GPT4 admire 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.02 0.0±0.01 0.01±0.01
GPT4 criticise 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
GPT4 worthwhile 0.04±0.02 0.03±0.02 0.04±0.02 0.03±0.02 0.04±0.02 0.04±0.02 0.04±0.03 0.04±0.02 0.04±0.02
GPT4 negligible 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Table 5: Mean and standard deviation of Empath topic scores (Optimism, Admire, Criticise, Worthwhile, Negligible)
for the Response of the LLMs.

Name Age Occupation Personality Openness Conscientiousness Extraversion Agreeableness Neuroticism

Maria 45 High school counselor empathetic, sociable high low low high high
Alex 60 Tech entrepreneur ambitious, assertive high high high low low
Lily 25 Artist adventurous, creative high low high high low

Table 6: Detailed information of the three personas including name, age, occupation, personality, and the Big-Five
personality traits (OCEAN).

Figure 4: Comparison between the Responses of GPT-3.5 given persona Lily, without (left) and with (right)
analysing the input utterance before generating the Response.
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LLM Social Signal Empath Cohen’s d Effect Size

GPT3.5 Affect optimism 2.53
negligible -1.0

Judgment admire 1.0
criticise -1.41

negligible -1.0
Appreciation negligible -1.41

GPT4 Affect optimism 1.26
Judgment admire 1.0

criticise -1.41
Appreciation worthwhile 1.0

Table 7: Values of Cohen’ d that indicate large effect sizes for the generated Insight. We compute Cohen’ d effective
sizes for each social signal, each Empath category, and each model.

LLM Social Signal Social Intelligence Dimension Cohen’s d Effect Size

GPT3.5 Affect empathy -1.04
emotional polarity -0.92

GPT4 Affect empathy -1.21

Table 8: Values of Cohen’ d that indicate large effect sizes for the generated Response. We compute Cohen’ d
effective sizes for each social signal, each social intelligence dimension, and each model.

LLM Output Persona Optimism Admire Criticise Worthwhile Negligible Emotional Polarity Emotional Intensity Empathy

GPT3.5 Insight counselor 0 0 0 0 0 - - -
artist 0 0.04 0 0.04 0 - - -
leader 0 0.04 0 0 0 - - -

GPT3.5 Response counselor 0.06 0.06 0 0.09 0 0.191 2.663 2.749
artist 0.03 0 0 0 0 0.059 2.565 2.524
leader 0.08 0 0 0.04 0 0.121 2.522 2.460

GPT4 Insight counselor 0.02 0.02 0 0.01 0 - - -
artist 0.01 0.02 0 0.03 0.01 - - -
leader 0.03 0.01 0 0.02 0 - - -

GPT4 Response counselor 0.02 0.05 0 0.02 0 0.205 2.655 2.521
artist 0.09 0 0 0 0 0.213 2.356 2.762
leader 0.02 0.02 0 0.02 0 0.289 2.327 2.394

Table 9: Values of our output quantitative metrics on generated Insight and Response of the neutral utterance. The
social intelligence dimensions (emotional polarity, emotional intensity, empathy) are applied only to Response.
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Abstract

During conversations, people align to one an-
other over time, by using similar words, con-
cepts, and syntax. This helps form a shared un-
derstanding of the conversational content and
is associated with increased engagement and
satisfaction. It also affects conversation out-
comes: e.g., when talking to language learners,
an above normal level of linguistic alignment
of parents or language teachers is correlated
with faster language acquisition. These bene-
fits make human-like alignment an important
property of dialogue systems, which has of-
ten been overlooked by the NLP community.
In order to fill this gap, we ask: (RQ1) Due
to the importance for engagement and satisfac-
tion, to what degree do state-of-the-art dialogue
systems align to adult users? (RQ2) With a po-
tential application to child language acquisition
in mind, do systems, similar to parents, show
high levels of alignment during conversations
with children? Our experiments show that Chat-
GPT aligns to adults at roughly human levels,
while Llama2 shows elevated alignment. How-
ever, when responding to a child, both systems’
alignment is below human levels.

1 Introduction

Conversation allows people to share information
by creating a collective representation of the con-
versational context, achieved in part by linguistic
alignment (Garrod and Pickering, 2004; Pickering
and Ferreira, 2008): when two people are convers-
ing, the content of their speech as well as how it
is phrased prime the other person to respond in
a certain way. This reduces the chance of misun-
derstandings, since the used words and phrasing
already have an established shared meaning, and
thus, makes communication more efficient and en-
joyable (Garrod and Pickering, 2004).

