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Abstract

Machine translation (MT) systems often trans-
late terms with ambiguous gender (e.g., En-
glish term “the nurse”) into the gendered form
that is most prevalent in the systems’ training
data (e.g., “enfermera”, the Spanish term for
a female nurse). This often reflects and per-
petuates harmful stereotypes present in society.
With MT user interfaces in mind that allow
for resolving gender ambiguity in a friction-
less manner, we study the problem of generat-
ing all grammatically correct gendered trans-
lation alternatives. We open source train and
test datasets for five language pairs and estab-
lish benchmarks for this task. Our key technical
contribution is a novel semi-supervised solution
for generating alternatives that integrates seam-
lessly with standard MT models and maintains
high performance without requiring additional
components or increasing inference overhead.

1 Introduction and Related Work

Gender1 biases present in train data are known to
bleed into natural language processing (NLP) sys-
tems, resulting in dissemination and potential am-
plification of those biases (Sun et al., 2019). Such
biases are often also the root cause of errors. A ma-
chine translation (MT) system might, for example,
translate doctor to the Spanish term médico (mascu-
line) instead of médica (feminine), given the input
“The doctor asked the nurse to help her in the pro-
cedure” (Stanovsky et al., 2019). To avoid prescrib-
ing wrong gender assignment, MT systems need
to disambiguate gender through context. When
the correct gender cannot be determined through
context, providing multiple translation alternatives
that cover all valid gender choices is a reasonable
approach.

∗Work done during an internship at Apple.
†Equal senior contribution.

1“gender” in this work refers to binary grammatical gender,
and not social gender (male, female, nonbinary). Please refer
to §Limitations for a detailed discussion.

Numerous prior works have focused on produc-
ing correctly gendered translations given contextual
gender “hints”, such as “to help her” in the example
above (Stanovsky et al., 2019; Saunders and Byrne,
2020; Stafanovičs et al., 2020; Costa-jussà et al.,
2022; Saunders et al., 2022; Renduchintala et al.,
2021; Bentivogli et al., 2020; Currey et al., 2022).
In contrast, the problem of generating all valid and
grammatically correct gendered translations has
seen far less attention (Kuczmarski and Johnson,
2018; Johnson, 2020; Sánchez et al., 2023).

Consider the example: “The secretary was an-
gry with the boss.” The gender of both secretary
and boss remain ambiguous in the absence of ad-
ditional context: both entities can take either gen-
der. However, and to the best of our knowledge,
all existing approaches (Kuczmarski and Johnson,
2018; Johnson, 2020; Sánchez et al., 2023; Rarrick
et al., 2023) for producing different gendered trans-
lations operate on “sentence-level”, instead of on
“entity-level”: they only allow two sentence-level
alternatives to surface, in which both secretary and
boss are either masculine or feminine:
• secretary, boss: El secretario estaba enojado con el jefe.2

• secretary, boss: La secretaria estaba enojada con la jefa.

In this work, we introduce a novel approach that
operates on entity-level, i.e., it generates four al-
ternatives corresponding to all grammatically valid
combinations of gender choices for both entities:

• secretary, boss: El secretario estaba enojado con el jefe.
• secretary, boss: El secretario estaba enojado con la jefa.
• secretary, boss: La secretaria estaba enojada con el jefe.
• secretary, boss: La secretaria estaba enojada con la jefa.

When integrated with a proper user interface,
our approach provides users with the freedom to
choose gender for each entity. We posit that any
such system should meet the following practical
quality criteria, making the problem challenging:

2Gendered translations in Spanish. Brown and teal repre-
sent masculine and feminine genders respectively.
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• Alternatives should not be produced when the
gender can be inferred from the sentence context,
e.g., “She is a boss” should only produce the
feminine translation “Ella es una jefa”.

• All alternatives should maintain grammatical
gender agreement. Phrases like “El secretaria”
or “secretaria estaba enojado” should not be pro-
duced as they break gender agreement by using
different gendered forms for the same entity.

• Alternatives should differ only in gender inflec-
tions and not general wording, formality, etc., as
any such differences can potentially encode bias.

This paper presents several key contributions
towards studying the task of generating entity-level
alternatives, meeting the above quality criteria:

• Producing entity-level alternatives for n gender-
ambiguous entities requires generating 2n dif-
ferent translations. We propose an efficient ap-
proach that reduces the problem to generating
a single structured translation where “gender-
sensitive phrases” are grouped together and
aligned to corresponding ambiguous entities.

• We open source train datasets 3 for this task for
5 language pairs and establish supervised base-
lines. We extend an existing test set for this task:
GATE (Rarrick et al., 2023) from 3 to 6 language
pairs and open source the extended set.

• We develop a semi-supervised approach that
leverages pre-trained MT models or large lan-
guage models (LLMs) for data augmentation.
Models trained on augmented data outperform
the supervised baselines and can also generalize
to language pairs not covered in the train sets.

2 Entity-Level Gender Alternatives

Our key insight for efficiently generating entity-
level gender alternatives is to reduce the problem
to generating a single translation with embedded
gender structures and their gender alignments.

Consider our previous example: “The secretary
was angry with the boss.” We want to generate the
following entity-level alternatives:
• secretary, boss: El secretario estaba enojado con el jefe.
• secretary, boss: El secretario estaba enojado con la jefa.
• secretary, boss: La secretaria estaba enojada con el jefe.
• secretary, boss: La secretaria estaba enojada con la jefa.

3https://github.com/apple/
ml-gendered-translation

Since we constraint the alternatives to only dif-
fer in gender inflections, we can instead produce
a single translation with gender-sensitive phrases
grouped together as gender structures, shown in

()
:

(
El secretario
La secretaria

)
estaba

( enojado
enojada

)
con

( el jefe
la jefa

)

All alternatives can be derived from this single
translation by choosing either the masculine or fem-
inine form in each gender structure. However, do-
ing this naively can give us invalid alternatives that
break gender agreement, for example:

El secretario estaba enojada con el jefe

(
El secretario
La secretaria

)
and

( enojado
enojada

)
correspond to the same

entity secretary and cannot have different gender
choices. By having gender alignments between
each gender structure in the translation and its cor-
responding gender-ambiguous entity in the source,
we can deduce which gender structures are linked
together and need to be consistent with each other.

Let x = x1 . . . xn be the source sentence con-
taining n tokens and let Ga ⊆ {1 . . . n} represent
the set of indices of gender-ambiguous entities in x.
We aim to produce a translation yS :

yS = y1 . . .
(
M1
F1

)
. . .

