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Abstract

Large Language Models (LLMs) can gener-
ate text by transferring style attributes like
formality resulting in formal or informal text.
However, instructing LLMs to generate text
that when spoken, is more intelligible in an
acoustically difficult environment, is an under-
explored topic. We conduct the first study to
evaluate LLMs on a novel task of generating
acoustically intelligible paraphrases for better
human speech perception in noise. Our ex-
periments in English demonstrated that with
standard prompting, LLMs struggle to control
the non-textual attribute, i.e., acoustic intelli-
gibility, while efficiently capturing the desired
textual attributes like semantic equivalence. To
remedy this issue, we propose a simple prompt-
ing approach, prompt-and-select, which gen-
erates paraphrases by decoupling the desired
textual and non-textual attributes in the text
generation pipeline. Our approach resulted in
a 40% relative improvement in human speech
perception, by paraphrasing utterances that are
highly distorted in a listening condition with
babble noise at signal-to-noise ratio (SNR) −5
dB. This study reveals the limitation of LLMs
in capturing non-textual attributes, and our pro-
posed method showcases the potential of using
LLMs for better human speech perception in
noise.1

1 Introduction

Paraphrase generation is the task of rephrasing a
sentence while retaining its meaning (Bhagat and
Hovy, 2013). Humans perform paraphrasing in spo-
ken conversations, to enable their listeners to per-
ceive spoken messages as intended (Bulyko et al.,
2005; Bohus and Rudnicky, 2008). Motivated by
human speech production strategies, paraphrasing
has also been applied to speech synthesis systems,
to enhance the quality, naturalness (Nakatsu and

1Our code and data are available at https://github.
com/uds-lsv/llm_eval_PI-SPiN.

White, 2006; Boidin et al., 2009), and intelligibil-
ity of synthetic speech, especially in challenging
acoustic conditions (Zhang et al., 2013). Recent
explorations on why certain sentences are more in-
telligible than their paraphrases showed that, the
observed intelligibility gain in a noisy listening en-
vironment is attributed to the rephrasing, which
introduces more acoustic cues that survived the
masking effect of the noise (Chingacham et al.,
2021, 2023). In other words, the enhanced speech
perception with paraphrasing is driven by noise-
robust acoustic cues.

The potential of paraphrasing is however, seldom
used to build human-like spoken dialogue systems
that are adaptive to human listeners’ perception er-
rors in noise, presumably due to the limited investi-
gations to generate paraphrases that are acoustically
more intelligible in a noise condition. Prior studies
relied on human annotations to identify the ideal
paraphrase among a set of candidates (Nakatsu and
White, 2006; Zhang et al., 2013; Chingacham et al.,
2023), with little discussion on generating intelli-
gible paraphrases. This raises the question of how
to generate text that is semantically equivalent to
and acoustically more intelligible than the given
input sentence, for a noisy environment. We refer
to this task as Paraphrase to Improve Speech
Perception in Noise (PI-SPiN).

This task is particularly interesting in the context
of generative LLMs, which have shown incredible
performance in natural language generation (NLG)
tasks such as paraphrase generation and dialogue
generation (Radford et al., 2019; Wei et al., 2022;
Li et al., 2024). Moreover, recent studies have
demonstrated LLMs’ capability to control text gen-
eration for a wide range of style attributes like sen-
timent, syntax, formality, and politeness (Zhang
et al., 2023; Sun et al., 2023a). PI-SPiN differs
from those controllable text generation problems,
as it aims to generate text that satisfies the desired
textual attributes (e.g., semantic equivalence), in
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Figure 1: A schematic representation of the prompt-and-select and standard prompting approach to generate
acoustically intelligible paraphrase in a noisy environment. A speech intelligibility metric, short-time objective
intelligibility measure (STOI) is employed to select the paraphrase that is more likely to improve speech perception.

addition to the non-textual attribute (i.e. acoustic
intelligibility), which is hard to describe textually.

To explore the potential of LLMs in PI-SPiN,
we proposed to evaluate LLMs’ inherent capability
to generate acoustically intelligible paraphrases,
without any model fine-tuning. Through standard
prompting methods like zero-shot learning (ZSL),
we found that the model was able to capture textual
attributes, while consistently struggling to improve
acoustic intelligibility. We also observed that in-
creasing the description of the desired non-textual
attribute in the prompt only confuses the model,
and it may even lead to a deterioration in textual
attributes that were achievable otherwise.

To effectively utilize LLMs for generating acous-
tically intelligible paraphrases, we propose a sim-
ple approach called prompt-and-select, which
guides paraphrase generation by introducing the
desired non-textual attribute in a post-processing
step (see Figure 1). It is a two-step process begin-
ning with prompting the LLM to generate multiple
candidates and then selecting the best candidate
based on acoustic intelligibility, which is hard to
capture in textual mode alone. By conducting a hu-
man evaluation with native English listeners, who
have no hearing impairments, we verified that the
LLM-generated paraphrases via prompt-and-select
approach are indeed more intelligible than original
sentences, in a listening environment with babble
noise at SNR −5 dB.2

2See definitions of babble noise and SNR in Appendix A.

