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Abstract
Modern instruction-tuned models have become
highly capable in text generation tasks such
as summarization. Given the regularity with
which new model variants are now released, an
increasingly practical problem entails choos-
ing the best (zero-shot) summarization model
for a particular domain confidently, but with
minimal effort. In this work we empirically
investigate the test sample size necessary to se-
lect a preferred model in the context of news
summarization. Our results reveal that compar-
ative evaluation converges quickly for both au-
tomatic and human evaluation, with clear pref-
erences for a system emerging from under 100
examples. Collected human preference data al-
lows us to quantify how well automatic scores
can reproduce preference rankings across a va-
riety of downstream summarization tasks. We
find that while automatic metrics are stable at
smaller sample sizes, only some automatic met-
rics are able to moderately predict model win
rates according to human preference.

1 Introduction

Instruction fine-tuned language models are highly
capable summarizers, and new such models are
now released often. Continuously comparing such
models using large, reference-based benchmark as-
sessments is a costly task, especially if one wants
to use them in a new domain. Here we demonstrate
on (English) new summarization data that—with
respect to both human and automatic evaluations—
preferences toward a summarization model emerge
over test sets of about 50 samples. Collecting hu-
man judgements, GPT evaluations, or (if possible)
manually composed references for this size dataset
is reasonable. Further, we evaluate GPT evalua-
tions and two popular reference-based evaluations,
ROUGE-1 and BERTScore, in terms of their ability
to predict human preferences on a set of 36 test-
ing contexts. We collect human judgements in the

*Work completed while at Adobe Research.

context of three different summarization tasks and
three sources of input. For these variations, we
compute the accuracy of automated scores to repro-
duce human preferences between pairs of systems.

2 Background

Our goal is to establish the amount of test data
needed to decide which of two summarization mod-
els produces better summaries for a given distribu-
tion over inputs (i.e., different sources of text to be
summarized) and different task contexts for which
the summary is to be used.

It is common to approach evaluation as a rate-
then-compare task in which outputs from systems
are rated for quality on a scale, and then average
scores are used to compare systems. But it is well
known that inputs may differ considerably in diffi-
culty (Nenkova and Louis, 2008). Paired tests for
statistical significance, that evaluate the differences
of scores between two systems on the same input
is the basis for comparison are therefore more ap-
propriate (Rankel et al., 2011; Dror et al., 2018).
Most contemporary work has embraced this ap-
proach, largely abandoning scoring of outputs and
instead soliciting preferences among two or more
choices (Novikova et al., 2018). Given develop-
ments in LLMs, pairwise win rates have become
the de facto standard for reporting comparisons be-
tween instruction tuned models. In this work we
similarly adopt win rate to compare systems, and
we empirically identify the smallest test set size
that reliably reveals preferences.

Most closely related to our work is the study on
estimating power of tests for statistical significance,
i.e., the minimum test size necessary to detect statis-
tical differences of a given size (Card et al., 2020).
Our work is aligned with the main question of this
prior work, but we present empirical estimates of
differences between systems without making any
assumptions of tests to be used or size of effect we
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Figure 1: Distributions of average ROUGE-1 and BERTScores across 1000 re-samples. Differences between
systems emerge clearly and quickly for XSUM and Newsroom.

want to detect. Our empirical findings may inform
future work on power estimation.

Prior related work proposes ways of carrying out
evaluations, either automatically or manually (La-
ban et al., 2022a; Zhang* et al., 2020; Fabbri et al.,
2022; Zhong et al., 2022; Liu et al., 2022), and
measuring the correlations between system rank-
ings produced by human and automatic evaluations
on a given benchmark (Gehrmann et al., 2023).
We do not propose new evaluation methods, but
rather introduce a method for validating automatic
evaluations that does not rely on a benchmark, and
instead measures the accuracy of automatic scores
in reproducing human judgements across different
input distributions and intended use-cases.

