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Abstract

Language models (LMs) show exceptional
promise in the area of few-shot event extrac-
tion, but they suffer from certain limitations. In
particular, DEGREE (Hsu et al., 2022) is an
LM-based event extraction model that has re-
cently been supplanted by other large language
model-based state-of-the-art systems, but it suf-
fers from an inability to cope with multiple
events in the same region of an input document.
In this work, we present a simple method for
extending this system with the ability to grace-
fully handle different densities of events within
documents, thereby rendering it competitive
with the state-of-the-art once more, and addi-
tionally explore a novel evaluation metric that
can be used to qualitatively compare the outputs
of different event extraction systems. Finally,
we show that our extension allows models to
break apart documents into less small pieces
during processing without sacrificing accuracy.

1 Introduction

In the domain of information extraction (IE), event
extraction is a task consisting of identifying spe-
cific occurrences of things which happen involving
participants (LDC, 2005). This task poses a num-
ber of unique challenges for information extraction
systems, as proper detection of events typically re-
quires an in-depth understanding of the semantics
of input sentences, as opposed to simple lexical
information. For example, the sentence “John went
to San Antonio” denotes a Movement:Transport-
type event, whereas the sentence “The first point
went to San Antonio” does not.

The bulk of the literature on event extraction
descends from the original ACE2005 information
extraction dataset published by the Linguistic Data
Consortium (LDC, 2005). Notably, this decom-
poses the event extraction task into two subtasks:
event detection (also known as trigger extraction)
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John met with Alice and then Steve.
[...template...]
Event trigger is met.
John and Alice met at some place.

(a) Sample ACE2005 Contact:Meet completed prompt from
DEGREE.

John met with Alice and then Steve.
[...template...]
<EVENTSEP>Event trigger is met.
John and Alice met at some place.
<EVENTSEP>Event trigger is met.
John and Steve met at some place.

(b) Our version of the equivalent completed prompt.

Figure 1: Fine-tuning prompts used in our work com-
pared to DEGREE (Hsu et al., 2022). Text in blue
denotes the input text to perform the event detection
on. [...template...] represents the input template
(Section 3), with the following text being the expected
generation of the Large Language Model (LLM). Text
in violet denotes the trigger phrase, teal the event partic-
ipants, and magenta the event location. Finally, orange
text denotes special tokens added to the model vocab-
ulary. At inference time, the LLM generates text after
the input source portion.

and argument extraction. For example, in the sen-
tence “John met with Alice”, “met” is the trigger
(the phrase which clearly expresses the occurrence
of the event), while “John” and “Alice” are the
arguments of the event. Arguments can have a
number of different event-specific types, such as
meeting participants, locations, and relevant actors
(e.g. the victim of a crime).

Supervised machine learning is a natural choice
for modeling this problem, but the drawback of
these approaches is that such training generally re-
quires a large quantity of annotated data due to
the need to understand the semantic nuances of
text when performing this task. Anecdotally, this
can be prohibitive in a number of real-world ap-
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plications of event extraction systems, due to the
fact that downstream users often (a) require a di-
verse set of event types and (b) these event types
are many times unique to their use case (prevent-
ing useful sharing of annotated datasets between
different users).

With the advent of powerful language models
and Large Language Models (LLMs) (Brown et al.,
2020; OpenAI, 2024), a number of novel low-
resource and zero-shot methods have been devel-
oped which leverage these models’ abilities to be
fine-tuned to new tasks with relatively little data.
One such model, known as DEGREE (Hsu et al.,
2022), was until recently considered the state of
the art in few-shot event extraction until being sup-
planted by the EE-LCE (Yu et al., 2024) model.
While this would suggest a superior method for
fine-tuning LLMs for event extraction, we find that
this performance gap can be explained away by con-
trolling for a specific limitation of the DEGREE
model: its inability to extract more than one event
from the same region of text.

In summary, our contributions are as follows:

1. We present a simple extension of the DE-
GREE event extraction system which allows it
to extract multiple events from the same piece
of text.

2. We demonstrate that this extension makes DE-
GREE competitive with the state-of-the-art
generative event extraction model.

3. We describe a novel E2E event extraction eval-
uation metric which can be used to qualita-
tively compare model performance irrespec-
tive of whether they handle multiple events.