(Mk
Fk

)
. . . ym, (1)

containing a set of gender structures S =
{S1 . . . Sk} where Si :=

(
Mi
Fi

)
is the ith gender

structure. Translation yS is a sequence of two types
of elements: {y1 . . . ym} = yS \ S are regular to-
kens that do not change based on the gender of any
entity in Ga and M∗/F∗ are the masculine and fem-
inine inflected forms of the phrases that do change
based on the gender of an entity in Ga. Gender
alignments can then be formally defined as a one-
to-many mapping from Ga to S. An ambiguous
entity is aligned to a gender structure

(
M
F

)
iff the

correct inflection form (M or F) in the translation
depends on the gender of the entity. In our example,
secretary is aligned to

(
El secretario
La secretaria

)
,
( enojado

enojada

)
, and

boss is aligned to
( el jefe

la jefa

)
. Given the translation

with gender structures yS and gender alignments,
alternatives corresponding to any combination of
gender assignments of ambiguous entities can be
easily derived as follows: for all ambiguous enti-
ties with male gender assignment, choose the male
form for their aligned gender structures. Similarly,
for all entities with female assignments, choose the
female form for their aligned gender structures.
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Source annotations Target annotations Alignment annotations
The lawyer fought to keep his child,
who is a gangster, safe from the judge.
lawyer→Masculine
child→ Gender-Ambiguous
judge→ Gender-Ambiguous

El abogado luchó para mantener a su
(hijo
hija

)
,

que es
( un
una

)
gángster, a salvo

( del juez
de la jueza

)
.

child→
(hijo
hija

)
,
( un
una

)

judge→
( del juez
de la jueza

)

Table 1: English–Spanish annotation example. lawyer, child and judge are the annotated entities. child and gangster
refer to the same entity and child is selected as the head-word. lawyer is marked as masculine because of the
co-referring pronoun his and is translated to the masculine form: El abogado. child and judge are gender-ambiguous
leading to gender structures in the translation (middle column) and gender alignments (rightmost column).

3 Datasets

To build and evaluate systems producing alterna-
tives, we prepare train and test sets containing gen-
der structures and gender alignment annotations.

3.1 Test data

We evaluate our models on a combination of two
existing test sets that test complementary aspects:

• GATE (Rarrick et al., 2023) has source sentences
with at least 1 and at most 3 gender-ambiguous
entities with their entity-level alternatives satis-
fying our quality criteria. It evaluates the system
on cases where alternatives should be produced.

• MT-GenEval (Currey et al., 2022) contains sen-
tences with entities whose gender can be inferred
from the sentence context and are not ambiguous.
This set is helpful for evaluating cases where al-
ternatives should not be produced.

These two test sets have different annotation for-
mats and guidelines. In order to unify them, we ask
annotators to review and post-edit existing annota-
tions using the following guidelines:

1. Marking gendered words: First, all words in
the source referring to entities (people/animals)
that can have masculine or feminine grammatical
genders are marked.

2. Gender ambiguity annotation: Next, if multi-
ple words refer to the same entity, a head word
is selected among them. We guided the annota-
tors to pick the one that acts the most like the
subject as the head word. For each head word, if
its gender can be inferred from the grammatical
context, such as co-referring male/female pro-
nouns, it is marked as such. If no gender can be
inferred, the gender is marked as ambiguous. We
only rely on grammatical sentence context and
not on external knowledge/common gender as-
sociations of names/proper nouns. Appendix B
discusses how our annotation guidelines handle
the problem of masculine generics (Piergentili
et al., 2023a), where masculine nouns/pronouns

can be used to refer to ambiguous or collective
entities.

3. Gender aware translation: Finally, we ask the
annotators to translate the source sentence. En-
tities without any ambiguity must be translated
into the correct gender. If the translation depends
on the gender of the ambiguous entities in the
source, gender structures and gender alignments
are annotated.

Table 1 explains the process with the help of an
example annotation. We prepare this unified test set
for 6 language pairs: English to German, French,
Spanish, Portuguese, Russian, and Italian.4

3.2 Train data

We open source train data containing samples in the
same format as the test set to ensure reproducibility
and to encourage development of supervised/semi-
supervised systems for producing alternatives. In
contrast to the test sets, which are created via hu-
man annotation, we rely on an automatic data aug-
mentation approach (see Appendix C for details) to
create train data at scale. The source sentences for
the train sets are sampled from Europarl (Koehn,
2005), WikiTitles (Tiedemann, 2012), and Wiki-
Matrix (Schwenk et al., 2021) corpora. The train
data are partitioned into two different sets:

• G-Tag contains source sentences with head
words for all entities with their gender ambiguity
label: Masc., Fem. or Ambiguous.

• G-Trans contains gender-ambiguous entities in
the source sentences, gender structures in the
translations and gender alignments.

To the best of our knowledge, this is the first
large-scale corpus that contains gender ambiguities
and how they effect gendered forms in the trans-
lation. We release these sets for 5 language pairs:
English to German, French, Spanish, Portuguese,
and Russian. G-Tag contains ∼ 12k sentences and

4We extend the original GATE corpus, which only includes
English to Spanish, French, and Italian.
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G-Trans contains ∼ 50k sentence pairs per lan-
guage pair. Detailed statistics of the train and test
sets can be found in Appendix A.

4 Training MT Models to Generate
Gender Structures and Alignments

We first present how to train MT models that pro-
duce gender structures and alignments, assuming
parallel data enriched with gender structures and
alignments (for example, G-Trans) is available. We
then describe a novel data augmentation pipeline
that can enrich any regular parallel corpora with
gender structures and alignments.

Given a source sentence x = {x1 . . . xn}, trans-
lation yS containing gender structures, and gender
alignments A, we want to train the MT model to
generate yS , A|x. Let’s assume that yS contains k
gender structures and A = {a1 . . . ak} where ai
represents the source token aligned to the ith gen-
der structure. We serialize each gender structure in
yS into a sequence of tokens as follows:

(
M
F

)
→ BEG M MID F END

where BEG, MID, and END are special tokens. The
model is then trained to produce gender structures
in the form of this sequence.

Garg et al. (2019) introduced a technique to train
MT models to jointly generate translations and
word-alignments. We use their approach to learn
generation of gender alignments. Let m1 . . .mk de-
note the positions of the MID tokens of the gender
structures. A specific cross-attention head is cho-
sen and supervised to learn gender alignments. Let
n and m denote the lengths of the source and the
serialized target respectively and let Pm×n denote
the attention probability distribution computed by
the selected head. We train the model with regular
cross entropy and an additional alignment loss:

L = Lcross-ent −
λ

k

k∑

i=1

log(Pmi,ai)

where λ is a scaling factor. This added loss term en-
courages the attention head to place more probabil-
ity mass on the aligned source token when generat-
ing the MID token belonging to that token’s gender
structure. During inference, the gender alignment
for the ith gender structure can be computed as:

ai = argmax
s∈{x1...xn}

Pmi,s

This model can generate gender structures and
alignments without any additional inference over-
head. Then, using the procedure described in sec-
tion 2, all entity-level alternatives can be easily
derived from the model outputs.