3 Unnecessarily Large Benchmarks

We first compare two models, FlanT5-XXL (Chung
et al., 2022) and StableLM (Andonian et al., 2021)
via automatic scores over three news summariza-
tion benchmarks: CNN/DM (See et al., 2017; Her-
mann et al., 2015), XSUM (Narayan et al., 2018),
and Newsroom (Grusky et al., 2018). We use the
test set splits of these datasets from Huggingface.1

CNN/Daily Mail and XSUM contain about 10K
test inputs. The Newsroom test set split has over
100k samples. For efficiency, we randomly sample
10k examples from this set to scale it down to a
size comparable to the other two datasets. We then

1https://huggingface.co/docs/datasets/index

generate summaries with FlanT5 and StableLM for
all articles in the test sets, using the summarization
prompts that these models have been trained on (see
Appendix A). For each test split we sample 1000
times with replacement smaller test set sizes rang-
ing from [5, len(dataset)]. We evaluate the two
models with the commonly used ROUGE-1 (Lin,
2004) and BERTScore (Zhang* et al., 2020).2 Both
scores compare a summary with a human-written
reference summary. ROUGE does so using tokens,
while BERTScore relies on embeddings. We show
score variations for FlanT5 and StableLM across
the three datasets in Figure 1. For all three datasets,
a preference for one of the models emerges early:
The winning model as scored over 10k test points
emerges after just 25-50 samples.

Given these findings, we collect human judge-
ments on 100 samples from each of the data
sources, varying the task context in which the
judgement is made. We also add GPT-4 as an-
other summarization model to be evaluated, and
later report the accuracy of GPT-based evaluation
against the aggregated human judgements.

4 Human Preferences

We hire three individuals on Upwork (Appendix F)
for CNN/DM and Newsroom, and one for XSUM.
We select 100 inputs for annotation from each
dataset, which given the trends we observed in

2We also report BLEU (Papineni et al., 2002) and
SummaC-ZS (Laban et al., 2022b), in Appendix B.
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the previous section, would be sufficient to reveal
human preference.3

We also add summaries produced by GPT-4
for evaluation on the smaller dataset. FlanT5,
StableLM, and GPT-4 represent encoder-decoder,
decoder-only (open-source), and decoder-only
(closed-source) models, respectively.

We instruct annotators to rank the summaries for
each input in order of preference. This is a typical
evaluation setting in which win rates—the percent-
age of input for which the model was preferred
over the other—provide the clearest score for each
model pair.

We provide three different scenarios to measure
how preference may change based on context: (i)
Rank the summaries in order of preference; (ii) As-
suming you are monitoring the news for important
world events, rank the summaries in order of prefer-
ence; (iii) Which summary best captures the main
details of the event being reported on? (iv) Which
summary contains the fewest unnecessary details?

For GPT-4, we append the summaries with the
instructions and provide these as prompts to the
model.

4.1 Stability of Preference
First, we look to confirm whether smaller test sam-
ples are sufficient to make the same conclusion as
with a larger sample. We apply the same procedure
described in Section 3, where we resample 1000
test sets of size 25 and 50 from the 100 for which
we have human judgements. Figure 2 shows the
win rates for the CNN/Daily Mail test set for each
of the three pairs of models, on the full test set of
100 samples, as well as the min, max and average
win rate recorded across the 1000 smaller test sets.

While there is some variation in the strength
of the preference for a model, the overall prefer-
ence is preserved in the smaller samples. In only
one case—the comparison between FlanT5 and
StableLM—does the overall preference change for
the minimum value of win rates from the one thou-
sand samples of size 25. With 50 samples in the
evaluation set, all three of the minimum, maximum
and average win rates lead to the same conclusion
about which system in the pair is better as that from
the full 100 sample test set.

Similarly for the other two datasets, Newsroom
and XSUM, none of the overall preferences flip for
test sets of size 50 and only one minimum value

3See Appendix F for details about cost and hours for all
annotations.

for the 25 samples flips the preference. We provide
the complete tables in Appendix C.

These results indicate that even under human
evaluation, smaller test set samples (n=50) are ad-
equate to conclude which is the preferred summa-
rization model.

In many cases, the strength of the preference may
be of interest. As shown in the variation between
the minimum and maximum win rates, the strength
as captured by win rates can vary considerably
depending on the test set. We leave for future work
analysis of the test size required to obtain reliable
conclusions about the strength of the preference.

4.2 Human Preference Varies by Task and
Input Source

We now turn to comparing model preferences rela-
tive to downstream task use.

Figure 3 shows the variation of aggregated
preferences on the full 100 sample test set for
CNN/Daily Mail. The context of the task can dra-
matically change the win rates for a given model.
When contextualized in a specific use-case, human
preferences flip from the overall rating for two out
of the three model comparisons.