Linguistic alignment is critical in a variety of
conversations, even those between a human and a
virtual agent: prioritizing alignment in responses

Context

MOT Hm?
CHI Where Mommy go?
MOT Mommy went to the university this morning to

get some books.
CHI Where’s Mommy’s books?

Response

MOT They’re in the hallway in a big bag.
GPT Mommy will bring the books home this

evening.
Llama2 Mommy left her books in the car.

Table 1: The final lines of a dialogue excerpt from the
CHILDES dataset, with the parent’s true response and
our system-generated responses.

makes conversation with chatbots more effortless
and less frustrating for users (Spillner and Wenig,
2021). Nevertheless, alignment is often overlooked
by the NLP community and has not yet been stud-
ied in the context of state-of-the-art dialogue sys-
tems, even though they are becoming increasingly
omnipresent. To fill this gap, we first ask: (RQ1)
To what degree do two state-of-the-art dialogue
systems – ChatGPT and Llama2 – align to users,
and does their alignment compare to that typi-
cally seen between humans?

Linguistic alignment plays an even greater role
in educational contexts, such as language learning:
amongst other benefits, aligned and comprehen-
sible input and output prime the speaker to use
appropriate syntactic structures, they can receive
implicit feedback with recasts immediately after
an error, and they recognize what parts of their
speech led to any misunderstandings and negotiate
a re-phrasal (Gass et al., 1998). Additionally, par-
ents or caregivers show an elevated level of align-
ment when talking to young children (Misiek et al.,
2020), and their level of alignment predicts how
well the child’s language skills develop (Denby and
Yurovsky, 2019). As dialogue systems are used
more and more in language learning contexts,1 we

1Examples are the language learning software Duolingo

81



further ask: (RQ2) To what degree do ChatGPT
and Llama2 align to children (i.e. non-fluent
speakers), and how does this level of alignment
compare to a parent’s?

We conduct experiments on the Switchboard Di-
alogue Acts Corpus (SWDA), which consists of
adult–adult conversations (for RQ1) (Stolcke et al.,
2000), and on the CHILDES dataset (Macwhinney,
2000), which contains child–parent conversations
(for RQ2). We generate responses with ChatGPT
and Llama2 and calculate three types of alignment
– syntactic, lexical, and semantic – for each of their
responses. Our results show that ChatGPT’s align-
ment levels approximate those of humans when
participating in standard adult conversation, but are
lower than human level when responding to a child.
Llama2 aligns above human levels in conversations
with adults, but below human levels during dia-
logue with children. Overall, our results indicate
room for improvement with regards to the align-
ment levels of dialogue systems.

2 Related Work

Exploring Linguistic Alignment Linguistic
alignment is a mechanism by which humans mimic
their partners in conversation – from phonology, to
syntax and semantics (Garrod and Pickering, 2004).
This kind of repetition lightens the cognitive load
of language production, as certain structures are
already primed from previous usage. Alignment
at multiple levels such as lexical and syntactic re-
sults in alignment of situation models, as language
production, comprehension, and interactive pro-
duction are all interwoven (Pickering and Garrod,
2013). Alignment contributes to the success of
a variety of human interaction. From the work-
place – employees who show elevated levels of
alignment over time are more likely to remain in
the company (Doyle et al., 2016) – to the language
classroom or nursery (Denby and Yurovsky, 2019).
In some cases, the alignment of task-specific vo-
cabularies strongly correlates with conversation
outcomes (Fusaroli et al., 2012). Alignment as a
feature of communication is also critical in human-
computer interaction. Lexical alignment affects
human understanding of a conversational agent dur-
ing live conversation (Srivastava et al., 2023). It
also contributes towards decreasing user frustration
and perceived task load when interacting with a
dialogue system (Spillner and Wenig, 2021).

and EFL classroom (Amin, 2023).

Context

A Any jury’s not going to disregard the
evidence, you know.

B Uh, that’s true.
B I, I, I think our judicial system is attorney

welfare myself.
A That may very well be.

