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Abstract

The self-rationalising capabilities of large lan-
guage models (LLMs) have been explored in
restricted settings, using task-specific data sets.
However, current LLMs do not (only) rely on
specifically annotated data; nonetheless, they
frequently explain their outputs. The properties
of the generated explanations are influenced
by the pre-training corpus and by the target
data used for instruction fine-tuning. As the
pre-training corpus includes a large amount of
human-written explanations “in the wild”, we
hypothesise that LLMs adopt common proper-
ties of human explanations. By analysing the
outputs for a multi-domain instruction fine-tun-
ing data set, we find that generated explanations
show selectivity and contain illustrative ele-
ments, but less frequently are subjective or mis-
leading. We discuss reasons and consequences
of the properties’ presence or absence. In par-
ticular, we outline positive and negative implic-
ations depending on the goals and user groups
of the self-rationalising system.

1 Introduction

Self-rationalising models produce explanations to-
gether with their primary output, often in natural
language (Marasovic et al., 2022; Wiegreffe et al.,
2022). These models have received increased atten-
tion in recent years as language generation abilities
have improved with autoregressive Transformer
(Vaswani et al., 2017) architectures, pioneered by
the GPT models (Radford et al., 2018, 2019). Nat-
ural language explanations are easily accessible to
users and flexible in the tasks they can be used for
and the types of reasoning they can express. So
far, the focus of this line of research has been on
models trained on annotated explanations for (more
or less) well-defined tasks such as commonsense
question answering (Park et al., 2018; Rajani et al.,
2019; Aggarwal et al., 2021) or natural language
inference (Camburu et al., 2018). However, the cur-
rent generation of large language models (LLMs)
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can give explanations for a much broader range of
questions or instructions.

Generated explanations can be a means to im-
prove model performance (Wei et al., 2022b;
Kojima et al., 2022) and decrease hallucinations
via a feedback loop (Stammer et al., 2023); but they
are also expected to provide context for human de-
cision-making (Gonzélez et al., 2021; Narayanan
et al., 2018). As LLMs typically are not explicitly
trained with annotated explanations, in contrast to
earlier models, the properties of the explanations
they provide are not obvious, making it hard to
predict the usefulness of these models’ self-ration-
alising capabilities.

Two main factors can influence the explanations
given by LLMs: the properties of the explana-
tions contained in the pre-training data, and the
properties fostered by alignment techniques such
as instruction fine-tuning (IFT; Wei et al., 2022a)
and reinforcement learning with human feedback
(Ouyang et al., 2022). Based on this, we hypothes-
ise that LLMs capture various properties of human
explanations from the large amount of human text
in the training data, including characteristics un-
common in the earlier annotated explanations, and
in particular properties that contribute primarily to
the communicative function of human explanations
(Lombrozo, 2006; Miller, 2019). Many of these
properties have been argued to be irrelevant or even
detrimental to the goals of explainable NLP, where
the aim is to understand how a system arrived at
a certain prediction; these include incompleteness
(particularly selectivity), subjectivity, the inclusion
of illustrative elements, and the ability of systems
to provide explanations even for wrong answers
(Tan, 2022; Bommasani et al., 2021; Turpin et al.,
2023). In contrast, in the field of human—computer
interaction, human-like explanations are seen more
favourably (de Graaf and Malle, 2017; Ehsan et al.,
2019), indicating tension between the various goals
and user groups of self-rationalising systems.
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The aim of this paper is to systematise properties
of human explanations and to gauge to what extent
these properties are reflected in the explanations
generated by LLMs. This knowledge can help de-
velopers and users of these models understand in
which cases the generated explanations are aligned
with specific goals, and when a model needs to be
adapted or is unfit for the intended use case. To get
insights into the properties of LLM-generated ex-
planations, we look into the Alpaca dataset (Taori
et al., 2023; Peng et al., 2023). Choosing this data-
set lets us study the properties of the explanations
generated by GPT-4 (OpenAl, 2023), the LLM
used in the construction of Alpaca. However, our
findings also have a wider scope, as Alpaca is used
for IFT and the properties it exhibits, including the
properties of the explanations contained in it, are
likely to be further propagated to derived models
fine-tuned on it.

Contributions:

* We identify typical properties of human explan-
ations, specifically such that have been pointed
out as unfit for explaining model predictions.

* We investigate in a human analysis of a subset of
Alpaca if and how frequently such properties are
attested in real-world data.

* We discuss the implications of these proper-
ties for different goals of explainable NLP,
namely safety, trustworthiness, troubleshooting
and knowledge discovery, and the corresponding
target user groups that may use LLMs.

2 Related Work

We give a brief overview of the work on self-ra-
tionalising models in §2.1. In §2.2 we summarise
arguments for and against the use of generated nat-
ural language explanations.

