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Abstract

Language models are now capable of solv-
ing tasks that require dealing with long se-
quences consisting of hundreds of thousands
of tokens. However, they often fail on tasks
that require repetitive use of simple rules, even
on sequences that are much shorter than those
seen during training. For example, state-of-the-
art LLMs can find common items in two lists
with up to 20 items but fail when lists have 80
items. In this paper, we introduce MLissard, a
multilingual benchmark designed to evaluate
models’ abilities to process and generate texts
of varied lengths and offers a mechanism for
controlling sequence complexity.

Our evaluation of open-source and proprietary
models show a consistent decline in perfor-
mance across all models and languages as the
complexity of the sequence increases. Sur-
prisingly, the use of in-context examples in
languages other than English helps increase
extrapolation performance significantly. The
datasets and code are available at https://
github.com/unicamp-dl/Lissard
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Figure 1: Performance of GPT-4 on the MLissard bench-
mark. See Table 2 for the definition of the bins.
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The efficacy of language models, particularly in
reasoning tasks, is significantly impacted by longer
text lengths than those seen in training (Li et al.,
2023b; Liu et al., 2024; Lake and Baroni, 2018).
This phenomenon, referred to as “Length General-
ization” or “Length Extrapolation” in the literature
(Press et al., 2022; Zhao et al., 2023), is also com-
mon in models based on the Transformer architec-
ture (Liska et al., 2018; Lewkowycz et al., 2022;
Delétang et al., 2023; Zhou et al., 2023b). Notably,
even Large Language Models (LLMs), known for
their strong performance in a wide range of tasks
and domains, are not immune to this problem (Anil
et al., 2022; Chen et al., 2023).

Recent research tried to address this challenge by
modifications to the positional embeddings (Press
et al., 2022; Chi et al., 2022, 2023; Li et al., 2023b;
Ke et al., 2021) or by using prompting strategies
such as scratchpad (Nye et al., 2021) and chain-
of-thought reasoning (Wei et al., 2022). Neverthe-
less, there remains a lack of datasets specifically
designed for the systematic evaluation of the prob-
lem.

While benchmarks such as ZeroSCROLLS (Sha-
ham et al., 2023) and InfiniteBench(Zhang et al.,
2024) were designed to evaluate models in nat-
ural language tasks that involve long sequences,
its effectiveness in monitoring model performance
degradation within the context of length general-
ization may be limited by lack of explicit control
of task complexity with respect to sequence length.
For example, when using natural language texts
there is no guarantee that answering a question
about a longer text is harder than responding to one
about a shorter text. This limitation highlights the
need for benchmarks that can explicitly manipulate
and test the impact of sequence length on model
performance. In benchmarks pertaining to dia-
logues (Li et al., 2023a) and multi-document ques-
tion answering (Liu et al., 2024), techniques like
retrieval-augmented generation (RAG) are preva-
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lent, and therefore explicitly isolating the length
extrapolation issue poses a challenge.

To address these aforementioned problems, we
present MLissard, a multilingual benchmark that
offer support for 6 languages (English, German,
Portuguese, Russian, Spanish and Ukrainian) de-
signed to evaluate the ability of models on tasks that
require the use of repetitive simple rules, whose
difficulty increases with respect to the sequence
length. By incorporating varying degrees of diffi-
culty within the same tasks, MLissard facilitates the
identification of a models’ breaking points. Given
the syntactic nature of the datasets, researchers
have the capability to generate new examples and
increase the task difficulty, thus making it more
challenging for newer and more capable models
to be evaluated effectively. This flexibility also
mitigates the contamination problem — where mod-
els may inadvertently be exposed to test datasets
during their training (Ahuja et al., 2023; Li and
Flanigan, 2024) — since synthetic datasets can be
generated as needed, a advantage over traditional,
manually curated datasets. At the time of this re-
search, this is the first multilingual dataset designed
to evaluate the quality of models in extrapolation
via length.

Our analysis, which includes evaluations on pro-
prietary models such as GPT-4 (OpenAl, 2023),
as well as open-source ones like Llama-3 (Dubey
et al., 2024), reveals a common trend among them.
As illustrated in Figure 1, our findings underscore
that irrespective of their architectures and param-
eter counts, all examined models demonstrate a
performance degradation with increasing length,
controlled by the number of key entities (see their
definition in Table 2), required to solve the tasks.
This indicates a common point of failure in gener-
alization for LLMs, even for sequence lengths that
are considerably shorter in terms of tokens than
those seen during their pretraining or fine-tuning
phases.