5 Data Augmentation Pipeline

G-Trans dataset provides supervised data to train
MT models in the above manner. However, this
dataset is small (50k examples per language pair)
and has a restrictive domain, limiting the quality
of the trained models. We propose a data augmen-
tation pipeline that can take any regular parallel
corpora (containing high quality but potentially bi-
ased translations) and augment the translations with
gender structures and alignments whenever there
are ambiguities in the source.

Algorithm 1 Data Augmentation Overview
Input: x = {x1 . . . xn} (source sentence) and yB =
{y1 . . . ym} (reference translation without gender struc-
tures, potentially biased)

▷ Step 1: Detect set of gender-ambiguous entities Ga in
the source sentence: Ga ⊆ {1 . . . n}
Ga ← GenderAmbiguousEntities(x)
if Ga = ϕ then

Output: x, yB , ϕ
end if

▷ Step 2: Transform yB into an all-masculine yM and
all-feminine yF translations
yM ← argmax p(y|x, yB , gender(xi) = male ∀i ∈ Ga)
yF ← argmax p(y|x, yB , gender(xi) = female ∀i ∈ Ga)

▷ Step 3: Combine yM and yF into a single translation yS
containing gender structures
Let yM = y1 . . .M1 . . . yj . . .Mk . . . ym and
Let yF = y1 . . . F1 . . . yj . . . Fk . . . ym
where y∗ are the common tokens between yM and yF and
{(Mi, Fi) | i ∈ 1 . . . k} be the k differing phrases.
yS ← group(yM , yF ) = y1 . . .

(
M1
F1

)
. . .

(Mk
Fk

)
. . . ym

▷ Step 4: Align each gender structure Si :=
(
Mi
Fi

)
to its

corresponding ambiguous entity in Ga

A← ComputeGenderAlignments(x, yS)
Output: x, ys, A

Algorithm 1 gives an overview of the main com-
ponents of the pipeline, which we describe in detail
in the following subsections. It consists of first
detecting gender-ambiguous entities in the source
sentence (§5.1), followed by transforming the ref-
erence translation into all-masculine/all-feminine
translations (§5.2, §5.3), condensing those into sin-
gle translation with gender structures, and finally
aligning the gender structures (§5.4).

240



Source Target

G-Trans dataset
The doctor was angry with the patient
doctor→ Gender-Ambiguous
patient→ Gender-Ambiguous

( El doctor
La doctora

)
estaba

(enojado
enojada

)
con

(el
la

)
paciente

Fine-tuning bi-text
The doctor<M> was angry with the patient<M>
The doctor<F> was angry with the patient<F>
The doctor<M> was angry with the patient<F>
The doctor<F> was angry with the patient<M>

El doctor estaba enojado con el paciente
La doctora estaba enojada con la paciente
El doctor estaba enojado con la paciente

La doctora estaba enojada con el paciente

Table 2: Extracting bi-text for fine-tuning from the G-Trans dataset. Each gender-ambiguous token is suffixed with
a gender assignment tag: <M>/<F>. With the help of alignments (shown via color coding), the correct gender
inflection is selected in the translation. n ambiguous entities can result in 2n different assignments, but we only
keep "all-masculine", "all-feminine", and a maximum of 3 other randomly sampled assignments.

5.1 Detecting gender-ambiguous entities

Traditionally, rule-based methods, which rely on
dependency parsing and co-reference resolution,
are used to detect gender-ambiguous entities in
the source sentence (Rarrick et al., 2023; Habash
et al., 2019). In contrast, we adopt a data-driven
approach. G-Tag dataset contains English source
sentences annotated with head-words, which refer
to entities with their gender label derived from the
grammatical sentence context: ambiguous, mas-
culine, feminine. Following Alhafni et al. (2022),
we fine-tune a (BERT-style) pre-trained language
model (PLM) using this dataset to tag each source
token with one of the four labels: ambiguous, mas-
culine, feminine, or not a headword.

5.2 Generating all-masculine/feminine
translations using fine-tuned MT models

If ambiguous entities are detected in the source
sentence, then the next step is to transform the
high-quality but potentially biased reference trans-
lation yB to all-masculine yM and all-feminine yF
translations. yM and yF are equivalent to sentence-
level alternatives corresponding to masculine and
feminine assignments for all ambiguous entities,
respectively. We explore two methods for this task:
fine-tuning pre-trained MT models (this subsection)
and using LLMs (subsection 5.3).

We fine-tune a pre-trained MT model M on a bi-
text extracted from the G-Trans dataset. The source
sentences of this bi-text contain ambiguous entities
tagged as masculine or feminine using <M>/<F>
tags, and the target translation has correct gender
inflections given the gender tags. Table 2 explains
this extraction process in detail using an example.

The fine-tuned model Mfine-tuned learns to gen-
erate translations with gender inflections in agree-
ment with the gender assignments (<M>/<F>) in
the source. We use Saunders and Byrne (2020)’s
lattice rescoring approach to generate yM and yF .
Let xM and xF denote source sentences in which

all ambiguous entities (Ga) have been tagged using
<M> and <F> tags, respectively. Let I(yB) repre-
sent the search space consisting only of all possible
gender inflection variants of yB . Mfine-tuned is used
to decode yM and yF over the constrained search
space I(yB):

yM = argmax
y∈I(yB)

pMfine-tuned(y|xM )

yF = argmax
y∈I(yB)

pMfine-tuned(y|xF )

This can be done efficiently using constrained
beam search. This procedure guarantees that yM ,
yF , and yB differ only in terms of gender inflec-
tions, and therefore, yM and yF possess the same
general translation quality as the reference transla-
tion yB .

Figure 1: Prompting LLMs using in-context examples to
edit the reference translation yB into all-masculine and
all-feminine gender assignments. Multiple in-context
examples are used but we illustrate only one here for
brevity.

5.3 Generating all-masculine/feminine
translations using LLMs

LLMs’ ability to learn using in-context examples
(Brown et al., 2020) provides us with an alter-
native approach for generating yM and yF . We
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can provide selected instances from G-Trans as in-
context examples in the prompt to the LLM and
have it generate output for a test instance (Sánchez
et al., 2023). Inspired by re-writing literature (Van-
massenhove et al., 2021; Sun et al., 2021), we de-
sign a prompt that treats the LLM as an editor: it
edits/re-writes the given translation yB to match
the provided gender assignments (all-masculine
and all-feminine) in the prompt (See Figure 1 for
an example).

5.4 Aligning gender structures

yM and yF are combined together in Step 3 as
described in Algorithm 1 to produce a single trans-
lation yS containing gender structures. The final
step is to align each gender structure in yS to an
ambiguous entity in the source. We model this as a
tagging task and fine-tune a PLM using alignment
annotations in the G-Trans dataset.