2.1 Self-Rationalising Models

Most past work on free-text explanations in NLP
uses data sets that include human-annotated explan-
ations (Marasovic et al., 2022; Zhao and Vydis-
waran, 2020; Narang et al., 2020). Each such data-
set focuses on a specific, well-defined task, such as
natural language inference (Camburu et al., 2018),
multiple-choice commonsense question answering
(Rajani et al., 2019; Aggarwal et al., 2021) or visual
question answering (Park et al., 2018). While the
explanations in these datasets were collected with
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open instructions to make them resemble human ex-
planations, the narrow nature of the targeted tasks
can result in a template-like character of explana-
tions (Camburu et al., 2018; Wiegreffe and Mara-
sovic, 2021). In contrast, recent work increasingly
uses LLLMs to create explanation-annotated data-
sets. As an example, Wiegreffe et al. (2022) sug-
gest using few-shot learning in GPT-3 to generate
explanations for larger datasets with an acceptabil-
ity filtering system that selects the most acceptable
explanation from a set of candidate explanations
generated for the same sample.

Letting a model generate explanations along
with its primary output has been shown to improve
the model’s prediction accuracy in some cases
(Liu et al., 2019; Zhao and Vydiswaran, 2020).
Recent examples are chain-of-thought prompting
(Wei et al., 2022b; Kojima et al., 2022) and tree-of-
thoughts (Yao et al., 2023), where an LLM gener-
ates intermediate reasoning steps prior to making
a prediction in a zero-shot setting, “guiding” the
model towards the right answer.

2.2 Faithfulness Versus Understandability

Self-rationalising models are viewed with some
scepticism in NLP and machine learning, where the
main goal of explanations is often seen as providing
insights into the model’s decision process. Bom-
masani et al. (2021) express doubts about free-text
explanations as a tool for understanding LLMs, as
plausible-sounding explanations may not provide
true insights into model behaviour. Tan (2022)
discusses if human explanations are suitable as
additional supervision or as ground truth, given
that humans can also provide explanations for in-
correct labels. They point out that human explan-
ations for most tasks are necessarily incomplete
and do not present valid and complete reasoning
paths. The doubts are supported by evidence that
models mimic human misconceptions (Lin et al.,
2022), which will likely affect generated explan-
ations. Turpin et al. (2023) show with prompts
containing surface biases that affect the predictions
that this bias is never reflected in the explanations.

Herman (2017) emphasizes the importance of
differentiating between descriptive and persuasive
explanations. Descriptive explanations describe the
underlying model with maximum fidelity and serve
the ethical goal of transparency, while persuasive
explanations are tailored to the human cognitive
function and preferences to build trust and under-



standing in the end user. Similarly, Jacovi and Gold-
berg (2020) call for a separation between plausibil-
ity and faithfulness. While most works using other
explanatory techniques, such as input feature attri-
bution, implicitly or explicitly focus on descript-
ive explanations (Narayanan et al., 2018), free-text
explanations are often interpreted as persuasive,
striving for plausibility. However, Wiegreffe et al.
(2021) provide a starting point for an analysis that
quantifies faithfulness in free-text explanations by
measuring if predictions and explanations show a
correlated behaviour, e.g., under input perturba-
tions. Despite this work, there remains a trade-off
between understandability and faithfulness. As
Doshi-Velez and Kim (2017) argue, the latter is
ultimately impossible for models that are not inter-
pretable per se, which includes LLLMs. Later in this
article, in §6.3, we will discuss for which goals and
users explanations can (or do not) have value if we
cannot guarantee their relation to the prediction.
Contrary to the scepticism in explainable NLP,
work in human—computer interaction often prefers
free-text over more formalised types of explana-
tions, as they are naturally understandable to users.
de Graaf and Malle (2017) argue that autonomous
systems must communicate their goals and beliefs
to people interacting with them and do so in natural
language. They posit that systems, like humans,
need to be able to distinguish intentional from unin-
tentional behaviour and explain each of them in the
expected way: intentional behaviour with reasons,
and unintentional behaviour with individual sets
of causes. Ehsan et al. (2019) argue that natural
language explanations help humans communicate
effectively with models by verbalizing plausible
motivations. Ehsan et al. (2021) agree that explain-
ability is crucial for trustworthy and accountable
human—AlI collaboration, but argue that research-
ers working on explainable Al are mostly driven
by their intuitions rather than knowledge about the
intended audience. They call for more research
on human-centred explainable Al for a better un-
derstanding of user goals and how technological,
individual, and social factors shape these goals.

3 Properties of Explanations

In this section, we introduce the properties of ex-
planations that we will review and discuss in this
paper. As LLMs are largely trained on human-au-
thored text, we expect their generated explanations
to be similar to human explanations (McCoy et al.,
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2023). To identify and systematise relevant prop-
erties, we take inspiration from work on how hu-
mans construct and understand explanations (Keil,
2006; Lombrozo, 2006). In recent years, such work
has even targeted the explainable machine learning
audience (Miller, 2019; Byrne, 2023).

It is important to note that human explanations
do not all share universal properties. Their nature
and structure interact heavily with the explanan-
dum, that is, the topic of the explanation. For ex-
ample, while both an everyday explanation (e.g.,
why you are late for dinner) and a mathematical
proof are human-made explanations, they have
little in common (Wilson and Keil, 1998). In this
section, we will focus specifically on properties of
human explanations that have been pointed out as
disadvantageous in the context of explainable NLP,
and that we will test for in our experiment.