Response

B I, I hold it in the utmost contempt.
GPT It’s definitely a possibility that needs to be

looked into.
Llama2 Yeah, it’s like, you know, they’re just trying

Table 2: The final lines of a dialogue excerpt from the
SWDA corpus, with gold and generated responses

Analysis of Dialogue Systems While common to
use the automatic scoring methods of word overlap
with a ground truth (such as BLEU (Papineni et al.,
2002) or ROUGE (Lin, 2004)) or words embed-
dings to evaluate dialogue systems, these metrics
do not correspond highly with human judgement
(Liu et al., 2017). Other automatic metrics, such as
context coherence – how well the response matches
the context of the conversation (Xu et al., 2018) –
can result in improved systems. Outside of auto-
matic metrics, human evaluation is critical and can
look at dimensions such as informativeness, gram-
matically, coherence as well as how human-like
or engaging the system is (Finch and Choi, 2020).
The downside of human evaluation, however, is
time and cost.

3 Experimental Setup

3.1 Data

Switchboard Dialogue Acts Corpus Our first
corpus is the Switchboard Dialogue Acts Corpus
(SWDA), which consists of a series of phone con-
versations on a variety of topics (Stolcke et al.,
2000). All dialogues are between adults, which
allows us to assess model alignment with adults,
i.e., fluent speakers of English (RQ1). We use all
1157 transcripts.

CHILDES We also experiment with the
CHILDES dataset, which consists of conversations
between caretakers and children (Macwhinney,
2000), to assess the models’ alignment to children,
i.e., language learners (RQ2). We use the 7721
transcripts from North American English speakers
aged 24 to 42 months.

Data Preparation To prepare the data, first we
extract relevant dialogue excerpts from each tran-
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script: the final two lines – the target utterance and
response – must come from different participants
and each be at least 3 words long. We then ran-
domly select 10,000 excerpts from each dataset.
Each excerpt is 36 lines long, allowing for one
target response and 35 turns of context – a length
chosen to ensure ChatGPT’s has enough context
to work with, as described in Appendix A. For the
CHILDES transcripts, the true responses averaged
7.1 words, and for SWDA they averaged 9.1.

3.2 Models and Baseline

ChatGPT and Llama2 The first state-of-the-art
model we experiment with is ChatGPT, a genera-
tive pretrained transformer (Vaswani et al., 2017)
from the GPT 3.5 family of language models re-
leased by OpenAI. These models are trained us-
ing reinforcement learning from human feedback
(Ouyang et al., 2022). We compare ChatGPT 3.5
turbo to the 7B and 13B chat versions of Llama2,
trained using publicly available sources and Rein-
forcement Learning with Human Feedback (Tou-
vron et al., 2023).

Prompting In each prompt, we provide the most
recent 35 utterances from the dialogue as context.
We use the following prompt for RQ1 (adults):
"System: You are having a conversation with per-
son <A or B>. Respond with a single line approx-
imately <True Length> words long. A: <Utter-
ance>, B: <Utterance>, ..."

Similarly, we use the following prompt for RQ2
(children): "System: You are a parent talking to a
child. Predict the parent’s next line as best you can,
even with little context. Respond with a single line
approximately <True Length> words long. MOT:
<Utterance>, CHI: <Utterance>, ..."

We request a reply with approximately the same
number of words as the gold response, as both sys-
tems produced overly long responses in preliminary
experiments. When using ChatGPT, we check the
returned message for a set of keywords (including
"AI," "language model," "context," and "clarify")
that indicate the model fails to provide a response
to the conversation, then regenerate up to five times
if needed before moving on.

Baseline To estimate the amount of random align-
ment for each dataset, we shuffle the responses and
randomly pair them with a dialogue context. We do
this separately for the true and generated responses.

Response set Syntactic Lexical Semantic

True 0.444 0.170 0.308
True Baseline 0.405 0.117 0.248
ChatGPT 0.443 0.151 0.340
ChatGPT Baseline 0.418 0.117 0.280
Llama2 13B 0.472 0.207 0.350
Llama2 13B Baseline 0.421 0.130 0.277
Llama2 7B 0.475 0.213 0.374
Llama2 7B Baseline 0.420 0.130 0.286

Table 3: Alignment scores for the SWDA corpus

3.3 Alignment Metrics
We use the align package (Duran et al., 2019) to
calculate syntactic, lexical, and semantic alignment.
All are computed given the last (i.e., the most re-
cent) context utterance u and the (true or generated)
response r.

Syntactic Alignment To calculate the syntactic
alignment asyn, the utterance and response are
segmented into uni-grams, tagged with part-of-
speech (POS) information, and condensed into a
set of unique POS tags with the counts of their oc-
currences: u = (u1, cu1), ..., (un, cun) and r =
(r1, cr1), ..., (rm, crm), with n and m being the
number of unique POS tags in u and r, and c the
number of times each tag occurs in the utterance.
The syntactic alignment is then computed as the co-
sine similarity of the context and response vectors:

asyn = cosine(vu, vr) (1)

Lexical Alignment The process for lexical align-
ment alex is identical that of syntactic alignment,
except using word lemmas instead of POS tags.