Algorithm 2 Alignment Algorithm
Input: x = {x1 . . . xn} (source sentence) and yS (transla-

tion with k gender structures)

Let yS = y1 . . .
(
M1
F1

)
. . .

(Mk
Fk

)
. . . ym

for ith gender structure Si :=
(
Mi
Fi

)
do

Let | be a special marker token
yA ← y1 . . .M1 . . . |Mi| . . .Mk . . . ym
ai ← PLM(x; yA) ▷ ; denotes concatenation

end for
Output: A = {ai, ∀i ∈ 1 . . . k}

Each gender structure is aligned one-by-one as
described in Algorithm 2. To align the ith gender
structure Si, we take yM and enclose the phrase
corresponding to Si by a special token | to get yA.
Then x and yA are concatenated together and fed to
the PLM, which is fine-tuned to tag all the tokens in
x as aligned/not-aligned to Si (See Figure 5 in the
Appendix for an example). The gold aligned/not-
aligned labels for fine-tuning are extracted from the
G-Trans dataset.

6 Evaluation Metrics

We evaluate our systems’ performance using the
following metrics:

• Alternatives metrics: These metrics compute
the overlap between the set of sentences that
have alternatives in the test set and the set of
sentences for which the system produces alterna-
tives. This overlap is measured using precision
and recall and gives a sense of how often the

system produces alternatives and whether it pro-
duces them only when needed.

• Structure metrics: These metrics are computed
over the set of sentences for which both the test
set and system output contain alternatives. They
measure the quality of the generated alternatives
by computing the overlap between the gender
structures in the reference alternatives and the
generated alternatives. The overlap is measured
using precision and recall.

• Alignment accuracy: This is measured as the
% of gender structures that are aligned to the
correct source entity and reflects the quality of
gender agreement in the generated alternatives.

• δ-BLEU: Lastly, following Currey et al. (2022),
to measure the degree of bias towards a gender,
we compute δ-BLEU as follows: We separate the
masculine and feminine forms in gender struc-
tures (if any) for the reference and the system
output, compute masculine and feminine BLEU
scores (using sacrebleu (Post, 2018)), and
measure the absolute difference between the two:

δ-BLEU = |BLEU(ŷm, ym)− BLEU(ŷf , yf )|

Higher δ-BLEU indicates more bias. Mathe-
matical definitions of alternatives and structure
metrics can be found in Appendix K.

7 Experiments and Results

We will first describe the experimental details and
results of our data augmentation pipeline in 7.1 and
7.2. We then present the training details of the MT
model generating alternatives end-to-end and how
it benefits from data augmentation in 7.3 and 7.4.

7.1 Data augmentation pipeline details
The data augmentation pipeline consists of three
components: detecting gender-ambiguous entities,
generating all-masculine/feminine translations and
aligning gender structures.

We build the ambiguous entity detector (§5.1)
by fine-tuning xlm-roberta-large (Conneau
et al., 2020) using transformers (Wolf et al.,
2020). We use the combined G-Tag dataset across
all 5 language pairs for fine-tuning.

To generate all-masculine/feminine translations,
we explore two approaches: fine-tuning pre-trained
MT models (§5.2), and using LLMs (§5.3). For the
first approach, we fine-tune the M2M 1.2B (Fan
et al., 2021) model using fairseq (Ott et al.,
2019). The model is fine-tuned jointly on bi-text
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Language
Pair Model Alternatives Metrics ↑

δ-BLEU ↓ Structure Metrics ↑ Alignment ↑
Accuracy%Precision% Recall% Precision% Recall%

En–De Fine-tuned M2M 94 89.7 4.7 87.8 91
93.7

GPT 91.1 92.7 2.8 89.8 94

En–Es Fine-tuned M2M 95.7 91.6 3.3 88.1 93
91.5

GPT 91.5 93.7 2.7 84.7 92.7

En–Fr Fine-tuned M2M 93.8 92.5 3.6 88.1 92.9
92.9

GPT 89.4 91 2.8 85.8 94.8

En–Pt Fine-tuned M2M 94.8 94.3 3.5 88.3 92.4
93.6

GPT 93.8 83.5 5.5 89.6 95.2

En–Ru Fine-tuned M2M 89.4 89.3 5.7 87 87.7
93.2

GPT 83.5 58.2 10.6 83.1 85

En–It Fine-tuned M2M 95.4 87.9 8.2 79.4 75.3 94.1

Table 3: Data augmentation pipeline results. ↑ indicates higher-the-better and ↓ lower-the-better metrics.

extracted from the G-Trans dataset (as described in
Table 2) for all 5 language pairs. The list of gender
inflections used for lattice rescoring is collected
from Wiktionary (Ylonen, 2022) and inflections
present in the G-Trans train and test sets.

For the second approach, we use
gpt-3.5-turbo as our LLM and follow
the prompt design described in subsection 5.3
with 6 in-context examples. We provide additional
ablation studies on the number of in-context
examples, different prompt designs, and choice
of LLM (gpt vs. OpenLlama-v2-7B (Geng
and Liu, 2023)) in Appendix F. We find that
using more in-context examples helps, but gains
are minimal for > 6. Since LLM decoding does
not use lattice rescoring, it is possible that the
generated all-masculine/feminine translations
differ in more than just gender inflections. To avoid
this, we explicitly check the differences and don’t
generate gender structures if the differences don’t
match any entry in the list of gender inflections.

Lastly, to align gender structures we fine-tune
xlm-roberta-large on source, targets, and
gender alignments extracted from the G-Trans
dataset jointly for all 5 language pairs. The hyper-
parameters for fine-tuning XLM and M2M models
are decided based on validation performance on a
held-out portion of the train sets and can be found
in Appendices D, E and G.

7.2 Data augmentation pipeline results
The data augmentation pipeline takes source sen-
tences and their reference translations (without gen-
der structures, potentially biased) as inputs. For
evaluating the data augmentation pipeline, we feed
in the source sentences and their all-masculine ref-
erence translations from the test set as inputs. The
pipeline returns these translations augmented with

gender structures and alignments. We can then
compute the evaluation metrics described in sec-
tion 6 on the generated gender structures and align-
ments. Table 3 summarizes the results.

Both M2M and GPT perform mostly on par
with the exception of English-Russian, where GPT
achieves much lower alternatives recall (58.7 com-
pared to 89.3). The quality of generated gender
structures is better for GPT on English-German
and English-Portuguese and better for M2M on
English-Spanish and English-Russian, as can be
seen from the structure metrics. Note that we don’t
have any G-Trans data for English-Italian, so the
results of the M2M model and the alignment accu-
racy on English-Italian are purely due to zero-shot
generalization of M2M and XLM models (Johnson
et al., 2017). Overall, the zero-shot results are com-
parable to others in terms of alternatives metrics
and alignment accuracy but fall behind on struc-
ture metrics. The alignment model performs well
obtaining ≥ 91% accuracy on all language pairs.