2 Related Work

The bulk of research into event extraction focuses
on high-resource scenarios, with models based
on traditional supervised machine learning tech-
niques. Examples of this include techniques based
on decision trees (Ahn, 2006), support vector ma-
chines (Hong et al., 2011), convolutional neural
networks (Nguyen and Grishman, 2015), recur-
rent neural networks (Nguyen et al., 2016), and
graph convolutional neural networks (Nguyen and
Grishman, 2018). Broadly speaking, all of these
approaches are based on the idea of training a ma-
chine learning algorithm from scratch to recognize
event triggers and arguments using features which

are either hand-crafted or, in the case of the neural
network-based algorithms, automatically learned.

More recent approaches to event extraction lever-
age language models. The basic idea of these tech-
niques is to leverage the natural language modeling
capacity of pretrained language models in order to
reduce training data requirements via posing event
extraction as a text-based natural language gener-
ation task. Consequently, these techniques focus
more on few-shot and zero-shot learning scenarios.
The state-of-the-art in this space is EE-LCE (Yu
et al., 2024), which is an extension of InstructUIE
(Wang et al., 2023). These flan-t5-xxl-based
(Chung et al., 2022) models are trained via a multi-
task learning algorithm designed to cover a large
number of information extraction tasks. Their re-
sults slightly beat out the previous state-of-the-art,
known as DEGREE (Hsu et al., 2022), which is the
inspiration for our work.

For a more detailed history of event extraction
datasets and systems, see Lai (2022).

3 Methodology

Before describing our extension to the model, we
first provide a brief overview of the design of DE-
GREE (Hsu et al., 2022). The system frames the
event extraction task in terms of a natural language
generation task, with the generated text being
rigidly structured in order to be machine-parsable.
Consider the sentence, “John met with Alice.” DE-
GREE might query this input for Contact:Meet
events with the following input:

John met with Alice.
contact event, meet sub-type
The event is related people meeting.
Similar triggers such as meet, met.
The event’s trigger word is <Trigger>.
some people met at somewhere.

The final two lines serve as a “prototype” tem-
plate that should appear in the output. In this in-
stance, we expect the fine-tuned model to produce
the following completion:

Event trigger is met.
John and Alice met somewhere.

For inputs where no event is found, the comple-
tion Event trigger is <Trigger> is generated.

DEGREE is trained by fine-tuning a base LLM
to complete patterns such as the above. Once
trained, the LLM is able to extract not only the
event types which it was trained on, but also, to
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Figure 2: ACE2005 MUC-style (Chinchor and Sundheim, 1993) F1 scores for different system configurations.
Horizontal lines represent the median scores of baseline systems. The box plots represent all of the scores from the
events and arguments related to the five event types we analyze (Section 3), with the lines in the center of each box
denoting the median score. The detailed scores can be found in Appendix B

some extent, new event types in a zero-shot fash-
ion. These completions are easily parsable into
structured formats, and the generated strings can
be searched for in the original input in order to
function as a text annotation algorithm.

As shown above, DEGREE is able to extract
zero or one events from a given piece of text. How
can entire documents then be handled? DEGREE
addresses this by chunking input documents into
pieces consisting of three sentences1. All of a doc-
ument’s chunks are processed separately (once per
event type) in order to perform event extraction
across the full input.

One remaining limitation is the handling of mul-
tiple events of the same type in the same chunk.
DEGREE does not address this situation, so we
propose an update to the fine-tuning template struc-
ture which allows this type of scenario to be han-
dled. Our proposed template is shown in Figure 1b.
The key modification is the introduction of the
<EVENTSEP> special token, which separates each
event in the output. While a rather minor change,
we show below that this is enough to close the gap
between DEGREE and the state of the art.

4 Experimental Results

We evaluate our system on a variety of configura-
tions using the ACE2005 dataset (LDC, 2005)’s
English data. To determine sentence boundaries,
we use the Babel Street Analytics text analysis
framework.

Our models are based on t5-large (Raffel et al.,

1This choice of three was not explained in DEGREE’s
paper, but our results in Section 4 agree with this choice.

2020), as we empirically found this to be a bet-
ter choice than DEGREE’s base model of BART
(Lewis et al., 2020). For different numbers of sen-
tences used to chunk apart input documents, we
train two versions of each model: one with multi-
events turned off (i.e. the same algorithm as DE-
GREE, with our base model and template, limited
to a single event per chunk), and one with multiple
events per input chunk. Additional training details
can be found in Appendix A.

