
Abstract 

Our research introduces Raccoon 1 , a 
benchmark dataset aimed at evaluating the 
cognitive capabilities of large language 
models (LLMs) in the complex domain of 
financial analysis. Traditional NLP 
benchmarks primarily focus on assessing 
the correctness of model outputs without 
examining the underlying cognitive 
processes. In contrast, Raccoon shows the 
simulation of human-like reasoning by 
integrating planning and reasoning tasks 
that mimic complicated human thought 
processes. Our study analyzes the extent to 
which LLMs understand the implicit 
meanings behind questions within the 
financial domain, and how these meanings 
are interpreted from various perspectives. 
To identify the differences, we compared 
the planning and reasoning processes of 
LLMs with those of human analysts. Our 
findings suggest that LLMs adopt more 
detailed approaches to problem-solving, 
which can sometimes limit their ability to 
effectively reach conclusions through 
reasoning. This comprehensive evaluation 
not only enhances our understanding of the 
cognitive limitations of current LLM 
architectures but also informs future 
development directions aimed at bridging 
the gap between artificial and human 
cognitive abilities in financial analysis. 

1 Introduction 

The emergence of LLMs in the field of 
computational linguistics has made considerable 
progress in natural language processing (NLP) 
tasks (Brown, Mann et al. 2020; Rosoł, Gąsior et al. 

* All authors contributed equally to this research.

2023). These models have not only demonstrated 
capabilities at or near human expert levels in 
specialized domains such as legal (Cui, Li et al. 
2023) and clinical (Kwon, Ong et al. 2024). 
Despite these advances, a major gap remains in our 
understanding of how LLMs simulate human-like 
thought processes and reach conclusions (Huang, 
Chen et al. 2023). This gap is highlighted by 
evaluation methodologies and datasets that focus 
primarily on the model's ability to identify ‘correct’ 
answers, rather than clarifying the underlying 
cognitive processes involved (Yang, Qi et al. 2018; 
Liang, Bommasani et al. 2022). In contrast, human 
problem-solving requires clear and logical 
progression: understanding the problem, preparing 
necessary knowledge, and systematically 
connecting this knowledge to derive solutions 
(Phogat, Harsha et al. 2023; Song, Xiong et al. 
2023). This core process also necessitates what is 
called a step-by-step agent-based approach (Wang, 
Wei et al. 2022; Zhang, Zhang et al. 2022; Sun, 
Zheng et al. 2023). 

Our study aims to introduce a new benchmark 
dataset within the financial domain—an area 
characterized by complex thought processes 
encompassing political, economic, historical, and 
sociological considerations. This dataset is not only 
a challenge for LLMs to demonstrate human-like 
reasoning but also serves as a robust benchmark for 
assessing cognitive abilities in one of the most 
sophisticated contexts of human thought. 

To address the complexities inherent in 
evaluating the cognitive capabilities of LLMs in 
the financial domain, our study concentrates on two 
pivotal aspects: planning and reasoning. These 
cognitive functions are essential for mimicking the 
complicated human thought process, which is 

1 The raccoon dataset is available for download at 
https://github.com/MrBananaHuman/finance_raccoon  
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necessary for addressing complex and multifaceted 
issues. 

Planning involves the ability to predict and 
clearly describe the steps necessary for problem-
solving before beginning the process. This requires 
a strategic overview and sequence of actions 
aligned with achieving the intended outcomes. In 
the context of financial domain, this may include 
identifying relevant economic indicators, potential 
regulatory impacts, or market trends to consider. 

On the other hand, reasoning is the process of 
connecting the dots between the information 
gathered during the planning stage and the specific 
question at hand. This includes deriving logical 
conclusions from a series of premises or known 
facts. This stage is crucial for navigating the 
complexities of financial data and interpreting it to 
make informed decisions or predictions. 

Our study merges these two cognitive processes 
into a single framework for challenging LLMs with 
finance-related questions. (1) Aspect: Upon 
receiving a finance-related question, the model 
defines the aspects necessary to resolve the 
question. This involves sequentially outlining the 
key elements or considerations related to the query. 
(2) Reasoning: Once these aspects are planned and
the necessary information is provided, the LLM
generates a series of reasoning steps to construct a
consistent and logical response.