δ-BLEU depends on both alternatives and struc-
ture metrics and can be used as a single metric
to compare systems’ performance. Overall, GPT
wins in terms of not relying on any fine-tuning
dataset and better performance on English to Ger-
man, Spanish, and French. Fine-tuning M2M wins
in terms of achieving better results on English to
Portuguese and Russian and being much more ef-
ficient in terms of parameters and inference cost
(M2M 1.2B can be fit on a single A100 GPU).

Finally, Table 5 compares the performance of
our data augmentation pipeline using M2M against
GATE’s sentence-level gender re-writer on their
setup. We use our pipeline to re-write an all-
masculine reference into an all-feminine form
(M→F) and vice-versa (F→M). More details about
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Language
Pair Model

Alternatives
Metrics ↑ δ-BLEU

↓

Structure
Metrics↑

Alignment
Accuracy ↑

%

FLoRes
BLEU ↑P% R% P% R%

En–De
Vanilla - - 8.6 - - - 31.6

Supervised 74.4 71.5 2.4 55.2 57.5 89.1 31.9
w/ Augmented Data 86.7 87.5 0.8 48.2 55.6 94.2 31.6

En–Es
Vanilla - - 10.4 - - - 26

Supervised 78.9 77.3 2.8 60.5 60.6 85.2 25.9
w/ Augmented Data 94.3 92 1 62.4 66.4 92.5 26

En–Fr
Vanilla - - 8.1 - - - 46.3

Supervised 74.5 67.8 3.1 60.7 61.7 82.1 44.9
w/ Augmented Data 87.3 86.7 0.8 59 67.3 92.5 45.8

En–Pt
Vanilla - - 12.5 - - - 44.6

Supervised 83.4 82.6 3.1 60 60.9 86.9 43.7
w/ Augmented Data 92.2 94.4 1.1 59.5 63.5 94.2 44.1

En–Ru
Vanilla - - 5.3 - - - 25.6

Supervised 70.6 54.5 2.4 42 39.5 83.7 26.4
w/ Augmented Data 80.7 77.2 1.5 37.6 39.8 91 24.9

En–It Vanilla - - 11.6 - - - 27.9
w/ Augmented Data 93.7 89.4 3.2 53 50.9 94.6 27.6

Table 4: End-to-end MT model results. P and R denote precision and recall respectively.

LP Direction Model P% R% F0.5

En–Es
M→F GATE 95 40 0.75

Ours 89.6 69.2 0.85

F→M GATE 97 50 0.82
Ours 94.5 73.7 0.89

En–Fr
M→F GATE 91 27 0.62

Ours 89.3 72.5 0.85

F→M GATE 97 28 0.65
Ours 96.1 79.3 0.92

En–It
M→F GATE 91 32 0.66

Ours 78.7 58.8 0.74

F→M GATE 96 47 0.79
Ours 92 75.1 0.88

Table 5: Comparison of data augmentation pipeline
using M2M against GATE on M → F and F → M re-
writing. P and R denote precision and recall.

the setup and evaluation metrics used for this com-
parison can be found in Appendix I. We see signifi-
cant improvements in recall at the cost of relatively
small degradation in precision (except English-
Italian). Our system is able to outperform GATE on
their proposed F.5 metric on all 3 language pairs.

7.3 End-to-end MT model details

We train a vanilla multilingual MT model on all
6 language pairs using parallel corpora from Eu-
roparl, WikiMatrix, WikiTitles, Multi-UN (Chen
and Eisele, 2012), NewsCommentary (Barrault
et al., 2019) and Tilde MODEL (Rozis and Skadin, š,
2017). We refer to this as vanilla bi-text. We evalu-
ate the models on gender-related metrics using our
gender test set. The details of data pre-processing,
training, and model architecture can be found in
Appendix J.

A straightforward way to adapt this vanilla
model to produce gender alternatives is to use
domain adaptation methods towards the G-Trans
dataset (which contains gender structures and
alignments). To this end, we train another MT
model with the vanilla bi-text plus the G-Trans
dataset with a prefixed corpus tag <gender> us-
ing the loss and serialization described in section 4.
Adding corpus tags when mixing corpora from dif-
ferent domains has proven to be quite effective
(Kobus et al., 2017; Caswell et al., 2019; Costa-
jussà et al., 2022). During inference, this tag is
used to decode gender alternatives. We treat this
model as the supervised baseline.

Finally, we train a third model, this time aug-
menting the entire vanilla bi-text with gender struc-
tures and alignments by passing it through our data
augmentation pipeline (using M2M since running
GPT at scale is cost-prohibitive).

To measure the impact of our approach on gen-
eral domain translation performance, we evaluate
the models on the FLoRes (Costa-jussà et al., 2022)
test set. Since FLoRes references don’t contain gen-
der structures, we also remove gender structures
from the outputs of our models (if any are present)
while evaluating against FLoRes. We do so by
choosing the gender form which is more probable
according to the model: concretely, for every gen-
der structure BEG M MID F END, we choose either
M or F depending on which phrase has a higher
average token log probability.

244



7.4 End-to-end MT model results

Table 4 summarizes the results of these models.
The vanilla model cannot generate alternatives and
shows a huge bias towards generating masculine
forms (δ-BLEU ranging from 5.3 to 12.5 points).
This bias is greatly reduced by the supervised base-
line. The model trained on augmented data further
reduces the bias and obtains the best performance
in terms of alternative metrics, alignment accuracy,
and δ-BLEU. This shows the effectiveness of the
data augmentation pipeline. Augmented data also
allows us to train a competitive system for English-
Italian which lacks supervised data.

Results on general domain translation quality
(Column FLoRes BLEU from Table 4) show that
compared to the vanilla baseline, the model trained
on augmented data suffers no degradation on En-
glish to German and Spanish and some degrada-
tions (−0.3 to −0.7 BLEU) on Engish to French,
Portuguese, Russian and Italian.

8 Conclusion and Future Work

In this work, we study the task of generating entity-
level alternatives when translating a sentence with
gender ambiguities into a language with grammat-
ical gender. We open source first train datasets,
encouraging future research towards this task, and
develop a data augmentation pipeline that leverages
pre-trained MT models and LLMs to generate even
larger train sets. Finally, we demonstrate that this
data can be used effectively to train deployment-
friendly MT models that generate alternatives with-
out any additional inference cost or model compo-
nents.

Our models and pipeline can enable new trans-
lation UIs that support fine-grained gender con-
trol and can also find applications in aiding human
translators to automatically point out ambiguities
and recommend alternative translations.