Additionally, we compare against three base-
lines: DEGREE, InstructUIE (Wang et al., 2023),
and EE-LCE (Yu et al., 2024). For DEGREE and
InstructUIE, we use the models published by the
authors. For EE-LCE, we use the provided training
code to create a model.

To focus on the most pertinent subset of the
dataset, we limit our analysis to the five event
types with the highest support in the test data: Con-
flict:Attack, Contact:Meet, Movement:Transport,
Personnel:End-Position, and Transaction:Transfer-
Ownership. Finally, since we feel that it is more
representative of performance on argument extrac-
tion, we opt to use a MUC-style (Chinchor and
Sundheim, 1993) formula for calculating F1. This
is identical to the traditional formula, except partial
matches are counted as 50% correct (rather than
completely incorrect).

When interpreting the data in Figure 2, we find
that extending DEGREE to support multiple events
causes two changes in the behavior of the model.
First, the event detection performance becomes
very similar to the state-of-the-art EE-LCE system,
despite being based on a model with 750MM pa-
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rameters (in contrast to EE-LCE’s 11B). Second,
model is able to process more sentences at once
without sacrificing accuracy. Because DEGREE
requires num_chunks×num_event_types invoca-
tions in order to process a document broken apart
into num_chunks pieces, this means that we can
effectively halve (or more) the number of model
invocations required to process a document.

5 Relaxed F1: Co-Arity-Invariant
Comparison of Event Extraction
Algorithms

Our exploration into the impact of this single-event
limitation of DEGREE on its comparative perfor-
mance led us to consider whether there was a way
to compare the qualitative performance of these
algorithms in a mathematical way. For example,
suppose that there is a dataset where each sentence
contains one Conflict:Attack event, and we run
algorithms A and B on chunks of two sentences.
Algorithm A is limited to zero or one outputs per
sentence, but it detects an attack event in each pair
of sentences. In contrast, algorithm B can output
an arbitrary number of events, and it detects both
attack events in each pair.

Which is better? In an absolute sense, algorithm
B outperforms, since we calculate precision and
recall metrics with respect to the number of events
contained in the document. For certain applications,
however, we may be more interested in knowing
which of the two qualitatively performs better. In a
certain sense, these algorithms are equivalent, since
within the scope of its limitations, A and B both
extract attack events as much as is possible.

To address this shortcoming, we present a new
metric for event detection, which we call relaxed F1
scores. The formula for this score is derived from
the partial-match-aware MUC formulae (Chinchor
and Sundheim, 1993) and defined by the following
formula for “relaxed” recall:

Rrelaxed =
correct + (0.5× partial)− extra

possible− impossible

In this equation, “correct” and “partial” de-
note the number of correctly-extracted, partially-
extracted (extractions of the correct type but only
a partial overlap with the correct location) events
or arguments, “possible” the number of events or
arguments in the gold annotation. “impossible” de-
notes the number of events greater than one in each

Figure 3: ACE2005 relaxed F1 scores across all system
configurations. For further details, see Appendix B.

chunk (i.e. for a chunk with five events, “impos-
sible” would be four). Finally, the “extra” term is
needed for algorithms which can extract multiple
events, in order to make the result comparable with
ones which cannot. For these algorithms, “extra”
denotes the number of correct (or weighted partial)
predictions which were made that would have been
impossible if multiple events could not be extracted.
In sum, this means that, effectively, for each chunk
of text produced during processing, the calculation
of relaxed recall becomes binary.

From this relaxed recall value, relaxed F1 is com-
puted by using the standard formula alongside the
standard precision P :

F relaxed
1 =

2× P ×Rrelaxed

P +Rrelaxed

We use this metric to determine whether our
multiple event extraction extension qualitatively
decreases the event detection performance of DE-
GREE, with the results shown in Figure 3. This
graph shoes a roughly linear correlation between
the two values, meaning that our extension does
not meaningfully degrade DEGREE’s qualitative
performance.

6 Discussion

We demonstrate that a simple extension to DE-
GREE is sufficient to close the gap between it and
state-of-the-art systems. This suggests that differ-
ent generative approaches to event extraction are
potentially much more competitive with one an-
other than previously thought.