Our main contributions are as follows:

• We conduct an elaborate study on the evalua-
tion of LLMs on a novel task called PI-SPiN.

• Our results illustrate the weakness of standard
textual prompting to control a non-textual at-
tribute – acoustic intelligibility.

• Our proposed approach prompt-and-select is
an effective solution to generate paraphrases
that are more acoustically intelligible.

2 Related Work

Acoustic Intelligibility. Speech perception has
been a long-standing research topic in speech
science (Kalikow et al., 1977; Luce and Pisoni,
1998; McArdle and Wilson, 2008), which con-
tributed towards a better understanding of human
(mis)hearing. More specifically, several human per-
ception experiments were conducted to investigate
the intelligibility of speech tokens such as vow-
els (Pickett, 1957; Cutler et al., 2004), consonants
(Weber and Smits, 2003; Jürgens and Brand, 2009),
words in isolation (Luce and Pisoni, 1998; Clopper
et al., 2010; Wilson and Cates, 2008), words in con-
text (Kalikow et al., 1977; Uslar et al., 2011; Chin-
gacham et al., 2021), especially in noisy environ-
ments. While several studies showcased the influ-
ence of linguistic characteristics such as predictabil-
ity (Kalikow et al., 1977), syntactic complexity (Us-
lar et al., 2011; Carroll and Ruigendijk, 2013; van
Knijff et al., 2018), and lexical features (Luce and
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Pisoni, 1998; McArdle and Wilson, 2008), on the
intelligibility of utterances in noise, there is limited
explorations in utilizing the linguistic potential to
improve acoustic intelligibility in noise.

We share the motivation to improve speech per-
ception in noise using paraphrases with early stud-
ies (Cox and Vinagre, 2004; Nakatsu and White,
2006; Zhang et al., 2013; Chingacham et al., 2023).
Nakatsu and White (2006) proposed to train a re-
ranker to select the paraphrases that are more likely
to sound natural, when synthesized. They gener-
ated multiple paraphrases for each sentence mainly
by modifying the word order and replacing a few
lexical units in the original sentence. On the other
hand, Zhang et al. (2013) proposed an objective
measure to distinguish the intelligibility difference
among paraphrases that are of the same syntactic
type, thereby restricting the type of sentential para-
phrases. More recently, Chingacham et al. (2023)
investigated the potential of improving intelligibil-
ity by considering a larger set of paraphrase types,
which are generated using modern paraphrasing
models. However, our work is distinct from theirs
as we explore LLMs’ inherent ability to generate
acoustically intelligible paraphrases.

LLM Evaluation. Given the rapid growth of
LLMs such as ChatGPT and GPT-4 (OpenAI,
2023), there has been a surge of research inter-
est towards a holistic evaluation of their capabil-
ities (Chang et al., 2024). Recent studies have
attempted to examine their performance across di-
verse tasks, such as machine translation (Hendy
et al., 2023; Zhu et al., 2023), text summariza-
tion (Yang et al., 2023; Pu and Demberg, 2023),
etc; and also aspects of multilinguality (Lai et al.,
2023b; Ahuja et al., 2023) and multimodality (Bang
et al., 2023). Close to our work, there have been
a few studies looking into the controllable gener-
ation ability of LLMs. Lai et al. (2023a) explore
the potential of ChatGPT as a text-style transfer
evaluator. Sun et al. (2023b) present a systematic
study on ten controllable generation benchmarks.
Notably, their control factors are derived from the
language perspective (e.g., sentiment and number),
whereas our work pioneers the investigation of the
potential of LLMs as an acoustically intelligible
paraphrase generator.

3 PI-SPiN Task Description

Typically, the paraphrase generation task focuses
on generating text that is semantically equivalent

to the given input text. However, the PI-SPiN task
aims at generating text that is semantically equiv-
alent to, as well as, acoustically more intelligible
than the original input text, in an adverse listening
condition.

For example, consider the following paraphrase
triplet (s1, s2, s3) from the Paraphrases-in-Noise
(PiN) dataset3 (Chingacham et al., 2023):

s1: “i was raised in a generation we did need all
those things.”

s2: “we did need all those things when i was a
child.”

s3: “we did need all those things when i was
young.”

s1 is a sentence retrieved from a spoken cor-
pus, while s2 and s3 are outcomes of a paraphrase
generation pipeline. Though all sentences are se-
mantically equivalent to each other, they exhibited
a significant difference in acoustic intelligibility
under noise. More precisely, when these sentences
were uttered in a difficult listening condition with
babble noise at an SNR of −5 dB, humans per-
ceived s2 with fewer errors in perception compared
to s1, while s3 was perceived much worse than
s1. The better intelligibility of utterances can be
attributed to both linguistic features like predictabil-
ity (Kalikow et al., 1977), syntactic structure (Uslar
et al., 2013), as well as acoustic features like the un-
derlying sounds of the utterance (Luce and Pisoni,
1998). In the more recent investigations on the
intelligibility difference among paraphrases (Chin-
gacham et al., 2023), it was shown that the better
intelligibility of s2 in such high noise environments
is mainly driven by the noise-robust acoustic cues
that are defined by both the constituting sounds as
well as the noise signal. PI-SPiN aims to gener-
ate paraphrases (like s2) that are likely to improve
human speech perception in such noisy conditions.