3.1 Incompleteness

Human explanations are often incomplete, as the
full set of relations behind a phenomenon can be
far beyond the grasp of both the explainer and the
explainee (Keil, 2006). Incompleteness has been
pointed out as an issue for explainable NLP, as
incomplete explanations do not present valid reas-
oning paths (Tan, 2022).

The incompleteness of explanations comes in dif-
ferent shapes. In particular, explanations often (or,
depending on the interpretation of the phenomenon,
always) rely on commonsense concepts without fur-
ther specification, assuming that the conversation
counterparts share them (§3.1.1). Secondly, explan-
ations often name only a subset of all causes and
mechanisms that lead to an outcome (§3.1.2).

3.1.1 Commonsense Concepts

Human explainers make assumptions about the
knowledge and understanding of their communica-
tion partner and do not explain the concepts they be-
lieve the respective other shares (Lombrozo, 2006).
Explanations are social and follow the rules of ef-
ficient communication; therefore, only knowledge
that the explainer assumes is new to the explainee
is communicated (Miller, 2019; Hilton, 1990). For
example, assume the question “Why is Bert wear-
ing shorts?”” and the explanation “He wears shorts
because he is in Malta.” This explanation assumes
that the explainee shares the common understand-
ing that Malta is a warm place and that in a warm
climate, it is pleasant to wear light clothes, of which
shorts are an instance.



Reliance on commonsense concepts is related
to the illusion of explanatory depth (Rozenblit and
Keil, 2002), the phenomenon that people’s explan-
atory knowledge, especially related to devices and
natural phenomena (e.g. of a flush toilet), is much
more fragmental then they perceive it to be. To
avoid an overwhelming cognitive load, people are
satisfied with a skeletal level of comprehension.
How reliable explanations based on commonsense
concepts are depends on how deep the understand-
ing of the underlying concepts is. Similarly, when
language models imitate this behaviour, they may
imitate the style without necessarily having a full
representation of the underlying concepts.

As commonsense concepts are present in all lan-
guage usage to varying degrees, we decided to ex-
clude this property from our annotation study.! A
quantitative dive into this phenomenon is left for
future work.

3.1.2 Selectivity

Humans include causes in their explanations if they
judge them to be relevant and probable (Lombrozo,
2006; White, 1995). They hardly ever expect an
explanation to contain the complete causes of an
event, nor is this feasible (Wilson and Keil, 1998).
Selecting one or two causes suffices, as long as
the selection mirrors their impact and potentially
other human preferences, such as giving priority
to events that are more recent, surprising, inten-
tional or immoral (Miller, 2019). Mittelstadt et al.
(2019) name selectivity as a fundamental property
of explanations, given that some reasons are more
relevant than others. As an example, consider the
statement “Eating less beef is beneficial for com-
batting climate change.” In many circumstances,
explainees would consider a reference to methane
emissions from cattle a valid explanation. However,
there are various other factors that could be named,
e.g. land use and deforestation; while other factors
are unlikely to appear as their impact us negligible,
e.g. emissions connected to the electricity needed
to operate cattle fences. Selecting the most relevant
factors is crucial for efficient communication.

3.2 Subjectivity

Human decision-making can include subjective and
biased criteria that are not reflected in the explan-
ations given for these decisions (Greenwald et al.,

'A preliminary study showed a low inter-rater agreement
on whether an explanation invokes commonsense concepts.
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1998; Tan, 2022). On the other hand, in certain situ-
ations, humans need to reflect on their subjective
mental processes in the explanations (Tan, 2022),
and certain decisions are inherently subjective. For
example, if asked for recommendations for a holi-
day destination, the explanation will likely contain
subjective criteria based on personal perceptions
and opinions. (“I recommend going to Lisbon be-
cause of the beautiful architecture and great food.”)

3.3 Misleading Explanations for Incorrect
Labels

A problem of human-annotated explanations that
has been pointed out for explainable NLP is that
humans can provide explanations even for incor-
rect labels and for tasks that they perform badly on
(Tan, 2022). For example, if the task is to calcu-
late the result of 0.5 4 0.5 * 10 and the explainer
answers that “It is 11 because 0.5 4+ 0.5 = 1 and
14+ 10 = 117, this explains their reasoning and
may be convincing to explainees who are unaware
of the mathematical convention that multiplication
comes before addition.

It has been noted that hallucinations in LLMs,
i.e. generations that are unfaithful to the input or
factually incorrect (Lee et al., 2018; Maynez et al.,
2020; Ji et al., 2023), can be accompanied by hal-
locinatory explanations (Augenstein et al., 2023).
However, there has been less work on how persuas-
ive they are in practice. Ye and Durrett (2022) show
that model-generated explanations rated as factual
by humans correlate with accurate predictions, but
that the effect depends on the dataset.