Semantic Alignment Lastly, semantic alignment
asem, which describes how the utterance content
overlaps, is calculated using word2vec embed-
dings (Mikolov et al., 2013) e(u1), ..., e(un) and
e(r1), ..., e(rm). We use a bag-of-words approach
to obtain sentence representations eu and er. Se-
mantic alignment is computed as:

asem = cosine(eu, er) (2)

4 Results and Discussion

RQ1: Alignment to Adults All results for RQ1
are shown in Table 3. Comparing the alignment
of ChatGPT to the true response, we see that there
is less than 1% difference in the syntactic align-
ment, a 10% increase in semantic alignment, and
a 12% decrease in lexical alignment. Semantic
alignment is the only category in which ChatGPT
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Response Set Syntactic Lexical Semantic

True 0.490 0.278 0.411
True Baseline 0.359 0.069 0.181
ChatGPT 0.436 0.190 0.347
ChatGPT Baseline 0.367 0.071 0.196
Llama2 13B 0.464 0.227 0.345
Llama2 13B Baseline 0.371 0.073 0.179
Llama2 7B 0.473 0.251 0.370
Llama2 7B Baseline 0.366 0.075 0.180

Table 4: Alignment scores for CHILDES dialogues

overshoots human levels, which could indicate it
is less likely to introduce new topics than a human.
Both Llama models also show this trend. Llama2
overshoots human alignment in all categories – as
the size of the Llama2 model decreases, so does its
performance as it strays further from human-like
alignment levels.

Turning to the baselines, for syntactic and lexical
alignment, ChatGPT is closer to the randomized
baseline than humans are; which means a higher
fraction of its alignment does not come from match-
ing a specific conversation, but from using more
common words and syntax. The baseline align-
ments between all three models are fairly similar,
although the semantic space of the smaller Llama2
model is less diverse as can be seen from a higher
alignment baseline.

Upon manual inspection of 100 transcripts, we
see that ChatGPT generates more convincing re-
sults. On a scale of 1 (makes minimal sense) to 5
(an ideal response) ChatGPT scored an average of
4.37. The responses are also much more likely to
contain novel information or drive the conversation
forward. However, it less convincingly mimics the
style of the conversation and the human respondent.
The Llama2 models both score below 3.50. They
mimic stylistic elements, but oftentimes do not con-
tribute positively to the conversation (i.e. generate
responses such as "Oh, yeah!", "Uh-huh.", or du-
plicate the previous utterance). This shows that
past a certain point, elevated levels of alignment
may negatively correlate with response quality and
sophistication.

RQ2: Alignment to Children Our results for
RQ2 are shown in Table 4. First, we see that the
syntactic alignment of ChatGPT is 12% lower than
that of a human, lexical alignment is 37% lower,
and semantic alignment is 17% lower. In contrast,
Llama2 13B’s alignments are 5%, 22%, and 19%
lower, respectively. On one hand, these decreases
might be due to difficulties understanding the con-

versation. The dialogues jump around and do not
necessarily have a clear topical thread or goal. On
the other hand, there is a divide in the metrics of
success for a human parent and for a dialogue sys-
tem – a parent does not need to successfully com-
plete an inquiry or interaction, but needs to engage
with the child in ways that further development
(John et al., 2013). When comparing the levels of
alignment of ChatGPT and Llama2 across datasets,
we see syntactic and semantic change less than
a few percent. Lexical alignment increases with
CHILDES, perhaps due to a smaller inventory of
words appearing in the context. Overall, we can
conclude that the systems respond with a similar
level of alignment regardless of the target audience.

Moreover, human-like alignment is not the only
metric necessary to grade a model’s quality. In-
spection of the responses shows the ChatGPT re-
sponses are most convincing, at 3.86, although they
show decrease in quality from the adult conversa-
tion. The Llama2 7b model averaged only 3.02,
whereas the Llama2 13b model reached 3.35 – a
smaller differential with ChatGPT than the adult
conversation. When looking at what fraction of the
responses were considered poor, 15% of the GPT
responses to adults scored a 3 or less, whereas 26%
of the responses to children were 3 or less. These
were 41% and 63% respectively for the Llama 7b
model, and 61% and 38% for the Llama 13b model.
Overall, the quality of the Llama responses were
below that of ChatGPT for children, and markedly
lower for adults. Yet, when choosing a dialogue
system to interact with children or language learn-
ers, Llama2 (or models that mimic conversation
style more heavily) might still be a good choice:
closer to human-like levels of alignment could aid
in developing the child’s language skills. This type
of user might also care less about novelty and help-
fulness of the system, and more about ease of un-
derstanding and lowered cognitive load.