Speech intelligibility in noise is better when sen-
tences are simple (Carroll and Ruigendijk, 2013),
shorter (Coene et al., 2016), and linguistically
more predictive (Valentini-Botinhao and Wester,
2014). However, the intelligibility of an utterance
in noise is not only driven by its underlying text.
The perception is also influenced by the acoustic
cues that survived the masking effect of the back-
ground noise (Cooke, 2006). Hence, PI-SPiN is a

3See Appendix B for more samples.
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text generation task, that involves both textual at-
tributes like semantic equivalence and a non-textual
attribute that captures the noise-robustness of an
utterance.

To generate the acoustic realization of a sen-
tence, we used the Tacotron2 text-to-speech (TTS)
system, which demonstrated performance on par
with that of a professional voice talent (Shen et al.,
2018). More specifically, we used the Tacotron2
model4 pre-trained on the LJSpeech dataset by
SpeechBrain (Ravanelli et al., 2021). Further, to
create the noise-distorted signals, the clean audio
signals underwent a noise-mixing procedure us-
ing an open-sourced tool, audio-SNR.5 The bab-
ble noise from the NOISEX-92 dataset (Varga and
Steeneken, 1993) was mixed with clean audio at
SNR−5 dB. To determine whether the generated
text satisfies the desired outcome, we primarily re-
lied on automatic metrics, which are discussed in
detail in the following section.

4 Experimental Setup

Model. For all our experiments, we used Chat-
GPT6 (Ouyang et al., 2022), which is one of the
most popular LLMs. It has shown impressive per-
formance on paraphrase generation with textual
style attributes, while its ability on acoustically in-
telligible paraphrasing remains unclear. We adopt
default parameters (temperature=1.0, top_p=1.0)
for the API calls.

Dataset. The evaluation dataset consists of 300
short sentences, which are spoken in a conversa-
tional scenario. The dataset is created by filter-
ing out sentences with 10 to 12 words from the
top 1000 lines of the speech corpus, Switchboard
(Godfrey et al., 1992).

Metrics. Human evaluation is the gold standard
for most text-generation tasks. However, human
evaluation is expensive and time-consuming, which
limits the scale of evaluation. Thus, we perform
an automatic evaluation of the whole evaluation
dataset and a human evaluation of a subset of the
dataset. For automatic evaluation, we employed
a range of metrics, which determine the semantic
equivalence between the input and output texts, as
well as, the linguistic and acoustic features that
contribute to the acoustic intelligibility in noise.

4https://huggingface.co/speechbrain/
tts-tacotron2-ljspeech

5https://github.com/Sato-Kunihiko/audio-SNR
6Version: gpt-3.5-turbo

1. Semantic equivalence. Semantic Textual Simi-
larity (STS) measures how similar two texts are
in terms of their meaning. In the past, several
STS scores were proposed (Bär et al., 2012; Han
et al., 2013). More recently, Zhang et al. (2020)
proposed BERTScore, which has shown encour-
aging results in correctly identifying the semantic
equivalence/distance between two texts. For all our
evaluations, the STS score is the BERTScore-f1
calculated using the distilled BERT model (Sanh
et al., 2019). The higher the STS value, the better
the semantic equivalence between two texts.

2. Lexical deviation. Lexical deviation (LD)
shows to what extent two texts are similar or differ-
ent in terms of their surface form. The difference
in wording between the two texts is particularly
interesting for paraphrase generation. Bandel et al.
(2022) showed that the deviation in the linguistic
forms of paraphrases is one of the critical factors
that decides its quality – high-quality paraphrases
exhibit high LD, as well as, high STS as they differ
lexically, yet maintain the semantics. As defined
in Liu and Soh (2022), we used the overlap in lexi-
cal tokens of the uncased lemmatized form of two
texts to capture the lexical deviation between the
input sentence and the model-generated paraphrase.
The higher the LD score, the more difference in
paraphrased wording.

3. Utterance length. It is a textual attribute
that influences acoustic intelligibility, as it was
observed that shorter sentences introduce fewer
misperceptions in noise (Chingacham et al.,
2023). Though paraphrases of shorter lengths
are more likely to be perceived correctly, shorter
paraphrases may risk missing some semantics of
the original text. Hence, it is critical to evaluate
utterance length along with semantic equivalence.
To measure utterance length in terms of phonemes
(i.e. PhLen), we used a grapheme-to-phoneme
model7 to generate the phonemic transcript of a
sentence. Further, to compare the length within
each input-output pair, the pairwise ratio of PhLen
is calculated by dividing the length of the model
output by that of its input sentence (denoted as
PWR-PhLen). Thus, when the model-generated
text is similar to the input text, PWR-PhLen
value is close to 1.0, while a value much less
than 1.0 reflects that the model-generated text is
considerably shorter than the original text.