3.4 Illustrative Elements

That explanations generated by LLMs are not faith-
ful to their primary output is a classical objection
in the NLP community (Bommasani et al., 2021).
Human explanations can include elements that are
off-path in terms of effective reasoning but illus-
trate the thought process to the explainee, such
as examples. These are a fundamental part of ex-
planation and learning (Chi et al., 1989). For the
question “What is 12/47”, the answer could be an
illustration: “It is 3: If you cut a pizza into 12
pieces, and divide them fairly among four people,
everyone will have three pieces.” While the illustra-
tion may not reflect how the explainer arrived at the
answer, they expect that it will help the explainee
understand the answer.



4 Experimental Setup

In this section, we introduce our data and an-
notation setup. All data, code and ratings can
be found athttps://github.com/jekunz/
llm-expl-properties..

4.1 Data

We use Alpaca (Taori et al., 2023), a dataset auto-
matically generated using the self-instruct pipeline
(Wang et al., 2022), in the version with GPT-4 an-
notations (Peng et al., 2023). Alpaca has a broad
coverage of instructions, as reported in an analysis
in Taori et al. (2023). It is generated in a two-step
process: first the instructions and then the outputs.
Alpaca is licensed under Apache 2.0.

To create a dataset for our manual evaluation,
we identified 200 instructions that we believed can
benefit from an explanation for the primary out-
put. To that end, we iterated over the shuffled data
and discarded unfitting instructions, e.g. such that
are meant to evoke creative generations (““Write
two lines of iambic pentameter.”), that ask for very
straightforward facts (“Who wrote Harry Potter?”)
or that are unclear and therefore likely to be refuted
by the model. We discarded 500 instructions until
we reached our target of 200.

Next, we categorised the 200 instructions, giving
us the distribution in Figure 1. Coding Assistance
are prompts that ask the model for concrete im-
plementations of programming problems. Math
Problems are mathematical questions. Grammar
& Language refers to prompts for correcting or im-
proving a piece of text or pointing out errors in it.
Text Classification includes all instructions that ask
the model to classify a sentence into (pre-defined
or implicit) categories. Facts & Lists refers to all
instructions where the model is asked for a fact or
a list of facts or suggestions. Other are all prompts
that do not fall into any of the other categories.

4.2 Questionnaire

For each of the 200 examples (instruction plus out-
put), we asked the following six questions based on
the properties introduced in Section 3, with answer
options yes and no:

* Q1: Does the output contain an explanation for
the prediction?

* Q2: Would you give an explanation/justify your
reasoning if you were asked this question by a
friend?
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Other Facts & Lists

92
Coding Assistance

Math Problems 29

Grammar & Language Text Classification

Figure 1: Distribution of the categories defined in Sec-
tion 4.1 in the evaluation set.

* If the answer to the former question was yes:

— Q3: Does the explanation list contributing
factors?

— Q4: Does the explanation include subjective
or biased criteria?

— QS: Does the explanation include illustrative
elements (e.g. examples)?

— Q6: Is the explanation misleading (e.g. arguing
for a label that is wrong)?

The full questionnaire with further instructions for
the annotation can be found in Appendix A. The
annotation was performed by three raters, all of
whom are LLM experts with a Master’s degree and
based in Sweden, using the Label Studio annotation
software (Tkachenko et al., 2020-2022).

To measure the correlation between the first two
questions, we report Matthew’s correlation coeffi-
cient (MCC; Matthews, 1975).

5 Results

We separate the results of our human evaluation
into two parts: the answers to the first two questions
about the existence of explanations in §5.1 and the
answers to the latter four questions in §5.2.

5.1 Presence of Explanations (Q1 and Q2)

In Figure 2, we present the results for the question
of how many instructions GPT-4 explains and how
many instructions the three individual annotators
self-report they would explain. In Table 1, we
present a breakdown per category of the number of
samples where at least two raters answered yes to
Questions Q1 and Q2.

The outputs contain explanations in (on rater av-
erage) 64.3% of the cases, while the raters would
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Figure 2: Comparison of the yes-answers the three an-
notators (A1, A2, A3) for Questions Q1 (“Does the
output contain an explanation for the prediction?”’) and
Q2 (“Would you give an explanation/justify your reas-
oning if you were asked this question by a friend?”).

Category Q1 Q2 Total Length
Math 19 11 26 77
Code 17 12 27 110
List/Facts 80 78 92 168
Grammar 6 7 19 30
Class. 11 12 29 24
All: 137 125 200 113

Table 1: Samples that received at least two yes-Answers
from the raters for Questions Q1 and Q2 as well as the
average output length in tokens.

on average explain 62.5% of the answers. The lat-
ter has a large variation from 50.0% to 74.5%, in-
dicating the individual nature of the problem. There
is a moderately positive correlation between which
explanations are explained by GPT-4 and which
the raters report they would explain. Matthew’s
correlation coefficient for the individual raters is
0.58, 0.48 and 0.70.2

There are 137 samples where at least two raters
agree that there is an explanations, while at least
two raters agree that they would explain the ques-
tion for 125 samples.