The overall win rate for StableLM over FlanT5
is 54%, indicating a weak preference for StableLM.
In the world event use case however, the win-rate
for FlanT5 increases to 53%, flipping to a prefer-
ence for FlanT5. Similarly, the win rate of Sta-
bleLM over GPT-4 in the overall condition is 21%
but flips to 76% in the main details setting. The win
rates of FlanT5 over GPT-4 remain stable across
all tasks, always in favor of GPT-4.

Similarly, win rates according to the aggregate
human preference for two systems vary depending
with the source of data. In the next section we
discuss how this observed variability changes the
approach to validation of automatic evaluations.

5 Validating Automatic Evaluation

We presented qualitative evidence that the context
in which preferences are made change the human
preferences dramatically. We also provided clear
examples of cases when human preference for the
same two models can flip depending on the con-
text. This judgement variability poses a novel re-
quirement for validating automatic evaluation ap-
proaches. We cannot combine win rates across
settings and compute correlations between human
preferences and automatic scores because these
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Figure 2: Aggregated annotator win rates for the CNN/DM dataset for the overall metric. Model preferences remain
fairly stable across all sample sizes except in one case for sample size of 25.
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Figure 3: Aggregated annotator win rates across all
metrics. Model preferences can change depending on
the task setting.

come from different distributions. We do, however,
have a sufficient number of pairs for comparison: 3
models evaluated on 3 sources of data, on 4 context
of use. This yields 9 overall preferences and 27
contextually dependent preferences.

For four automatic methods for evaluation, we
compute the accuracy of the automatic score in
reproducing human preferences. Specifically, we
compute the percentage of pairwise comparisons
for which the automatic evaluation agrees with the
human win rates on which system is the better
one. This is a coarse requirement because it does
not capture the size of the win rate. For example
the win rate of one system over another in human
preferences is 51% but an automatic score predicts
that its win rate is 79%, the automatic score will be
considered accurate.

Table 1 shows the accuracy for four automatic
evaluations: ROUGE-1, BERTScore, G-Eval, and
GPT-4 as an annotator. In the case of GPT-4 as an
annotator, we provide GPT-4 with the exact same
instructions as the human annotators. For the first
three approaches, a win for a model is declared
if the score assigned by the method for this input
is higher than that for the other model. In cases

Metric Accuracy (%)

ROUGE-1 78
BERTScore 56
G-Eval 44
GPT-4 (as annotator) 78

Table 1: Accuracy of automatic metrics compared to hu-
man evaluations. GPT-4 as-an-annotator and ROUGE-1
score have the highest accuracy in predicting which
model is selected by human annotators in each task set-
ting.

when the scores for an input are the same, there
is a tie. In the fourth case, using GPT-4 as an
annotator provides ratings, so the wins are decided
by the ranking returned by GPT-4 (rather than a
proxy score). In this case, there are no ties because
the annotators were asked to do a forced choice
comparison. We find that ROUGE-1 and GPT-4
as an annotator are able to moderately predict the
aggregated human preferences across the different
tasks, compared to BERTScore and G-Eval which
are not able to do so as reliably.

6 Conclusions

We presented automatic and human evaluations de-
signed to establish the minimum amount of data
necessary to choose between contemporary sum-
marization models. Comparative evaluations es-
tablish which model performs better with test sets
of 50 inputs. For human evaluation, a test size
of 50 is sufficient to confidently establish which
of two models people prefer. Human preference
varies, however, depending on the intended use of
the summary and on the source of data for sum-
marization. This variation calls for new methods
for validating automatic scores. We find that all
four automatic evaluations predict preferences bet-
ter than chance but lead to erroneous conclusions
for many pairwise comparisons.
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Limitations

We only evaluate over benchmark news datasets,
where it is possible that our observations may not
be reflected in other, more niche domains. In part,
this choice is due to lack of availability of quality
summarization datasets with references (and fur-
ther motivating the need for evaluation over small
samples), however it is important for future work
to consider more specialized cases. Another limi-
tation is that we do not collect human annotations
nor GPT-4 summaries over the entire test set splits.
This poses a challenge as collecting these evalu-
ations and summaries over such a big dataset is
costly.
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Model Prompt

FlanT5 [TEXT]\nWhat is a one-paragraph summary of the above article?