7https://pypi.org/project/g2p-en/
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Prompt-ID Prompt

pzsl−low Generate an intelligible paraphrase for the following input sentence: {input text}

pzsl−med Generate a simple, intelligible, and spoken-styled paraphrase with 10-12 words
for the following input sentence: {input text}

pzsl−high For a noisy listening environment with babble noise at SNR -5, generate a simple,
intelligible, and spoken-styled paraphrase with 10-12 words, for the following input
sentence: {input text}

Table 1: Three prompts used in standard prompting, with an increasing level of detail in the task objective. Bold-
faced words are task-specific keywords in the prompt statement.

4. Linguistic predictability. Several studies in the
past have shown that when lexical tokens are more
predictable from the context, word misperceptions
are less likely to occur (Kalikow et al., 1977; Uslar
et al., 2013; Valentini-Botinhao and Wester, 2014;
Schoof and Rosen, 2015; Bhandari et al., 2021).
Thus, we considered the perplexity (PPL) score
determined by a pre-trained language model, GPT-
28 (Radford et al., 2019) to estimate the linguistic
predictability of a sentence. To compare the lin-
guistic predictability among input and output texts,
the pairwise ratio of the perplexity is calculated by
dividing the PPL of model-generated text by the
input sentence PPL (denoted as PWR-PPL). Higher
PPL scores indicate lesser linguistic predictability.
Thus, a PWR-PPL value less than 1.0 indicates that
the model-generated text is more predictable than
the input text.

5. Acoustic Intelligibility. The acoustic intelli-
gibility of an utterance in a noisy environment is
primarily driven by the acoustic cues that survived
the energetic masking of the noise – utterances
with better noise-robust acoustic cues are better
perceived in noise (Cooke, 2006; Tang and Cooke,
2016). We use the Speech Intelligibility (SI) metric,
STOI (Taal et al., 2010), to capture the acoustic in-
telligibility of an utterance. STOI is a non-textual
attribute, as it measures the mean correlation of
short-time envelopes between the clean and noisy
audio signals of an utterance. The higher the STOI
score, the higher the noise-robustness of an utter-
ance. Similar to other pairwise ratios, the pair-
wise ratio of STOI (PWR-STOI) is calculated by
dividing the STOI of model-generated text by the
input text STOI. Thus, PI-SPiN aims at generating
paraphrases with PWR-STOI values above 1.0 in-
dicating that the model output is acoustically more

8Version: distilgpt2

intelligible than the input sentences.
All pairwise ratios range between 0.0 and +∞,

while STS and LD range between 0.0 and 1.0. For
the evaluation, we report each of these metrics,
averaging across the evaluation dataset.

5 Evaluating LLMs for PI-SPiN

In our experiments, an LLM is prompted to gen-
erate a paraphrase for each input sentence in the
evaluation set with a prompt template: {prompt
prefix} + {input text}. In the following sec-
tion, we described two prompting methods that we
employed and evaluated for the task.

5.1 Standard Prompting
In this setting, the model is prompted to gener-
ate an intelligible paraphrase given an input sen-
tence in a zero-shot manner. As shown in Table 1,
we investigate three types of prompts, which de-
scribe the desired attributes with different granular-
ity: low (pzsl−low), medium (pzsl−med), and high
(pzsl−high). With the increasing number of task-
specific tokens in the prompt, the task description is
more detailed. Prompts are designed by including
keywords like ‘paraphrase’ and ‘intelligible’ that
represent the desired outcome. Additionally, a few
more tokens like ‘10-12 words’ and ‘spoken-styled’
were used in the prompt to ensure that the gen-
erated paraphrase adheres to the length and style
of input sentences. We hypothesize that with addi-
tional task-oriented tokens in the prompt, the model
will steer the paraphrase generation by optimizing
the intelligibility.

Results and Analysis Table 2 summarizes the
results of all three prompts that we used in stan-
dard prompting. We observed that ChatGPT can
generate high-quality paraphrases as indicated by
high scores for semantic equivalence and lexical
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Prompt-ID STS↑ LD↑ PWR-PhLen↓ PWR-PPL↓ PWR-STOI ↑

pzsl−low 0.852 0.699 1.343* 1.086 0.992
pzsl−med 0.860 0.668 1.119* 1.042 0.991
pzsl−high 0.837 0.729 1.250* 1.236* 1.005

Table 2: An automatic evaluation of paraphrases generated by different prompts. Pairwise ratios (PWR) significantly
different from 1.0 (p < 0.05) are marked with an asterisk (*). They indicate the significant difference between the
model-generated output and the input text.9

Prompt-ID Sentences

— {input text} I also have a part-time job at a law firm.
pzsl−low {output} Additionally, I am employed part-time at a law firm.
pzsl−med {output} I work part time at a law firm as well.
pzsl−high {output} In a busy environment with loud chatter, I work part-time at a law office.

— {input text} Is your father’s cafe, one that you could cater out of?
pzsl−low {output} Can you use your father’s cafe as a location for catering purposes?
pzsl−med {output} Could you use your father’s cafe as a catering venue?
pzsl−high {output} Can your dad’s café be used for catering in a noisy setting?