Breakdown by category As we see in Table 1,
lists and facts are by far the most likely to be ex-
plained: For 80 out of 92 samples (87%), there
are yes-answers by at least two raters. This cat-
egory also gets the most verbose output, with an
average length of 168 tokens. Grammar and classi-
fication instructions are particularly unlikely to be

>The interval of MCC is [—1, 1], where 0 is random and 1
is perfect correlation. MCC is balanced between classes.
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Category Q3 Q4 Q5 Q6 Total
Math 4 0 3 0 19
Code 3 0 10 O 16
List/Facts 64 1 63 0 81
Grammar 1 0 4 0 6
Class. 5 0 3 0 10
All: 79 1 86 0 137

Table 2: Samples that received at least two yes-Answers
from the raters for Questions Q3—Q6. Total is number
of explanations for the category (as reported via Q1).

explained by GPT-4, with 6 out of 19 (32%) and 11
out of 24 (46%) of instructions explained. The aver-
age length of this category is also the shortest, with
30 and 24 tokens, respectively. Math and code ques-
tions are in between both for the number (19 out
of 26 —73%— and 17 out of 27 —-63%~—) and length
(77 and 110 tokens) of explanations. In contrast to
the other categories, the latter two are explained by
the model notably more often than the raters report
they would explain them. The raters would only
explain 11 and 12 samples, respectively.

5.2 Properties of Explanations (Q3-Q6)

Table 2 shows the results for the questions about
which properties the raters have observed in the
explanation. For attested examples of each of
the properties from the dataset, we refer to Ap-
pendix B.

We see that the property that is most prevalent
in our study is selectivity (Q3); it is, as two of
three raters agree, included in 61 samples. Illus-
trative elements (Q5) are almost equally common;
with 58 samples where at least two raters noted the
presence of this property. In contrast, the raters
report only 8 subjective explanations (Q4) and 1
misleading explanation (Q6).

Breakdown by category Looking at the indi-
vidual categories, we see that math problems have
the least of the defined criteria, apparently having
the least social and the most formal explanations.
Subjectivity (Q4) is only reported for the category
Lists and facts in one example, while there is no
example for misleading explanations (Q6) in the
defined categories. Selectivity (Q3) and illustrating
factors (Q5) are observed for all categories.



6 Discussion

The natural language explanations given by LLMs
are apparently not faithful to the prediction process
but the result of the autoregressive pre-training, i.e.
they imitate human explanations from the training
data, possibly constrained by instruction fine-tun-
ing and other alignment techniques. As such, they
exhibit typical properties of human explanations,
which we discuss in §6.1. In §6.2 we reflect on our
evaluation method and data. Finally, in §6.3 we dis-
cuss the implications of our findings for different
goals of explainable NLP.

6.1 Properties

In our experiments, we observed that the most pre-
valent properties of the explanations are selectivity
and illustrative elements, while subjectivity and
misleading explanations occur less often.

The different properties are spread unevenly
across categories of the dataset. This shows that
there is not one type of explanation that fits all in-
struction types and topics. In particular, for math
and code questions, it is often possible to provide
a complete reasoning path with logical inferences,
which allows these explanations to be complete
(Tan, 2022). Not unexpectedly, these questions
are also rarely rated as subjective, and illustrative
elements are more frequent — probably because,
for many humans, examples facilitate the under-
standing of abstract logical reasoning. Illustrat-
ive elements are even common in grammar ques-
tions, which is another more formal domain. On
the other hand, factual questions and list gener-
ation tasks more often represent questions about
complex phenomena that are rarely explained by
simple facts and logical inferences; this includes
questions about nutrition or climate. selectivity is
therefore particularly prevalent here.

Subjectivity is a special case as bias is explicitly
discouraged in current commercial LLMs (Askell
et al., 2021; Ouyang et al., 2022) and therefore
likely to have been punished during the alignment
phase of GPT-4 training. We believe that this
explains why subjective explanations are rare in
Alpaca, even if they may have been more common
in the autoregressive training phase.

6.2 Limitations of our Method

Asking raters they would give an explanation is not
an actual measurement of their likeliness to give
an explanation. A more natural setup would be to
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ask the same questions to humans and annotate the
answers for explanations.

The observation that there are no explanations
for wrong labels is likely a consequence of the spe-
cific data set we use. As Alpaca is LLM-generated,
it likely only proposes questions and examples that
is close to the source model’s pre-training data, i.e.
the instructions are high-probability and are there-
fore likely to be answered correctly (McCoy et al.,
2023). To test this hypothesis, if only anecdotally,
we follow McCoy et al. (2023) and construct a
math problem with less common numbers:

Question: What is the result of 1/7 + 1/17 + 0.54?
Answer: 0.8117
Question: Can you explain?

Answer: The result of 1/7 + 1/17 + 0.54 is 0.8117.
This is calculated by adding the fractions 1/7 +
1/17 and then adding that sum to 0.54. The sum of
the fractions is 0.7117, and when this is added to
0.54 the result is 0.8117.

The result is wrong, but when we ask for an ex-
planation, we receive a misleading explanation for
the wrong prediction. This example indicates that a
more challenging, not LLM-generated dataset may
in fact trigger more explanations for wrong labels.