StableLM

<|SYSTEM|># StableLM Tuned (Alpha version)
- StableLM is a helpful and harmless open-source AI language
model developed by StabilityAI.
- StableLM is able to facilitate human communication by
providing a summary of a given text.
- StableLM is able to provide summaries that are useful and
relevant to the given text.
<|USER|> [TEXT].
Summarize the given piece of text.
<|ASSISTANT|>

GPT-4
"role": "user",
"content": ”[TEXT] \n\n Summarize the above text. \n\n"

Table 2: Input and prompt structure for each summa-
rization model. [TEXT] is replaced with the article to be
summarized.

Appendix

A Summarization Prompt Details

For the summarization prompts, we use prompts
and input structures that the models have been
trained on. Table 2 shows the input for each model,
where [TEXT] is replaced with the article to be
summarized.

B BLEU and SummaC-ZS

Figure 4 shows the distributions of averaged BLEU
and SummaC-ZS scores over all three datasets.
BLEU scores have trouble capturing meaning-
ful scores across longer inputs as seen with Sta-
bleLM. SummaC-ZS uses NLI-models to score
sentence-level information – similar to ROUGE-1
and BERTScore, we can start differentiating mod-
els earlier than the full sample size.

C Human Evaluation Win Rates and Sample
Sizes: XSUM and Newsroom

We provide the aggregated win rates across annota-
tors for XSUM (Figure 5) and Newsroom (Figure
6). Both datasets show the same trend as in Figure
2, where the win rate pair ranking is preserved in
the minimum, maximum, and average win rates
across 1000 trials. This holds across sample sizes
of 50, but not in all cases with sample size of 25.

D Human Evaluation Win Rates and Tasks:
XSUM and Newsroom

Similar to Figure 3, we show the win rates across
different tasks for XSUM and Newsroom in Figure
7. These results support the finding that preference
changes between downstream scenarios.

CNN/DM

Annotators Factuality κ Text Quality κ

1, 2 0.522 0.053
1, 3 0.249 0.539
2, 3 0.133 -0.081

Table 3: Agreement scores, Cohen’s kappa.

E Annotator Agreement on Text Quality and
Factuality

For CNN/DM we report the agreement scores over
factuality and text quality questions that we collect
in our surveys in Table 3. We expect the agree-
ment scores for factuality to be much higher; it is
possible that this is an indicator for different tol-
erance for minor errors (e.g., vague wording) or
may be indicative of the cognitive load involved in
judging factuality. Similarly for text quality, the
threshold for artifacts or other issues may differ
between annotators.

F Annotation Details
Costs We hired seven professional proofreaders
from Upwork, who were each recruited to read 100
articles and rank 3 summaries per article. We paid
each annotator a flat fee of $325 to evaluate the
summaries When asked for a time estimate after
they completed, responses ranged between 10 and
13 hours to complete the study, meaning annotators
were compensated at roughly $25-$30 per hour.
The annotators typically completed the work over
one to three days.

Annotation Platform We hire annotators on Up-
work4. We presented the annotators with a custom
interface for ranking the summaries and answering
questions, shown in Figure 8. Annotators were en-
couraged to take extended breaks during annotation
to reduce task fatigue.

4https://www.upwork.com/nx/
enterprise-homepage/
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Figure 4: Distributions of averaged BLEU and SummaC-ZS scores across 1000 re-samples for CNN/DM, XSUM,
and Newsroom.
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Figure 5: Win rates aggregated by annotators (XSUM).

0 100

Overall - 25: Min

Overall - 25: Mean

Overall - 25: Max

Overall - 50: Min

Overall - 50: Mean

Overall - 50: Max

Overall - Full 58%

67%

59%

52%

72%

58%

46%

42%

33%

41%

48%

28%

42%

54%
0 100

79%

86%

79%

72%

89%

79%

68%

21%

14%

21%

28%

11%

21%

32%

GPT-4 FlanT5 StableLM

0 100

79%
87%

79%
72%

91%
79%

68%

21%

13%

21%

28%

9%

21%

32%

Figure 6: Win rates aggregated by annotators (Newsroom).
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Figure 7: Aggregated annotator win rates across all metrics over the XSUM and Newsroom datasets.

(a) Summaries, as presented to the annotators. (b) Text quality issues and the ranking interface for the
summaries. Each box with the summary label can be
dragged-and-dropped into any order.

(c) Article, as presented to the annotator. (d) Factuality questions asked about each summary.

Figure 8: The annotation interface. For each article, annotation happens across two pages. The first page contains
the summaries (8a) and rankings (8b), and the second page contains the article (8c) and factuality questions (8d).

59