— {input text} I believe that the cure for polio is already founded.
pzsl−low {output} I hold the belief that the remedy for polio has already been discovered.
pzsl−med {output} I think the polio cure has already been discovered.
pzsl−high {output} I think polio’s cure has already been discovered in a noisy setting.

— {input text} I think you can do that for a little while.
pzsl−low {output} I believe you have the capability to do that temporarily.
pzsl−med {output} I believe you can manage that temporarily.
pzsl−high {output} I believe you can manage it temporarily amidst the loud chatter.

Table 3: A qualitative analysis of model-generated text, {output}, for a given {input text} under three standard
prompts: pzsl−low, pzsl−med, pzsl−high. The prompt pzsl−high generates several tokens that are irrelevant (bold-
faced words) to the task objective.

deviation (i.e. STS and LD). More importantly,
we found that the length of paraphrases generated
by the prompt pzsl−med (PhLen = 42.08) is con-
siderably shorter than those generated with the
prompt pzsl−low (PhLen = 50.67), indicating the
effectiveness of additional keywords in pzsl−med

to control a textual attribute – length. However,
the non-textual attribute, acoustic intelligibility (i.e.
STOI) of model-generated paraphrases is not sig-
nificantly different from their corresponding input
sentences as reflected by the PWR-STOI scores
being not significantly different from 1.0. Further-
more, paraphrases generated with a detailed task
description in pzsl−high, also resulted in a simi-
lar observation – LLM struggles to improve the
non-textual attribute while controlling textual
attributes appropriately.

9See Appendix C for the absolute scores of different met-
rics.

Compared to pzsl−low and pzsl−med, pzsl−high

resulted in worse performance, indicated by con-
siderably longer output texts despite prompting to
control length (PWR-PhLen = 1.250) and output
texts that are linguistically less predictive (PWR-
PPL = 1.236). It is also reflected in a higher lexical
deviation (LD = 0.723) at the expense of lower tex-
tual similarity between input and output (STS =
0.837). To have a deep understanding of its behav-
ior, we conducted a qualitative analysis as shown
in Table 3. We noticed that the additional context
of the non-textual attribute confused the model
in understanding the task objective and resulted
in model hallucination. In sum, using standard
prompting may not effectively elicit the model’s
ability to generate paraphrases with the intended
non-textual attribute, which is beyond the model’s
comprehension.10

10In Appendix D, we also conducted a preliminary study
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Figure 2: An automatic evaluation of the standard prompting (n = 1) and the proposed prompt-and-select (n > 1)
approach. The X-axis is the number of candidates generated (n) and the Y-axis is the mean scores (with error bars at
95% confidence interval). The reference line in Fig. (b) marks when the input text feature is the same as the output
text feature. Increasing n improves the pairwise ratio of acoustic intelligibility (PWR-STOI), but it comes with a
trade-off on semantic equivalence (STS).11

5.2 PAS: Prompt-and-Select
Prior studies on dialogue generation (Boidin et al.,
2009; Nakatsu and White, 2006; Weston et al.,
2018) have demonstrated the utility of a simple
yet effective pipeline of controlling text generation
in two steps: first generating a candidate set of dia-
logues, and then selecting the best candidate based
on the task requirement. Similarly, we proposed to
decompose the current task into a two-step process:
(1) prompt the LLM to generate multiple output
texts that are semantically equivalent to the input
text and (2) select the best candidate based on the
acoustic intelligibility.

Our approach is similar to the prompt-and-
rerank method proposed in (Suzgun et al., 2022).
However, our approach deviates from theirs mainly
in two ways: (1) instead of using beam search at
the decoding phase, we propose to utilize the poten-
tial of an LLM to generate multiple (n) candidates
that exhibit the desired textual attributes and (2) the
best candidate selection is based on a metric (i.e.
PWR-STOI) that represents a non-textual attribute,
which is not considered in prior studies.

For the first step of paraphrase generation, we
perform zero-shot prompting with an appropri-
ate task description, pzsl−med. Thus, pzsl−med is
the prompt that generates exactly one candidate
and involves no selection; it is also referred to
as ppas(n=1). However, to generate multiple para-
phrases (eg: n = 6), the prompt statement can be
simply modified to include the n value, as shown
below

• Generate 6 simple, intelligible, and spoken-
styled paraphrases with 10-12 words for the

on in-context learning, suggesting that demonstrations are not
helpful in capturing the non-textual attribute.

11See Appendix C for the absolute scores of different met-
rics with varying numbers of candidates.

given input sentence: {input text}

Following the creation of the candidate set, STOI
scores are calculated for all model-generated text
as well as the input text, by first synthesizing the
clean utterances and then mixing babble noise at
SNR −5 dB. Finally, the candidate with the highest
PWR-STOI is selected as the model output.