Our findings further demonstrated that the ef-
fect of extrapolation is not isolated; variables such
as language and model size significantly influence
the outcomes. For instance, despite English be-
ing a high-resource language, its performance was
only average and was surpassed by other languages
such as German. Moreover, ablation tests revealed
improvements in extrapolation performance when
in-context examples comprised a mixture of lan-
guages. This underscores the influence of language
selection on the extrapolation capabilities of lan-
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guage models.

2 Related Work

The challenge of length extrapolation in the domain
of natural language processing has been a persistent
and long-standing issue. An array of studies has
demonstrated that neural architectures encounter
difficulties when confronted with sequences of
longer than those they encountered during their
training (Lake and Baroni, 2018; Liska et al., 2018;
Keysers et al., 2019; Dubois et al., 2020; Nogueira
et al., 2021; Welleck et al., 2022; Lewkowycz et al.,
2022; Delétang et al., 2023; Zhou et al., 2023b).
Despite efforts to expand the context window in
LLMs, this issue persists, particularly when tack-
ling tasks involving complex reasoning (Anil et al.,
2022).

Recent endeavors have been undertaken to en-
hance the general performance of LLMs by em-
ploying prompt engineering techniques and by de-
veloping novel decoding methods aimed at expand-
ing their capacity to extrapolate effectively over
lengthy sequences of tokens. For instance, Nye
et al. introduced the concept of a "scratchpad" that
enables the model to generate draft responses in
natural language before producing the final output.
To assess the performance of this method, a range
of tasks were employed, including math and coding
tasks. Moreover, studies by Wei et al. and Zhou
et al. demonstrated improvements by configuring
the model to generate explanations for problem-
solving and breaking down tasks into multiple in-
teractive steps. These enhancements were partic-
ularly noticeable in tasks requiring the ability to
extrapolate, such as SCAN (Lake and Baroni, 2018)
(compositional generalization), and mathematical
reasoning. Additionally, Bueno et al. showed
that utilizing markups tokens as position represen-
tations help the model to generalize to longer se-
quences in tasks related to mathematical addition
and compositional generalization. Han et al. de-
vised a decoding method to improve generalization
over extended sequences.

In addition to techniques for customizing
prompts, recent research has explored modifying
the position encoding function of the original trans-
former architecture to enhance its extrapolation ca-
pabilities (Press et al., 2022; Chi et al., 2022, 2023;
Li et al., 2023b; Qin et al., 2023; Chen et al., 2023).
For instance, Kazemnejad et al. conducted an
evaluation of commonly used positional encoding



methods, finding that omitting positional encoding
altogether yielded superior results in downstream
tasks.

The studies cited above illustrate multiple meth-
ods designed to address the challenge of extrap-
olation. Nevertheless, there is a notable gap in
research concerning the development of diverse
and standardized datasets specifically for assessing
the generation and synthesis of extended text se-
quences by neural models. This gap is particularly
notable given that many of the traditional datasets
may already have been employed in the training of
large language models.

3 Datasets Description

Our benchmark incorporates a combination of ex-
isting tasks, such as those from BIG-bench (bench
authors, 2023), as well as newly developed ones.
The criteria for selecting tasks were based on their
ease of solution, the ability to expand new exam-
ples of varying lengths via scripting, and their effec-
tiveness in exercising reasoning and memorization.

We intentionally excluded classical datasets (e.g.,
SCAN) from the analysis since their test sets are
publicly available and many solutions have been ex-
tensively detailed in scientific literature, potentially
making them familiar to large language models
(LLMs).

In addition to English (EN), the language set in-
cludes German (DE), Spanish (ES), Portuguese
(PT), Russian (RU), and Ukrainian (UA). We
achieved this expansion by integrating automatic
translation systems and using Python scripts to gen-
erate synthetic data.

The following sections describe the idea of key
entities, tasks, and how evaluation was performed.

3.1 Key entities

The notion of key entities functions as an extrapo-
lation factor within the context of a target task. For
instance, in a task that seeks to identify common
items between two lists, this extrapolation factor is
defined by the number of items the model requires
to analyze. Utilizing this factor allows for the aug-
mentation of task complexity without modifying
its properties. As a result, within specified ranges
(bins), we can identify the model’s breakpoints.
The choice of bins for each task was designed
to reflect different difficulty levels: short, interme-
diate, long, and super long, for example, Bin 1
consists of sequences of shorter length, while Bin
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4 comprises sequences of longer length. Table 2
describes the key entities and the respective lengths
in each bin. The values defining the intervals of
each bin vary for each task and were empirically
determined, inspired by BIG-bench tasks.