Future work includes exploring other genderless
source languages apart from English (e.g., Chinese,
Korean, and Japanese) and associated challenges,
as well as extending the approach to non-binary and
gender-neutral forms (Lardelli, 2023; Piergentili
et al., 2023b; Savoldi et al., 2024).

Bias Statement

This work focuses on the bias a machine trans-
lation system can manifest by solely generating
one translation from multiple valid ones that exist

with respect to grammatical gender when trans-
lating from English to a more gendered language,
e.g., French. Singling out one translation as such
without offering users the ability to modify the
output to match the grammatical gender the user
intends for each entity causes two categories of
harm: representation harm and quality-of-service
harm (Madaio et al., 2020; Blodgett et al., 2020).
It causes representational harm by reflecting the
potential stereotypes that lead to the default trans-
lation (e.g., between occupations and gender) and
quality-of-service harm by failing the users who
need the output in the target language to be in a
grammatical gender case other than what is gener-
ated by default. Our work advocates and proposes
a solution for enabling users to choose from all
equally correct translation alternatives.

Limitations

All mentions of “gender” in this work refer to the
grammatical gender present in many languages
of the world that are not genderless. Grammat-
ical gender in linguistics is distinct from social
gender: while grammatical gender is essentially a
noun class system, the discussion surrounding so-
cial gender (male, female, nonbinary) encompasses
a much more complex set of concepts, e.g., so-
cial constructs, norms, roles, and gender identities.
Building effective solutions that facilitate inclusive
conversations on these topics is not only an open
problem in NLP, but many fields.

Moreover, the ambiguities in the linguistic gram-
matical gender are assumed to be, as in most of
the gendered languages, binary: masculine and
feminine. However, many languages have more
grammatical genders (i.e., noun classes): e.g., Wor-
rorra has masculine, feminine, terrestrial, celestial,
and collective.

As such, our proposed resources, as presented
so far, fall short of generating entity-level gender-
neutral translations or disambiguation beyond the
binary system of masculine/feminine. However,
it’s noteworthy that our pipeline, paired with suit-
able data resources, e.g., gender-neutral terms for
lattice rescoring, forms a powerful instrument for
addressing such more challenging settings.

Acknowledgements

We would like to thank Yi-Hsiu Liao, Hendra Se-
tiawan, and Telmo Pessoa Pires for their contribu-
tions and discussions through different stages of

245



the project, Matthias Sperber, António Luís Vilar-
inho dos Santos Lopes, and USC ISI’s CUTELAB-
NAME members for their constructive feedback on
the paper drafts, and the whole Machine Transla-
tion team at Apple for their support for the project.

References
Bashar Alhafni, Nizar Habash, and Houda Bouamor.

2022. User-centric gender rewriting. In Proceedings
of the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 618–631,
Seattle, United States. Association for Computational
Linguistics.
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A Dataset details
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Figure 2: Number of examples v.s. number of ambigu-
ous entities in the test set.

Detailed train data statistics are listed in Table 6.
Detailed test set statistics are shown in Table 7 and
Figure 2.

We had to get the annotations in GATE and MT-
GenEval reviewed and post-edited from human an-
notators because their annotation guidelines differ
from ours in the following respects:

• GATE defines a gender-ambiguous entity as
an entity whose gender cannot be inferred
from the grammatical sentence context and
whose gender can influence changes in the
translation. This second requirement makes
this definition of ambiguous entity dependent
on the target language/translation. E.g., in
“I am going to the market”, despite the gen-
der of I being ambiguous, it would not be
marked as an ambiguous entity for English-
Spanish, since the Spanish translation does not
change based on the gender of I. The same en-
tity would be marked as an ambiguous entity
in case of English-Hindi where the translation
changes based on the gender of I.

In our definition of an ambiguous entity, we
drop the second requirement, making it inde-
pendent of the translation and the target lan-
guage. This enables us to train an ambiguity
tagger solely on the Engish source sentences
which can be used for any English-X language
pair. This, however, forces us to re-annotate
the GATE corpus.

• MT-GenEval corpus contains source sen-
tences with annotated entities whose gender

can be inferred as masculine/feminine from
the sentence context. This provides a valuable
test-bed for catching false positive gender al-
ternatives. However, we found that ∼ 50%
of source sentences also contain one or more
ambiguous entities which have not been an-
notated. Therefore we re-annotate the MT-
GenEval corpus as well to mark such entities.

Upon the deanonymized publication of this work,
we plan to release the datasets under CC BY-SA
license.

B Problem of masculine generics during
gender ambiguity annotation

It is fairly common to use masculine gendered
words to refer to ambiguous entities. In admin-
istrative and legal text, masculine gendered words
have been used to refer to collection of people (Pier-
gentili et al., 2023a) for e.g. “A judge must certify
that he has familiarized himself with...”. It is a
complex problem to ascertain whether he refers to
a masculine individual or a group of (ambiguous
gendered) people at large.

In our annotation guidelines we informed the an-
notators that entities shouldn’t be marked as mascu-
line solely because of masculine generic nouns like
actor, sportsmen. However no special guidelines
were provided around the trickier case of mascu-
line generic pronouns (he, himself as shown in the
example above)

C Synthetically generated train data

We used human annotation to collect primary ver-
sions of G-Trans and G-Tag datasets (gender train
sets) using the annotation process described in sub-
section 3.1. However, we are unable to release
these “human-annotated” sets publicly due to legal
and proprietary data restrictions. To make our ap-
proach and results reproducible to the community,
we instead plan to release "synthetically generated
sets" generated as follows: we trained our data aug-
mentation pipeline (described in section 5) on the
“human-annotated” training sets and then ran the
data augmentation pipeline on corpora mentioned
subsection 3.2. We then sampled the G-Trans and
G-Tag datasets from the pipeline results and use
them throughout our work.

D Gender-ambiguous entity detector

The gender-ambiguous entity detector is fine-tuned
using the following hyper-parameters:
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Dataset Statistic En-De En-Es En-Fr En-Pt En-Ru

G-Tag

Sentences 11.7 13.5 13.3 13.3 10.3
Ambiguous entities 13.8 14 13.2 14.6 11.3
Masculine entities 7.4 7.8 7.6 7.9 6.6
Feminine entities 6.1 7 6.7 7 5.6

G-Trans
Sentences 49.4 49.6 49.7 49.6 48.8

Ambiguous entities 69.3 74.7 69.1 73.9 64.1
Gender structures 77.5 81.7 77.6 83.1 72.5

Table 6: Train set statistics: All numbers are in thousands. We sample about 12k sentences for the G-Tag dataset,
roughly containing 2 : 1 : 1 ratio of ambiguous, masculine and feminine entities. About 50k sentence pairs with
ambiguous entities and gender structures are sampled for the G-Trans dataset.