Results and Analysis We begin our analysis
by comparing the results of standard prompting
(n = 1) with the PAS approach, involving 6 can-
didates (n = 6). As shown in Figure 2a, PAS
showcased a high quality of paraphrase generation
as indicated by high STS and high LD, similar to
the standard prompting setup. Similarly, Figure 2b
illustrates that other textual attributes like linguistic
predictability (PWR-PPL = 1.056) and utterance
length (PWR-PhLen = 1.192) of the PAS approach
resulted in similar outcomes of the standard prompt-
ing method – output texts are a bit longer than input
texts, while their linguistic predictability scores
are similar. Importantly, compared to the stan-
dard prompting, the prompt-and-select approach
yielded a noticeably high PWR-STOI (µ = 1.074,
p < 0.05), which is significantly above 1.0. This
indicates that the model-generated text is consider-
ably more intelligible than their corresponding in-
put sentences in the given noise condition. We can
see more clearly from Figure 2b that PAS (n = 6)
leads to a relative improvement of 8.4% in PWR-
STOI compared to the standard prompting (n = 1).
Our findings suggest that introducing the desired
non-textual attribute in a post-processing step is
a potential framework to generate desired text
with multi-modal behavior.

This raises a follow-up question of whether gen-
erating more candidates in the first step further
improves the overall PWR-STOI of generated para-
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Subset STS↑ LD↑ PWR-PhLen ↓ PWR-PPL ↓ PWR-STOI ↑ PWR-Sent-Int ↑

top30 0.831 0.737 1.189* 1.428 1.22* 1.70*
random30 0.848 0.683 1.157* 1.314 1.07* 1.06

Table 4: The automatic and human evaluation of text generated with ppas(n=6). Evaluation on two subsets: top
30 pairs with highest PWR-STOI (top30) and randomly selected 30 pairs (random30). PWR-Sent-Int captures the
pairwise ratio of human speech perception in noise. * marks values significantly above 1.0 (p < 0.05).

phrases. To this end, we modify the number of can-
didates (n) in the prompt statement to double the
candidate pool size. We found that by increasing
the candidate set, there is an improvement in acous-
tic intelligibility. However, when n is increased
from 6 to 12, there was only a limited improve-
ment of 1.6% in PWR-STOI. On the other hand,
we observed that textual attributes like linguistic
predictability and lexical deviation are not signifi-
cantly different under varying n values.

Interestingly, the pair-wise ratio of sentence
length slightly increased, with more choices in
the candidate selection; however, the overall PWR-
PhLen in this approach is still below the standard
prompting setup with no tokens to control length
(pzsl−low). Increasing n from 6 to 12 slightly re-
duced the overall semantic equivalence between
the model input and output paraphrase. This in-
dicates that the choice of n introduces a trade-off
between the improvement in acoustic intelligibility
(PWR-STOI) and the overall semantic equivalence
(STS) and one has to choose n considering this
trade-off between the gain in non-textual attribute
and the need for semantic equivalence.

5.3 Human Evaluation
In addition to the evaluation with automatic metrics,
we also conducted a human evaluation to verify
whether the model output in the PAS setup (using
ppas(n=6)) is indeed more intelligible than their cor-
responding input sentences. For the human percep-
tion experiment, we created two subsets of the eval-
uation dataset of 300 pairs: random30 and top30.
random30 is a set of 30 pairs randomly selected
from the evaluation dataset, while top30 is the top
30 input-output pairs that exhibited the larger im-
provements in STOI scores.

We followed the experiment design of Chin-
gacham et al. (2023) to capture the human speech
perception of an utterance in a (noisy) listening
setup. After synthesizing the noisy utterances of
each sentence using a TTS (Shen et al., 2018) and a
noise-mixing tool (audio-SNR), participants were

asked to listen and transcribe each sentence. Every
utterance in the dataset was listened to by six dif-
ferent participants. For each listening instance, the
edit distance between the phonemic transcriptions
of the actual and transcribed text is measured to
determine the rate of correct recognition. Further-
more, the sentence-level intelligibility (Sent-Int) of
each utterance is calculated by averaging the cor-
rect recognition rates exhibited by the six listeners.

The perception experiment was conducted with
24 native English listeners with no hearing im-
pairments (14 females and 10 males; average age
= 30.71). After data collection, we calculated
the pairwise ratio of sentence-level intelligibility
(PWR-Sent-Int) by dividing the Sent-Int scores of
the output paraphrase by their corresponding input
sentence. A mean score of PWR-Sent-Int signifi-
cantly above 1.0 indicates that the model-generated
paraphrase is significantly more intelligible than
the input sentence, in a given listening condition.

Results and Analysis As illustrated in Table 4,
top30 items signify that the model-output para-
phrases have considerably improved the human
perception in a noisy listening condition. We ob-
served that the overall human speech perception
of model-output paraphrases (Sent-Int = 0.66) was
considerably higher than the input sentences (Sent-
Int = 0.47), introducing a 40% relative gain in the
overall intelligibility. This is also reflected in the
PWR-Sent-Int score that is significantly above 1.0.