5 Conclusion and Future Work

Dialogue systems show great potential to assist hu-
mans across a variety of tasks. The success of these
interactions, like human–human interaction, corre-
lates with linguistic alignment. Thus, we explore
how state-of-the-art dialogue systems align to both
adults and children. We find that, when responding
to adult speakers, ChatGPT shows approximately
human-level alignments and provides constructive
responses. Llama2, however, overly mimics the
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conversation. This could be positive when talk-
ing with children or language learners as it results
in heightened alignment. However, both models
align below human levels. We conclude that SOTA
dialogue systems have room for improvement in
regards to reaching ideal levels of alignment under
various circumstances.

In the future, we plan to investigate alignment to
adult learners or non-typical speakers, in addition
to exploring techniques to create dialogue systems
with a closer-to-human level of alignment. We will
also explore how well dialogue systems match the
user in multi-turn conversational structures, and
related outcomes (Fusaroli and Tylén, 2016).

Limitations

One of our primary limitations is that we are not
able to use human participants to converse with the
dialogue systems. While using existing datasets is
an appropriate proxy to determine if this is an area
which needs improvement, the chat systems may
behave differently when dynamically adapting to
a participant. Additionally, as we used commonly
available data sets, there is a good chance they
were part of the training data. Upon qualitative
assessment of responses we did not find high sim-
ilarity between the gold responses and generated
responses for SWDA or CHILDES. Nonetheless,
there is still a possibility the system has knowledge
of the gold responses and used it when generating
a reply – although in this case, the actual level of
alignment would be lower than what we found, in-
dicating our results are even more significant. In
future works we would also like to explore using ad-
ditional datasets and models. Lastly, while it does
not directly affect the outcomes of this work, there
is some ambiguity to the ideal level of alignment.
We know that in many cases alignment correlates
with positive outcomes, but it is a question for fu-
ture work how much dialogue systems should be
aligning to users and how variable that alignment
should be across a variety of conversation types.

Ethics Statement

Our work analyzes current systems and suggests an
avenue for future improvement. However, we do
not intend to imply that dialogue systems should be
used in all situations without additional considera-
tion. Especially when interacting with children, we
must ensure the accuracy of content and safety of
communication methods. Additionally, while we

point out a way in which state-of-the-art dialogue
models exhibit below-human performance, the goal
is not to make them more human-like as there is
a lot of potential for harm when a chatbot cannot
be distinguished from a person. Instead, we hope
this work will help us improve dialogue systems as
a tool and make them more useful in a variety of
situations.
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A Context Length Selection

We want to choose a context length for the tran-
scripts that maximizes the models’ ability to re-
sponses accurately, while minimizing computing
costs. We choose to use the CHIDLES dataset for
this selection, as the transcripts with children on av-
erage were 100 words shorter than those with adults
– this rules out the possibility that the models are
simply not getting enough context. We primarily
select based on ChatGPT’s alignment levels, as it
has higher computing costs and exhibited lower
levels of alignment alongside more constructive
responses .

A.1 Method

We randomly selected a subset of 200 transcripts
with at least 101 turns to compare the effects of
context length on ChatGPT’s responses. The re-
sponse is held constant, back-selecting increasing
lengths of context.2
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Figure 1: Alignment trends for ChatGPT’s responses
given varying context lengths

A.2 Decision

In these results, shown in Figure 1, we see a gen-
eral trend in alignment for generated responses
from different context lengths. The alignment in
all three categories increases greatly up to 20 re-
sponses, and continue increasing slightly until 35
turns. We choose to use 35 turns to maximize
ChatGPT’s potential to provide a fully developed
response while keeping computing costs manage-
able. While the adult transcripts generally have
greater word counts, adding more context did not

2Additionally, we separately tried changing ChatGPT’s
temperature between 0 and 1, but only found minimal effects
on alignment.

help ChatGPT generate better responses to the chil-
dren, so we maintain keeping the number of turns
constant across datasets. This selection of 35 turns
does not imply an absolute requirement for length.
Upon inspection, we see that in most cases the dia-
logue systems focus on the last few lines of context
– allowing for the use of shorter transcipts if needed
for other experiments.
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