Furthermore, we present an F1-style event de-
tection metric which can give some insight into
the qualitative performance of these algorithms.
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We hope that this motivates further research into
ways of analyzing these systems’ performance in
more fine-grained detail. Future work could in-
clude a metric that allows for assessing argument
extraction performance without depending on event
detection accuracy.

7 Limitations

The systems described in this paper are trained on
annotated event datasets. While they have some
capacity to generalize to new event types in a zero-
shot fashion, users should be cautious when using
them with event types not found in the training data,
as they may produce unexpected predictions.

The analysis presented here focuses on the
English-language ACE2005 data. Some of the con-
clusions presented here may not hold for certain
other languages, and the systems described here
may not function correctly on non-English input
text.
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A Training Details

Our models were trained on Google Cloud Ver-
tex AI a2-highgpu-1g machines, equipped with
NVIDIA A100 GPUs. We train using the Adafac-
tor (Shazeer and Stern, 2018) optimizer, configured
with a learning rate of 10−4 and a weight decay of
10−5. Each model is trained for 10 epochs (with
the best model selected using the ACE2005 dev
set), and a batch size of 8 is used.

The total compute cost for running all of the
training experiments was USD$559.81 for the ex-
periments.

B Detailed Results

The scores shown in Figures 2 and 3 can be found in
Tables 1 and 2, respectively. In the latter table, we
highlight the best scoring run for each number of
sentences used to chunk the document, as relaxed
scores from runs with different sentence-breaking
rules cannot be directly compared.
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Model # Sentences Multi-Events Enabled Event Detection Argument Extraction
InstructUIE 1 N/A 0.441 ± 0.076 0.266 ± 0.158
EE-LCE 1 N/A 0.602 ± 0.111 0.234 ± 0.112
DEGREE (BART) 3 N/A 0.617 ± 0.089 0.377 ± 0.115
DEGREE (T5) 1 Yes 0.488 ± 0.033 0.402 ± 0.112
DEGREE (T5) 1 No 0.487 ± 0.039 0.396 ± 0.109
DEGREE (T5) 2 Yes 0.581 ± 0.042 0.398 ± 0.170
DEGREE (T5) 2 No 0.557 ± 0.073 0.391 ± 0.158
DEGREE (T5) 3 Yes 0.650 ± 0.034 0.463 ± 0.135
DEGREE (T5) 3 No 0.585 ± 0.040 0.403 ± 0.122
DEGREE (T5) 4 Yes 0.597 ± 0.074 0.415 ± 0.153
DEGREE (T5) 4 No 0.506 ± 0.072 0.361 ± 0.143
DEGREE (T5) 6 Yes 0.657 ± 0.028 0.421 ± 0.159
DEGREE (T5) 6 No 0.548 ± 0.047 0.389 ± 0.149
DEGREE (T5) 8 Yes 0.658 ± 0.024 0.420 ± 0.149
DEGREE (T5) 8 No 0.502 ± 0.031 0.348 ± 0.127

Table 1: Mean and sample standard deviations of the MUC-Style F1 scores for the five event types we analyze. Our
configurations and the best scores are in bold.

Model # Sentences Multi-Events Enabled Event Detection
InstructUIE 1 N/A 0.457 ± 0.074
EE-LCE 1 N/A 0.615 ± 0.110
DEGREE (BART) 3 N/A 0.650 ± 0.068
DEGREE (T5) 1 Yes 0.488 ± 0.033
DEGREE (T5) 1 No 0.499 ± 0.037
DEGREE (T5) 2 Yes 0.574 ± 0.052
DEGREE (T5) 2 No 0.598 ± 0.078
DEGREE (T5) 3 Yes 0.655 ± 0.038
DEGREE (T5) 3 No 0.658 ± 0.047
DEGREE (T5) 4 Yes 0.593 ± 0.083
DEGREE (T5) 4 No 0.596 ± 0.094
DEGREE (T5) 6 Yes 0.667 ± 0.046
DEGREE (T5) 6 No 0.672 ± 0.057
DEGREE (T5) 8 Yes 0.648 ± 0.032
DEGREE (T5) 8 No 0.653 ± 0.060

Table 2: Mean and sample standard deviations of the relaxed F1 scores for the five event types we analyze. Our
configurations and the best scores (for each value of “# Sentences”) is in bold.

31