We observed the PWR-Sent-Int of random30 is
not significantly above 1.0, even though the PWR-
STOI is significantly above 1.0. With further anal-
ysis of two subsets, we found that the mean STOI
of input sentences in top30 (µ = 0.507) is sig-
nificantly less than random30 (µ = 0.561). This
means that random30 consists of sentences that
are better intelligible in noise. Also, we observed
a strong negative correlation (r = −0.442, p <
0.001) between the STOI of input sentences and
the gain in intelligibility (PWR-Sent-Int), which
highlighted the limited benefits of paraphrasing
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input sentences in random30. However, top30 con-
sists of all input sentences, which are more likely
to benefit from paraphrasing in noisy listening con-
ditions and they reflected the same in the human
evaluation. We conclude with the observation PAS
is a simple yet effective solution to alleviate the
struggles of LLM to generate text with textual and
non-textual attributes, without model fine-tuning.

6 Conclusion

In this work, we evaluate LLMs on acoustically
intelligible paraphrase generation for better human
speech perception in noise. Our results demon-
strate the limitations of LLMs in controlling text
generation with a non-textual attribute – acoustic
intelligibility. To alleviate the struggles of LLMs
in generating text that satisfies both textual and
non-textual attributes, we proposed a simple yet
effective approach called prompt-and-select. With
human evaluation, we found that when the origi-
nal utterances are highly prone to misperceptions
in noise, prompt-and-select can introduce 40% of
relative improvement in human perception. We
hope the findings of this work inspire further explo-
rations to control LLMs’ text generation with differ-
ent real-world context cues, thereby building more
human-like agents. For future work, we could con-
sider two approaches to improve LLMs on this task:
1) fine-tuning LLMs with a large parallel dataset
consisting of sentences and their corresponding
intelligible paraphrases, and 2) incorporating the
acoustic representation of the utterances to control
the paraphrase generation.

Limitations

The proposed “prompt-and-select” approach relies
on the efficacy of STOI scores to identify the best
candidate which is more likely to be perceived cor-
rectly in noise. In other words, this approach re-
quires a metric that accurately estimates the de-
sired non-textual attribute. This could be a limita-
tion for problems that require human annotations
for candidate selection. Additionally, the current
approach introduces an overhead in computation
and inference time, due to multiple generations and
STOI calculation that involves speech synthesis and
noise-mixing procedure. Further investigations are
required to study the trade-off between the benefits
of paraphrasing and the cost of additional resources.
Moreover, our study only evaluated ChatGPT, one
of the representative LLMs, due to budget and re-

source constraints. We believe that a holistic eval-
uation covering more open-source models, such
as Mistral (Jiang et al., 2023) and Llama 3 (Meta,
2024), will be beneficial to deepen our understand-
ing of LLM capabilities.

Ethics statement

In this work, generative LLMs are evaluated for a
new task without model fine-tuning. It is an im-
pactful step to democratize LLMs for research fa-
cilities with limited data and computing resources.
We conducted a human evaluation on Prolific, en-
suring that all participants were paid (9 GBP) for
their service, considering the recommended min-
imum wage per hour in the UK, in 2023. Also,
we ensured to provide an inclusive environment
for our participants in the perception experiment,
providing non-binary options to mark their gender
identity.
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A Definitions

Babble Noise. It is one of the most commonly oc-
curring noise types in the real world (Miller, 1947).
Typically, it is the noise that exists in a cafeteria or
other crowded environments, wherein individuals
engage in conversations in the backdrop of other
conversations. The simultaneous speech produced
by several individuals in the background masks the
target speech and could hinder listening. The bab-
ble noise in the NOISEX-92 database that we use in
this work is a recording of 100 people speaking in
a canteen (Varga and Steeneken, 1993; Deshpande
and Holambe, 2009).

Signal-to-Noise Ratio. To measure the noise
level, a commonly used metric is the signal-to-
noise ratio (SNR) (Taguchi, 1986). SNR represents
the ratio of the power of a clean (undistorted) sig-
nal and a noise signal, which are combined to form
the distorted signal. Simply put, it is a fraction of
powers as defined in Equation (1). It is commonly
measured on a logarithmic scale and referred to in
units of decibels (dB), as defined in Equation (2).
The power of a signal is the sum of the absolute
squares of signal magnitudes averaged across the
time domain.

SNR =
Psignal

Pnoise
(1)

SNRdB = 10 log10(SNR)

= 10 log10(
Psignal

Pnoise
) (2)

When a clean speech signal is mixed with a noise
signal with equal power, the SNR of the resultant
distorted speech is 0 dB. Similarly, when the power
of the clean signal is higher than that of the noise,
the SNR of the resultant signal is positive (> 0 dB).
Higher SNR scores indicate better audibility. On
the other hand, when the noise power is more in the
processed signal, the SNR value is negative (< 0
dB).

B More Samples from the PiN Dataset

In Table 8, we provide more paraphrase triplets
from the PiN dataset.

C Absolute Scores

We provide absolute scores for different evalua-
tion metrics in Table 5 in addition to their pairwise
ratios.

Prompt-ID PhLen PPL STOI

pzsl−low 50.67 159.95 0.570
pzsl−med 42.08 165.56 0.569
pzsl−high 46.68 193.85 0.577
ppas(n=6)

44.67 182.77 0.617
ppas(n=12)

44.88 184.52 0.627
picl 47.27 146.71 0.573

{input text} 38.02 236.65 0.577

Table 5: Absolute scores for utterance length (PhLen),
linguistic predictability (PPL), and acoustic intelligibil-
ity (STOI) of {input text} and generated outputs by
different prompts.