3.2 Tasks

In total, four tasks were developed, and Table 1 pro-
vides a summary of each one with input and output
examples. Due to the high costs of paid APIs, we
restricted our tests to 300 examples per task and
language. To ensure balanced evaluations across
different length partitions, we randomly selected
75 examples for each bin.

3.2.1 Object Counting

The main goal of this task is to assess the pro-
ficiency in object counting within sequences, as
shown in Table 1. The input to the model is a se-
quence comprising a list of objects paired with their
respective quantities and the expected output is a
string with the total count of objects. Diverging
from the original BIG-bench task that exclusively
encompasses the enumeration of objects from pre-
determined categories like fruits, vegetables, or
musical instruments, our method comprises object
counting across different categories.

Automatic translation systems were used to gen-
erate the multilingual set, in this case, Google
Translate. After this phase, a translation subset was
selected for human analysis of the general quality
of the translation.

3.2.2 List Intersection

The objective of this task is to find common items
in two lists. Items within the lists are composed
of words from a designated target language, with
both the words and their frequencies sourced from
the FrequencyWords' repository. For each specific
language, stop words and special characters were
eliminated. Following this preprocessing phase, a
random sampling of words was conducted.

The lists have equal sizes, but the number of
overlapping items varies. The target output is the
words in common, sorted alphabetically. If there
are no items in common, "None" must be returned.

3.2.3 Last Letter Concatenation

The Last Letter Concatenation task, as formulated
in the Chain-of-Thought work (Wei et al., 2022),
involves concatenating the last letter of each word

"https://github.com/hermitdave/FrequencyWords/
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Task Input Example Output

Last Letter Concate- Abil Gaby ly

nation

Repeat Copy Logic  Repeat 2 times school school school
Object Counting I have a chair, and an apple. 2

List Intersection A: abil,matt / B: matt, gaby matt

Table 1: Task Summary in the MLissard Benchmark.

Task Key Bin Bin Bin Bin
Entity 1 2 3 4
LLC Names 1-8 8-15 15- 22-
22 30
RCL Total -9 9-17 17-  25-
Repeti- 25 33
tions
OC  Objects 1-7 7-12 12- 17-
17 23
LI Items: 1-46 46-  91- 136-
lists A 91 136 181
and B

Table 2: Key task entities: Last Letter Concatenation
(LLC), Repeat Copy Logic (RCL), Object Counting
(OC), and List Intersection (LI) and their respective
ranges in each bin in Figure 1.

within an input sequence comprised of random
names. Table 1 provides an illustrative instance
of the dataset, where the input sequence comprises
randomly selected names obtained through the tar-

get language Name Census?.

In constructing our dataset, we applied a compa-
rable methodology; however, we sampled the most
common names from each target language and ex-
panded the sample length to encompass sequences
with an increase of up to thirty names.

2Portuguese(PT) - https://censo2010.ibge.gov.br/
nomes/#/ranking

Spanish  (ES) - https://www.epdata.es/datos/
nombres-apellidos-mas-frecuentes-espana-ine/373
English (EN) - https://www.ssa.gov/cgi-bin/
popularnames.cgi

German (DE) - http://www. firstnamesgermany.com/

Ukrainian (UA) - https://census.name/
ukrainian-name-database/
Russsian (RU) - https://census.name/

russian-name-database/
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\

/

Instruction \
You are a assistant whose
goal is <task description>

Examples

~

Input: Repeat 3 times school

Output: school school school

(a)

Instruction
You are a assistant whose
goal is <task description>
Examples
PT
Input: Repita escola 3 vezes
Output: escola escola escola
[ DE

Input: Wiederholen Sie 3 Mal die
schule

Output: schule schule schule

(b)

Figure 2: Template for evaluation. Being (a) Instruction
and examples of tasks in the target language; (b) Instruc-
tion in the target language and multilingual examples.

3.2.4 Repeat Copy Logic

The task proposed by the BIG-bench evaluates lan-
guage models’ ability to comprehend and execute
instructions involving repetitions, text-to-copy, ba-
sic logic, and conditionals, focusing on their ex-
trapolation capabilities.

Our methodology for creating the dataset in-
cludes: i) Collecting responses to all input se-
quences from the BIG-bench repository?; ii) Fil-
tering responses to retain only those correctly an-

3https ://github.com/google/BIG-bench/tree/
main/bigbench/benchmark_tasks/repeat_copy_logic
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Figure 3: GPT-4 performance in the MLissard.

swered by GPT-4, which correctly answered 17 out
of 32 original questions. We adopted this method
to scale only the repetition factor; iii) Translating
instructions using Google Translate and review the
subset for accuracy; iv) Generate extrapolations on
selected instructions, varying the repetition factor
from 1 to 33 (see Table 1).