6.3 Implications for Different Goals

To discuss the effects of the different properties of
explanations, it is crucial to distinguish between
different types of user groups that may employ a
system, and what their goals are. Adadi and Ber-
rada (2018) identify four reasons to seek explana-
tions: to justify decisions, to (enhance) control, to
improve models, and to discover new knowledge.
Mittelstadt et al. (2019) name actual interpretabil-
ity (faithfulness), trustworthiness, accountability,
accessibility, comprehensibility, and usefulness as
common goals. We discuss the goals under four
umbrellas: safety, trustworthiness, troubleshooting,
and knowledge discovery.

6.3.1 Safety

We use the term safety for the possibility of deploy-
ing the model with a human in the loop without
risk of harm in a controllable and accountable way.
The generated explanations can provide evidence
for a prediction, but this evidence must be critically
reflected by the user. If the user is competent, their
decisions could be improved by this additional in-
formation, as explanations can give users a chance
to discover general inconsistencies between the



user’s and the model’s beliefs (Keil et al., 2004).
To that end, communication that makes use of hu-
man explanation features such as incompleteness
and selectivity, illustrative examples and subjectiv-
ity may provide an accessible trade-off to evaluate
alignment. Incomplete explanations can be unsafe
if harmful (e.g. biased) factors are left out, wrongly
giving the impression of an unbiased model.

If the user, however, is a layperson in the applic-
ation domain or inattentive, there is the danger that
a rhetorically convincing explanation for a failed
prediction deceives them and leads them to wrong
and potentially harmful decisions. While we did
not observe a large number of such explanations in
our study, there is, as discussed in §6.2, the risk that
this was the result of the specific creation process
of our dataset, and may differ for instructions that
are less familiar to the model.

6.3.2 Trustworthiness

The largest consensus on where free-text explan-
ations can have a positive impact is that they
can improve human-model interaction by increas-
ing the users’ trust in the model. Trust, often a
vague concept (Jacovi and Goldberg, 2021), is here
defined as the user’s confidence that the model
works correctly, be it justified or not. Confidently
explaining wrong or ambiguous labels or obviously
subjective arguments can harm the trust of users
who are not familiar with how the system works
and generates explanations. Other than that, hu-
man-like properties in the explanations are aligned
with the user’s expectations (de Graaf and Malle,
2017), and therefore likely to increase trust.

6.3.3 Troubleshooting

By troubleshooting, we mean the developer’s pos-
sibility to debug and improve an LLM with the help
of explanations. As Lertvittayakumjorn and Toni
(2021) note, explanations can help debug a system,
especially where identifiable properties of the train-
ing data lead to the bug. For this goal, the unclear
relation between prediction and explanation is par-
ticularly problematic, therefore properties such as
illustrative elements may be less desired. selectiv-
ity and subjectivity can also be limiting factors,
albeit inevitable in many situations. Even incom-
plete and subjective explanations can however be
useful if the developer observes a consistency in
the explanations including or lacking the desired
reasoning process. Explaining wrong labels may
be a useful feature, too, as it can display the falla-
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cies of the model. As a result, the developer may
make targeted modifications to the training data,
such as mitigating unwanted statistical cues.

6.3.4 Knowledge Discovery

Explanations can be used for attempts to discover
new knowledge. This can again happen in several
contexts: a user may want to learn existing know-
ledge (“the user as a student”) or discover novel
scientific knowledge (“the user as a researcher”).
For the former, factual correctness is crucial, as the
learner cannot be expected to be able to judge the
reliability of the prediction and explanation them-
selves, and may be misled by wrong labels or sub-
jective explanations. Selectivity may be misleading
in some cases, but simplification more often makes
new information more accessible to learners. The
situation is different for scientific discovery, as the
explanation seeker is likely an expert in the field
and able to judge whether to accept a new theory.
That the model potentially explains false labels can
be misleading but indirectly also be positive, as it
may correlate with the likelihood of making new
connections.

7 Conclusion

Large language models imitate human explanations
in their training data and adopt some of their typ-
ical properties. In our analysis of GPT-4 outputs
from the Alpaca dataset, selectivity and illustrat-
ing factors were particularly common. Subjectivity
was less common, as it was probably mitigated
in the alignment and filtering process of GPT-4.
Misleading explanations were observed rarely, but
given that the Alpaca dataset is LLM-generated,
it is likely that the observation will not hold for
lower-probability inputs.

We discussed the consequences of the presence
of these properties and emphasized that it is crucial
to consider both the goals and the target groups
of the application. For less competent and careful
users, there is a risk of shaping false confidence
with incomplete, rhetorically convincing but in-
correct or biased explanations. However, not all
properties that appear undesirable are unequivoc-
ally negative: Explanations for false predictions
may help developers spot the fallacies of the model.
Unfaithful reasoning can make explanations more
accessible with simplifications and illustrative ex-
amples. Selectivity is often even necessary for
generating comprehensible explanations.