D In-context Learning

Prior research has shown that LLMs can efficiently
learn to control text generation with demonstra-
tions and perform better than just providing a task
description (Brown et al., 2020). Thus for the in-
context learning (ICL) setup, the input prompt is
modified to include a set of exemplars that repre-
sent the desired model behavior. In other words, to
instruct the model to generate acoustically intelli-
gible paraphrases in an ICL setting requires a set
of sentences and their corresponding paraphrases
that are acoustically more intelligible in a noise
condition.

To provide the best in-context demonstrations,
we created another set of 300 short sentences from
the Switchboard corpus excluding those in the
evaluation set. Then, their corresponding para-
phrases were generated by prompting ChatGPT
with pzsl−med. Following speech synthesis and
noise mixing with babble noise at SNR −5 dB,
we identified the top 5 pairs that exhibited a larger
pairwise difference in STOI scores. Further, the
sentences within each pair were rearranged in such
a way that the second sentence is always better in-
telligible than its paired paraphrase. Further, the
sentences within each demonstration pair were con-
catenated with a token (eg: ‘=>’) and embedded
with pzsl−low for in-context learning. Table 6 rep-
resents the exact prompt statement ( picl) that we
used for the in-context learning.

Results and Analysis As shown in Table 7, the
model learned to generate paraphrases, similar
to those given as examples. Compared to the
zero-shot learning with minimal task description
(pzsl−low), the model in the ICL setup (picl) gener-
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Prompt-ID Prompt

picl Look at the samples of a sentence and its intelligible paraphrase:
1. I don’t know if you are familiar with that. =>

I have no idea if you’re familiar with that.
2. what other long-range goals do you have besides college? =>

Apart from college, what are your other long-term objectives?
3. I don’t have access either. Although, I did at one time =>

In the past, I had access, but currently, I don’t.
4. Right now I’ve got it narrowed down to the top four teams. =>

At this point, I’ve trimmed my options and picked 4 top teams.
5. prohibition didn’t stop it and didn’t do anything really. =>

It continued despite the prohibition, which didn’t accomplish anything.

Similarly, generate an intelligible paraphrase for the input sentence: {input text}

Table 6: The prompt used for the in-context learning setup.

Prompt-ID STS↑ LD↑ PWR-PhLen↓ PWR-PPL↓ PWR-STOI ↑
picl 0.872 0.627 1.250* 0.947 0.997

Table 7: An evaluation of the ICL setup. LLM fails to improve acoustic intelligibility (PWR-STOI < 1.0), though it
learns to capture the demonstrated textual attributes like lexical deviation and predictability.

ated texts that are semantically more similar and
lexically less divergent from the input sentences.
More interestingly, the model also learned to opti-
mize the desired textual attributes like length (PWR-
PhLen) and linguistic predictability (PWR-PPL)
of generated paraphrases, even in the absence of
prompt tokens to explicitly control those features.
Nevertheless, the demonstrations are still not
helpful in controlling the non-textual attribute.
We observed that the acoustic intelligibility scores
of output sentences were not significantly different
from their input sentences (PWR-STOI = 0.997).
Once again, this shows the inability of the LLM to
generate acoustically intelligible paraphrases, even
though it captures textual attributes from the given
exemplars.
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Sentence_ID Sentence

s1 they give more information than opinions
s2 they seem to give more of just the facts than opinions
s3 they seem to give more facts than opinions

s1 you don’t hear much about it in the big ones
s2 in the big ones you don’t hear about it
s3 you never hear about it really in the big ones

s1 I think we talked for a good eight minutes about the subject
s2 we talked for about eight minutes
s3 I think we talked for about eight minutes

s1 I like having people over for dinner
s2 I enjoy having people over for dinner
s3 if I have people over for dinner I like it to be

s1 I studied every piece of material I could
s2 I studied every part of the material
s3 and studied every bit of material that I could study

s1 I wanted to be a teacher at one time
s2 at one point I wanted to be a teacher
s3 I thought at one time I wanted to be a teacher

s1 they never imagined it would be a hit
s2 in fact, they never thought it would be a hit
s3 they never expected it to be a hit

s1 they want a lot more men to participate
s2 they need more men to participate
s3 they really looking for a lot more men to participate

s1 we gave them about seven minutes
s2 we gave them about seven minutes according to my watch
s3 they were given seven minutes

s1 you don’t hear much about it in the big ones
s2 in the big ones you don’t hear about it
s3 you never hear about it really in the big ones

s1 at that stage of life you only have so much money left
s2 you only have a limited amount of money left
s3 you only have so much money left at that point in your life

s1 I was angry that they were capable of doing that
s2 I was mad that they could do that
s3 I was just pissed as hell that they could do that

Table 8: A list of paraphrase triplets (s1, s2, s3) from the PiN dataset. Sentences in each triplet are arranged in
such a way that s1 is acoustically less intelligible than s2, and acoustically more intelligible than s3, in a listening
condition with babble noise at SNR −5 dB.
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