We randomly selected 15 of the 17 correctly
answered questions for this phase.

4 Baseline Methods

The evaluation of each task involved analyzing
responses from GPT-4 (gpt4-0613) and Llama-3
(Llama-3.1-405B-Instruct and Llama-3-instruction-
70B) using greedy decoding. We observed no rep-
etition issues. Each task was preceded by a pre-
defined instruction (description of the task) with
in-context examples: four for “Object Counting,”
“Find Intersection,” and “Last Letter Concat,” and
one for “Repeat Copy Logic” because inputs al-
ready provided sufficient information to perform
the task. Both the instructions and examples were
in the target language of the evaluation. For in-
stance, English tasks used English instructions and
examples (see Figure 2 (a)). For the in-context ex-
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amples used during model evaluation, we selected
samples contained in the first bin, as these contain
the smallest lengths.

We utilized the exact match as the primary met-
ric. This methodology is further modified in sec-
tion 5.2, where we discuss the impact of cross-
language inputs on model performance.

5 Results

Figure 3 presents the results obtained via GPT-4
in the target tasks and languages. Overall, there is
a gradual decline in the performance of language
models across tasks as complexity increases, as
measured by the number of key entities in the input
sequence. For instance, in the “Object Counting”
task, when presented with inputs containing 1 to
7 objects, the model achieve approximately 100%
accuracy. However, their accuracy drops below
50% when confronted with sequences with 12 to
17 objects. This behavior is reflected in the target
languages as well, all of which present a loss of
more than 50% when dealing with more complex
input sequences.

We also observed considerable variability in per-
formance between languages depending on the spe-
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Figure 4: Comparison of Llama-3.1-405B vs. GPT-4 performance in the MLissard Benchmark

cific task. For instance, differences ranging from
2.4 to 42 points are observed in the intermediate
bins for tasks such as “Last Letter Concatenation”
and “Repeat Copy Logic”. These variations are
intriguing as there doesn’t appear to be a general
language preference. For example, in the “Last Let-
ter Concatenation” task, German, Portuguese, and
Spanish outperform Russian by a margin of 42.6
points in the 15-22 bin. Conversely, in the “Repeat
Copy Logic” task, Russian outperforms Portuguese
by 42.5 points.

Contrary to the general trend observed in studies
of multilingual models, English did not exhibit ex-
ceptional performance when compared to other lan-
guages. Except for the “List Intersection” task, En-
glish consistently remained at an average or lower
accuracy level across bins.

Generalization performance also varies between
tasks; as demonstrated in Table 3, GPT-4 has
greater difficulty executing the “List Intersection”
and “Repeat Copy Logic” tasks. In the “List In-
tersection” task, the model achieves less than 10%
accuracy in bins 3 and 4. In the “Repeat Copy
Logic” task, accuracy drops to below 25% in the
same bins. Both tasks require extensive memo-
rization and state tracking. We hypothesize that
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these challenges, along with the increased sentence
length, have influenced the observed performance
outcomes.

Regarding the performance of open-source mod-
els in the MLissard benchmark, Figure 4 illustrates
that both models performed similarly in bin 1, with
accuracy points ranging between 70 and 100. How-
ever, as task complexity increased from bin 2 on-
wards, differences in performance stood out. Ex-
cept for the "Repeat Copy Logic" task, GPT-4 out-
performed Llama-3.1-405B by 5 to 60 accuracy
points (see Table 3).

On the other hand, in the “Repeat Copy Logic”
task, there is a reverse comparison, where Llama-
3.1-405B outperforms GPT-4 in all bins, with the
difference ranging from 9 points to 16 points of
accuracy.

In relation to language preference behavior, both
the Llama-3.1-405B and GPT-4 models exhibit sim-
ilar task-dependent variations. Llama-3.1-405B
demonstrates more consistent performance across
Portuguese, German, and English.

5.1 Impact of model size

The Llama-3.1-405B model achieved state-of-the-
art results in general NLP task benchmarks com-



Task ‘ Bin 1 Bin 2 Bin 3 Bin 4

| Llama  GPT-4 | Llama  GPT+4 Llama  GPT-4 Llama GPT-4
OoC | 100 100 58 63 0.8 38 0.7 24.6
LI |86 76 26 29 0.6 7.7 0.1 4
LLC | 95 100 48.6 85.8 0.4 60 0 16
RCL | 82 733 57 413 33 24 15 0.4
AVG | 90.7 87 47.4 54.7 | 8.7 32.4 | 39 11.7

Table 3: Average accuracy of all languages per bin on tasks Object Counting (OC), List Intersection (LI), Last Letter
Concatenation (LLC), and Repeat Copy Logic (RCL). Comparative result between the Llama-3.1-405B and GPT-4
models, highlighting in bold the best system performance in each bin.
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Figure 5: Average accuracy considering all bins. Since (1) Baseline - Both the instruction and the examples derive
from the same target language; (2) instruction in the language that performed better or worse and a examples in the
target language; (3) Instruction in target language and multilingual examples.

pared to the Llama-3-70B model. We investigated
whether this performance trend is also evident in
the MLissard benchmarks, especially in relation to
the complexity indicated by the bins.