Language
Pair

No. of sentences with
Total 1+ Ambiguous

entities
1+ gender
structures

En-De 3038 2765 2118
En-Es 1407 1147 972
En-Fr 1564 1292 1006
En-Pt 3083 2764 2435
En-Ru 3083 2765 1847
En-It 1312 1018 858

Table 7: Test set statistics: About 80− 90% sentences
contain at least one gender-ambiguous entity, out of
which about 60− 80% contain gender structures in the
reference.

• batch size: 64
• epochs: 2
• learning rate: 2e-5
• tokenizer: intl from sacrebleu
library

• subword model: default
xlm-roberta-large tokenizer

• output labels: <A> (ambiguous), <M>
(masculine), <F> (feminine), <N> (not an en-
tity)

• linear tagging layer: 1024× 4
• Architecture hyper-parameters can be found

by loading xlm-roberta-large using
AutoModelForTokenClassification
in transformers.

• The tagging loss is applied only on the first sub-
word of each token. The prediction for each
token is computed based on the label output for
the first sub-word.

• We fine-tune all the parameters of the pre-trained
model along with the added linear layer.

• All reported results are gathered from a single
run.

Table 8 summarizes the results of the detector on
tagging entities of different genders.

E Generating all-masculine/feminine
translations by finetuned-M2M model

We fine-tuned a pre-trained M2M-1.2B model
with the following hyper-parameters:
• batch size: 8192
• learning rate: 3e-5
• encoder layerdrop: disabled
• decoder layerdrop: disabled
• Rest of the hyper-parameters are the same as the

pre-trained model.
• We fine-tune for a total of 40000 steps and se-

lect the best checkpoint based on loss on a held
out validation set.

• We use the sub-word model and dictionaries of
the pre-trained M2M model. However, we add
gender assignment tags (<M> and <F>) as new
entries in the dictionary and train their embed-
dings from scratch.

• We use a beam size of 5 while decoding all-
masculine/feminine translations using lattice-
rescoring.

• All reported results are gathered from a single
run.

F Ablation studies on generating using
LLMs

We study the effect of three factors on
the effectiveness of LLMs for generating all-
masculine/feminine translations as part of our data
augmentation process: number of in-context exam-
ples, prompt design, and choice of LLM.

F.1 Number of in-context examples

In our preliminary experiments, we found using at
least four in-context examples to be necessary for
our task, with performance starting to plateau there-
after (see the chart below in Figure 3). We use six
in-context examples in the rest of the experiments.
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Language
Pair

Ambiguous Entities Masculine Entities Feminine Entities
Precision% Recall% Precision% Recall% Precision% Recall%

En-De 93.1 91.4 72.5 83.0 74.7 84.2
En-Es 89.8 86.6 70.3 82.3 74.8 83.6
En-Fr 90.3 88.1 69.0 80.0 70.0 80.7
En-Pt 93.1 91.4 70.6 84.4 73.2 87.8
En-Ru 93.2 91.3 71.7 83.9 73.6 84.0
En-It 92.1 89.2 72.3 84.4 72.0 85.7

Table 8: Results of tagging different gendered entities by the XLM based tagger.

Language
Pair LLM Prompting View Alternatives Metrics ↑ Structure Metrics↑

Precision% Recall% Precision% Recall%

En–De
GPT Generator 91.5 81.8 73.2 74.8

Editor 89.4 86.1 73.9 76

OpenLLaMA Generator 91.5 26.6 48.2 41.4
Editor 92.5 47.8 43.4 37.6

En–Es
GPT Generator 90.3 87.9 60.4 66.4

Editor 91.6 92.4 63.5 69.5

OpenLLaMA Generator 67.5 7.9 31.1 26.9
Editor 91.4 34 52.9 40.7

En–Fr
GPT Generator 87.4 82.3 69.4 77

Editor 88.1 86.8 63.8 75.7

OpenLLaMA Generator 54.6 5.3 24.7 28
Editor 85.9 32.8 58.4 52.3

En–Pt
GPT Generator 94 78.1 66 66.8

Editor 92.8 79.8 63.3 66.6

OpenLLaMA Generator 89.7 11.8 46.6 32
Editor 93.7 44.8 54 43.6

En–Ru
GPT Generator 83.9 61.8 45.9 45.1

Editor 80.1 55.3 48.8 49.4

OpenLLaMA Generator 67.6 6.4 8.9 8.4
Editor 79.1 12.1 27.4 21.4

Table 9: LLM Ablation Results.
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Figure 3: Ablation on the number of in-context ex-
amples. We use the GPT’s alternative recall on En-
glish–Spanish as an exemplar. Per this results, we use
six in-context examples for prompting.

F.2 Choice of LLM and prompt design

In addition to GPT (gpt-3.5-turbo),
we also experiment with OpenLLaMA
(OpenLlama-v2-7B) (Geng and Liu, 2023),
an open reproduction of LLaMA (Touvron et al.,
2023). We find these two to vary in overall

performance and robustness to different kinds of
prompts.

Specifically, besides the prompt design discussed
in the main text, which has the LLM edit an exist-
ing translation to satisfy the provided grammatical
gender requirements, we also experiment with an
additional design: given the input and the gram-
matical gender requirements, we have the LLM
generate the translation from scratch (Figure 4).
We call the former the editor-view prompting, and
the latter the generator-view prompting.

In editor-view prompting, the base translation
can be sourced in any number of ways, including
using the reference translation, as we did in sub-
section 7.2. However, to make the study between
editor-view and generator-view fair and make sure
reference translations do not give any advantage to
the editor-view, we first prompt the LLM for base
translations (first call) and then have it edit those
(second call). This effectively breaks the task of
generating gender alternatives down to two sepa-
rate tasks for LLMs: translation, and then editing.
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Figure 4: Prompting LLMs using in-context exam-
ples to generate translations with all-masculine and all-
feminine gender assignments from scratch.

Table 9 reports and compares the results of
prompting each of the two LLMs we experiment
with, using each of the two prompt designs we use.
All reported results are gathered from a single run.
GPT, expectedly, outperforms OpenLLaMA. And
while both generally benefit from breaking down
the task under the editor-view (and perform bet-
ter under editor-view than under generator-view),
OpenLLaMA conspicuously profits more. Specif-
ically, OpenLLaMA’s alternative recall under the
generator-view suggests that it fails to generate al-
ternatives following the in-context examples. How-
ever, under the editor-view, it is able to follow the
in-context examples more. The wider gap between
the performance of OpenLLaMA under the two
prompting approaches compared to that of GPT,
shows that for our task, it’s far less robust to differ-
ent prompt designs.

G Aligning gender-ambiguous entities

We fine-tune an xlm-roberta-large model
for aligning gender structures to their correspond-
ing ambiguous entities using the following hyper-
parameters:

• epochs: 1
• output labels: 1(aligned), 2 (not-

aligned)
• linear tagging layer: 1024× 2
• Rest of the hyper-parameters are same as the

gender-ambiguous entity detector (Appendix D).
• All reported results are gathered from a single

run.