Limitations

In §6.2, we discussed the key limitations of our
setup and questionnaire. We mentioned that expli-
citly asking the question if the rater would explain
their answer may not reflect if they actually would
explain it in a natural setting. We also discussed
that the LLM-generated Alpaca dataset is likely
to only contain instructions that lead to a correct
answer, and thereby have a low risk of a misleading
explanation. The generation method of the dataset
will also affect the distribution of the other proper-
ties. While we selected the dataset for its comparat-
ively broad coverage, the quantitative findings are
unlikely to generalise to other domains (in partic-
ular to such that are low-resource) and instruction
types.

Other LLMs may also exhibit a different distri-
bution due to their pre-training data and instruc-
tion-tuning data and setup. A major limitation of
this study is the use of outputs from GPT-4, a pro-
prietary model for which there is little confirmed
information available to the public. Using an open-
source model with openly accessible training data
would allow for additional insights for the research
community.

We only consider English-language instructions.
The generated outputs and explanations probably
reflect cultural norms of the English-speaking
world. In addition, our three raters were a rel-
atively homogenous group with respect to their
demographic and educational background. A more
diverse set of raters would be desirable.
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A Full Questionnaire

The following information and instructions were
provided to the annotators in written form.

A.1 Instructions for Annotators

Each annotation sample consists of the following
parts:

o #F¥FXINSTRUCTION: ****%*: The prompt
that was given to the model.

o ¥¥Ex*QUTPUT:*****: The output that the
model produces.

o #¥Fx*QUESTION: *****: The question that
you are supposed to answer about the instruc-
tion and output.

The following seven questions are asked for each
data sample and must be answered with yes or no.
Questions 5-7 only need to be answered if question
1 was answered with yes. If the answer was no,
skip them or click N/A.

1. Does the output contain an explanation for the
prediction? - The model provides a reason(ing

path) why it gave a certain answer.

. Would you give an explanation/justify your
reasoning if you were asked this question by a
friend? - If you were asked this question in a
dialogue with someone, would you be likely
to add a justification to your answer?

. If there is an explanation: Does the explana-
tion refer to commonsense concepts that are
taken as given? - There are parts in the ex-
planation that require world knowledge (facts
about the world that are trivial for humans and
rarely explicitly stated) to comprehend.

. If there is an explanation: Does the explana-
tion list contributing factors? - The explana-
tion lists reasons that contribute to the truth
value of the answer (that may not be complete
though).

. If there is an explanation: Does the explan-
ation include subjective or biased criteria?
- There are reasons stated in the explanation
that are the results of subjective experiences.

. If there is an explanation: Does the explan-
ation include illustrative elements (e.g. ex-
amples)? - There are elements in the explana-
tions that do not refer to concrete reasons but



illustrate the reasoning so that the explanation
becomes easier to understand.

. If there is an explanation: Is the explanation
misleading (e.g. arguing for a label that is
wrong)? - The explanation contains elements
that are wrong or irrelevant and can therefore
mislead the user of the system.

B Examples

In this section, we provide examples for the proper-
ties as observed in the Alpaca dataset. We choose
short examples where possible, and examples with
the highest available agreement between annotators
except for section B.1 where we in addition dis-
cuss one example where annotators disagree. For

the full dataset, we refer to https://github.

com/jekunz/llm-expl-properties..

B.1 Commonsense Concepts

The following example from the annotation illus-
trates the different approaches of the annotators to
the idea of commonsense concepts that are taken as
given. The large disagreement between annotators
in a preliminary study made us remove this concept
from the annotation as discussed in Section 3.

INSTRUCTION: Is the following sentence true
or false? — All atoms of the same element have the
same mass.

OUTPUT: The statement is False. This is because
while all atoms of the same element have the same
number of protons, they can have different numbers
of neutrons. Atoms of the same element with differ-
ent numbers of neutrons are called isotopes, and
they have different masses due to the difference in
the number of neutrons.

Annotators 1 and 3 have annotated this example as
containing commonsense factors, as the explana-
tion relies on the implicit common knowledge that
neutrons have mass. Annotator 2 however did not
think that it requires further explanation as a user
reading the output either knows it, or can infer it
from the text.

On the other hand, the following example is un-
equivocally agreed on by all three annotators to
contain noteworthy commonsense concepts.

INSTRUCTION: Does the following sentence
contain a run-on? — I walked to the park and I
ordered a hotdog.

OUTPUT: No, the sentence is not a run-on. It
contains two independent clauses separated by a
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coordinating conjunction ’and’, which is an accept-
able way of joining two clauses.

The linguistic terminology in this example (inde-
pendent clause and coordinating conjunction, and
their relation to the concept of a run-on) require
further explanation for a broader set of goals: For
users who are not experts of linguistics and who
want to understand the output as well as for users
attempting to understand how robustly the model
will be able to solve similar tasks.

B.2 Selectivity (Q3)

For the following example, all three annotators
agreed that it contains contributing factors.

INSTRUCTION: Identify 3 people who have
made significant contributions to the field of ro-
botics.