Table 4 compares the average performance of
each bin (for all MLissard tasks) using the Llama-
3.1-405B and Llama-3-70B models. As expected,
Llama-3.1-405B significantly outperforms Llama-
3-70B across all languages and complexity bins.
The largest differences between the models occur
in bins 1 and 2, with performance gaps ranging
from 16 to 43 points. In contrast, for bins 3 and
4, which involve more complex tasks, the perfor-
mance improvement is less pronounced, with vari-
ations ranging from 0.3 to 11 points. This suggests
that Llama-3.1-405B, like the 70B version, also
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struggles with long sequences.

5.2 Can cross language improve extrapolation
performance?

We aim to examine the impact on extrapolation
performance by focusing on two components: 1)
providing instructions in a different language than
the target language, and 2) using mixed-language
few-shot examples (see Figure 2 - (b)). For in-
context examples, we used Portuguese, German,
Ukrainian, and English. For the "Repeat Copy
Logic" task, we provided two contextualized exam-
ples (English and Ukrainian), while for the other
tasks, we provided four examples.

We conducted ablation tests on all tasks in the
MLissard dataset using the GPT-4 model. For com-



Lang ‘ Bin 1 Bin 2 Bin 3 Bin 4
‘ 70B 405B 70B 405B 70B 405B 70B 405B

EN 70.6 90 18.6 48 0.1 0.7 0 0.1
PT 79.3 96.6 24 63.3 0.1 11.3 0 6

ES 74 92.6 16.6 60 0.1 5.7 0 6.5
DE 74.6 91.3 16.8 51.3 0.5 8.3 0 0.3
RU 60.6 88 12.2 38 0 0.8 0 0.6
UA 55.3 86.6 10.7 33.9 0.1 0.5 0 0.4

Table 4: Average accuracy across all MLissard tasks was compared between the Llama-3-70B and Llama-3.1-405B

models.

parative purposes, we focused on the languages
that achieved the highest and lowest performance
in each task. We then compared these results with
the baseline (both instructions and examples in the
same language).

Figure 5 presents the experimental results for
each task. As shown in the results, when we gave
prompts in a language different from the test set,
accuracy declined by an average of 2.3 percentage
points. However, when we kept instructions in the
test target language but included paraphrased exam-
ples contextualized in multiple languages, perfor-
mance improved by an average of 6.25 percentage
points. This improvement ranged from 2 points in
the "List Intersection" task to 17 points in the "Last
Letter Concatenation" task and remained consistent
across all evaluated languages. These findings indi-
cate that contextual examples in multiple languages
can improve the quality of extrapolation.

6 Conclusion

We presented a multilingual benchmark to eval-
uate the ability of language models to deal with
long texts across languages. Our approach distin-
guishes itself from existing benchmarks through
the introduction of a control mechanism, which we
refer to as "key entities." This mechanism enables
us to systematically increase task complexity in
tandem with sequence length. Furthermore, the
ability to solve these tasks is predicated on the re-
peated application of simple rules, providing more
control and enabling a detailed analysis of model
performance in relation to the frequency of rule ap-
plication. This contrasts with benchmarks that rely
on lengthy natural language texts, where the rela-
tionship between text length and task difficulty may
become obscured. Despite the apparent simplicity
of these tasks, they reveal significant limitations
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in state-of-the-art LLLMs concerning the process-
ing and generation of text as lengths increase. Our
findings indicate that language and model size sig-
nificantly affect extrapolation results. Moreover, in-
cluding in-context examples in multiple languages
improves MLissard’s generalization performance.

7 Limitations

Our evaluations were conducted on a set of six lan-
guages, therefore, the findings of this work may
not necessarily extend to other languages, partic-
ularly low-resource ones. Additionally, we solely
employed a standard prompt style for our evalua-
tions, and the performance with more sophisticated
techniques, such as chain-of-thought (CoT) prompt-
ing, remains to be investigated. Finally, given the
limitation of our study to two models (GPT-4 and
Llama-3), the results may not generalize to other
LLMs.
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