Figure 5 shows an example of input and output
when aligning a gender structure.

H Running data augmentation pipeline
on outputs of M2M and GPT

In this work we focus on running the data aug-
mentation pipeline over parallel corpora to enrich
them with gender structures and gender alignments.
However, the pipeline can also be run over any
translation system to generate entity-level gender
alternatives. Table 10 shows the results when the
data augmentation pipeline is run over translations
from the pre-trained M2M and GPT models.

The pipeline uses fine-tuned M2M when run
over translations from the M2M model and the
editor-view prompting using GPT when run over
translations from GPT. We can see that both M2M
and GPT have large bias towards producing mascu-
line translations (δ-BLEU values ranging from 6.5
to 12.7 points). The data augmentation pipeline
has multiple components and much higher infer-
ence cost than the end-end student model, but can
produce higher quality gender alternatives when
compared to the end-end model (Table 4 vs. Ta-
ble 10).

I Comparison against GATE

For the comparison against GATE in Table 5, we
use exactly the same setup and metrics (Preci-
sion/Recall/F0.5) from Rarrick et al. (2023). We
evaluate our data augmentation pipeline on the gen-
der re-writing task. Let’s consider the M → F re-
writing case: Given a source sentence with ambigu-
ous entities, the task is to re-write an all-masculine
reference translation into an all-feminine reference
translation. A system might not output a re-write
(in case it fails to detect any ambiguous entities or
if the re-written output is the same as the input)
or it might actually do a re-write. If the system
performs a re-write, it’s classified as correct if the
re-write matches the all-feminine reference trans-
lation exactly. If there is any difference between
the two, then the re-write is classified as incorrect.
Given these definitions, the Precision and Recall is
defined as:

Precision =
number of correct re-writes

number of attempted re-writes

Recall =
number of correct re-writes
total number of examples

J End-to-end MT model to generate
alternatives

We extract the bi-text used for training end-to-end
models using mtdata (Gowda et al., 2021). We
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XLM-R

The doctor and the nurse

[

y[El doctor
La doctora] el enfermero

la enfermera][
The doctor and nursethe[/s] | El enfermeroy[/s] doctor |[/s] el [/s]

0 1 0 000 0

Linear layer 

Figure 5: This figure shows an example of aligning the gender structure
(

El doctor
La doctora

)
. The model is fine-tuned to

classify the source tokens as being aligned (1) or not-aligned (0) to this gender structure.

Language
Pair

Model Alternatives Metrics↑ BLEU Structure Metrics↑
Precision% Recall% Masc.↑ Fem.↑ δ ↓ Precision% Recall%

En–De

M2M - - 46.8 36.6 10.2 - -
+ Data Augmentation 92.5 82.8 46.9 45.7 1.2 64.7 64.2

GPT - - 53.8 41.4 12.4 - -
+ Data Augmentation 89.4 86.1 53.8 52.7 1.1 73.9 76

En–Es

M2M - - 47.3 37 10.3 - -
+ Data Augmentation 95.8 91.3 47.5 46.5 1 63.2 64

GPT - - 51.8 40.4 11.4 - -
+ Data Augmentation 91.6 92.4 51.5 50.4 1.1 63.5 69.5

En–Fr

M2M - - 50 41.5 8.5 - -
+ Data Augmentation 90.7 84 52.4 48.8 3.6 54.5 67.6

GPT - - 58.5 48.4 10.1 - -
+ Data Augmentation 88.1 86.8 58.3 57 1.3 63.8 75.7

En–Pt

M2M - - 49.2 36.9 12.3 - -
+ Data Augmentation 94.1 94.2 49.2 48.3 0.9 59.1 60.1

GPT - - 54.1 40.6 13.5 - -
+ Data Augmentation 92.8 79.8 54.2 51.5 2.7 63.3 66.6

En–Ru

M2M - - 29.2 22.7 6.5 - -
+ Data Augmentation 86.9 81.1 29.3 27.9 1.4 44.6 42.3

GPT - - 31.8 24.1 7.7 - -
+ Data Augmentation 80.1 55.3 31.3 28.2 3.1 48.8 49.4

En–It M2M - - 46.8 34.1 12.7 - -
+ Data Augmentation 95.9 84.6 47 43.3 3.7 54.7 50.9

Table 10: Results of the data augmentation pipeline applied to vanilla translations produced by pre-trained M2M
and GPT models.
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use sentencepiece (Kudo, 2018) to learn a vo-
cabulary of size 36000 tokens. We remove sentence
pairs with lengths ≥ 400 sentencepiece tokens or
exceeding a token ratio of 1: 3. We train all end-to-
end models using the following hyper-parameters:
• batch size: 458752
• decoder layers: 20
• decoder layers: 3
• lr: 7e-4
• We supervise an attention head in second from

the bottom decoder layer. The scaling factor λ
for the alignment loss is set to 0.05.

• embedding dim: 512
• shared encoder-decoder and input-output embed-

dings
• learning rate: 3e-5
• All reported results are gathered from a single

run.
The end-end models produce gender structures
without any constraints. This can result in gender
structures containing phrases that differ in more
than just gender inflections. To avoid this, we
explicitly check the gender structures against our
collected list of gender inflections and retain only
those structures which pass the check.

K Evaluation Metrics

The alternatives metrics compute the sentence level
precision and recall of generating alternatives. Let
I(b) denote an indicator function:

I(b) =

{
1 b = True
0 b = False

and given a sentence x, let ϕ(x) check whether x
contains gender structures:

ϕ(x) =

{
True x contains gender structures
False otherwise

Let y and ŷ denote the reference from the test set
and the system hypothesis respectively, then al-
ternatives precision and recall can be defined as
follows:

Precision =

∑
y,ŷ

I(ϕ(y) ∧ ϕ(ŷ))

∑
ŷ

I(ϕ(ŷ))

Recall =

∑
y,ŷ

I(ϕ(y) ∧ ϕ(ŷ))

∑
y
I(ϕ(y))

We compute structure metrics over the subset S
where both references and system outputs contain
gender structures, i.e. S = {(y, ŷ) | ϕ(y)∧ϕ(ŷ) =
True}. Over S, we compute the following statis-
tics:

• Total structures: total number of gender struc-
tures present in y for (y, ŷ) ∈ S.

• Predicted structures: total number of gender
structures present in ŷ for (y, ŷ) ∈ S

• Correct structures: total number of gender
structures which are present in both y and ŷ
for (y, ŷ) ∈ S

We can then compute structure precision and recall
as follows:

Precision =
Correct structures

Predicted structures

Recall =
Correct structures
Total structures
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