OUTPUT: 1. Masahiro Mori: Masahiro Mori is a
Japanese roboticist and researcher, widely known
for his pioneering work in robotics and human-
robot interaction. He is most famous for creat-
ing the concept of the "uncanny valley, "which de-
scribes the discomfort people feel when a robot or
animation looks and moves almost, but not exactly,
like a natural human being.

2. Rodney Brooks: Rodney Brooks is an Australian
roboticist and computer programmer, recognized
for his pioneering work in autonomous robots and
artificial intelligence. He is the co-founder of iRo-
bot Corp., which is the maker of the Roomba va-
cuum cleaning robot. Brooks also served as the
director of the MIT Computer Science and Artifi-
cial Intelligence Laboratory, and is known for his
influential work in behavior-based robotics.

3. Cynthia Breazeal: Cynthia Breazeal is an Amer-
ican roboticist and professor, widely known for
her work in social robotics and human-robot in-
teraction. She is the director of the Personal Ro-
bots Group at the MIT Media Lab, where she cre-
ated the world’s first social robot, Kismet, in 1997.
Breazeal’s work focuses on developing robots that
can communicate and interact with people in a
more human-like way, and she has received numer-
ous awards for her research in this field.

For each person, several contributions and achieve-
ments are listed that justify their appearance in this
list. It is safe to assume that the mentioned re-
searchers have many more achievements than the
ones mentioned, but that a prioritisation has been
made.



B.3 Subjectivity (Q4)

The following example contains subjective ele-
ments in the explanation, as reported by two of
the three annotators.

INSTRUCTION: What are the main advantages
of learning to code?

OUTPUT: There are several advantages to learn-
ing how to code, including:

1. Better job opportunities: There’s a high demand
for programmers and software developers, and the
field offers lucrative and stable job opportunities.
Additionally, even if you don’t pursue a career in
tech, many industries value employees with coding
skills, as technology becomes more integrated into
all aspects of business.

2. Improved problem-solving skills: Learning to
code involves breaking big problems down into
small, manageable parts, developing an eye for
detail and sharpening your logical thinking. These
problem-solving skills can be applied to many other
areas of your professional and personal life.

3. Increased creativity: Coding allows you to bring
your ideas to life, whether you’re building a web-
site, an app, or a game. As you learn to code and
experiment with different programming languages
and tools, you’ll find new ways to express your
creativity.

4. More control over technology: With coding skills,
you can better understand how technology works
and make changes to suit your needs. Whether
you’re automating repetitive tasks, customizing
your website, or fixing bugs in a program, coding
puts you in control.

5. Personal satisfaction: Finally, learning to code
can provide immense personal satisfaction, as you
gain the ability to create something from nothing
and tackle complex challenges. It’s an empowering
and rewarding skill to have.

Overall, learning to code can provide valuable job
opportunities, improved problem-solving and cre-
ativity, greater control over technology, and per-
sonal satisfaction. It’s a valuable skill that can
benefit you in many different ways.

The clearest subjective element is under point 5,
where the explanation states that coding is a per-
sonally empowering and rewarding skill, without
a constraint that this feeling may not apply to all
individuals.

B.4 Illustrative Elements (Q5)

For the following example, all three annotators
agreed that it contains illustrative elements.

INSTRUCTION: What verb do you use with the
word “inevitable” ?

OUTPUT: The verb most commonly used with the
word “inevitable” is “to be,” as in “something
is inevitable.” Other verbs that can be used with
inevitable include “seem”, “appear”, “become”,
and “prove”. For example, “It seems inevitable
that prices will increase” or “It proved inevitable

that the company would go bankrupt.”

The examples illustrate common usage, but without
a causal explanation why the verbs are appropriate
(except that they are common). It can however be
a suitable, practical explanation if the user wants
to understand how to embed “inevitable” in a sen-
tence.

B.5 Misleading Explanations for Incorrect
Labels

The following example contains a wrong answer
and explains it confidently. During the annotation,
the mistake was discovered only by one rater, but
was agreed upon by the other two when it was
indicated.

INSTRUCTION: Create a regular expression to
find all words with three consonants and one vowel.
OUTPUT: The following regular expression pat-
tern can be used to find all words with three con-
sonants and one vowel:

\b["aeiou\s] {3} [aeiou]\b

Explanation:

- \b - Matches the word boundary, which indic-
ates the position between a word and a non-word
character. It ensures to match the whole word.

- ["aeiou\s] Within the square brackets, the "
symbol indicates negation. So, this character set
matches any character that is not a vowel or a
whitespace character .

- {3} - Specifies that the preceding character set
should be matched exactly three times. Therefore,
it matches three consecutive consonants.

- [aeiou] - This character set matches any single
vowel (a, e, i, 0 or u).

- \b - Matches the word boundary at the end of the
word, to ensure the whole word is matched.

This regular expression will match words such
as “milk”, “help”, and “desk” but not words like

“hello”, “world” or “me”.
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The given regular expression matches only words
that consist of three consonants followed by a
vowel. It would match none of the examples given
in the explanation (“milk”, “help”, and “desk”),
therefore it is misleading.
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