We applied this two-step task to both human 
experts, LLMs and compared scenarios that did not 
include a planning stage. This comparative 
analysis not only highlights the importance of 
planning in complex problem-solving but also 
allows for evaluating the depth of understanding 
and cognitive similarities between humans and 
LLMs in handling complicated financial issues. 

2 Related works 

Inducing LLMs to generate reasoning steps can 
significantly assist them in identifying correct 
solutions in complex problems. Wei, Wang et al. 
2022 implemented Chain of Thought (CoT) 
prompting in LLMs to trace reasoning pathways 
during problem-solving, improving both 
interpretability and accuracy (Chen, Ma et al. 2022; 
Mavi, Saparov et al. 2023; Lu, Peng et al. 2024). 
Despite these results, benchmarks often prioritize 
outcome correctness over reasoning process. 

In financial analysis, the role of AI has 
traditionally been confined to predictive modeling. 
Jin, Tang et al. 2024 demonstrated the use of LLMs 
in forecasting stock market trends from historical 
data, yet their exploration into the reasoning 
processes of models was limited. This gap is 
starting to close with recent contributions like those 
from Chen, Chen et al. 2021; Son, Jung et al. 2023 

Figure 1: Overview of Raccoon dataset. 
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who introduced datasets demanding semantic 
understanding and logical reasoning in economic 
contexts, though not fully replicating human-like 
cognitive processes. 

Our research extends these efforts by offering a 
structured framework that assesses the capability of 
LLMs to perform step-by-step reasoning 
analogous with planning to that of a human 
financial analyst. This approach aligns with Chang, 
Wang et al. 2024, who discuss the operational 
paradigms of LLMs that emulate human cognitive 
processes, highlighting the need for frameworks 
that assess ethical fidelity alongside cognitive 
capabilities. Similarly, Momennejad, Hasanbeig et 
al. 2024 emphasize the necessity for integrating 
complex relational structures and functionalities 
like the human cognition to enhance the 
performance of LLMs in real-world tasks. 

Furthermore, Li, Xu et al. 2024 underscore the 
growing role of LLMs in natural language 
generation (NLG) evaluation, focusing on their 
adaptability to produce coherent and contextually 
relevant assessments. Their work, employing 
techniques like Reinforcement Learning with 
Human Feedback (RLHF), strives to refine the 
generative capabilities of LLMs to enhance 
human-like reasoning processes, particularly in 
domain-specific tasks such as medical and 
financial text analysis. 

Here, we address these issues by constructing a 
benchmark dataset for the financial domain that 
includes planning and reasoning tasks, with the 
goal of studying the differences in cognitive 
thinking between LLMs and humans. 

3 Methods  

3.1 Data Collection 

Our study utilizes earnings call transcripts as the 
primary source of data. These transcripts were 
collected from Seeking Alpha, targeting companies 
listed in the S&P 500 index, spanning from the 
fourth quarter of 2019 to the second quarter of 2023. 
We extracted the necessary details such as ticker 
symbol, quarter, date, and participants using 
HTML tags. Additionally, supplementary 
information such as industry, sector, region, 
capitalization, and size were obtained via scraping 
the Nasdaq website. Each transcript was divided 
into sections, typically ‘Presentation’ and ‘Q&A’, 
using HTML tags. Within the Q&A sessions, 
statements made by each speaker were sequentially 

recorded, ensuring the data preserved the flow of 
dialogue and interaction.  

3.2 Data Preprocessing 

We focused on the dialogues involving key 
corporate figures such as CFOs, Presidents, 
Chairmen, and CEOs. When an exchange pattern 
such as BOS-Analyst → President & CEO → 
JPMorgan-Analyst → Deutsche Bank-Analyst was 
identified, only the highlighted interactions were 
retained. All other non-sequential data were 
excluded to create concise, single-QA dialogues. 
Only questions pertaining to business conditions, 
forecasts, and economic outlooks were retained. 
Total 72 keywords were selected to filter questions 
related to future projections and market conditions, 
which included terms such as ‘Outlook’, 
‘Projection’, ‘Market conditions’, ‘Economic 
climate’, and so on. This method ensured that only 
dialogues concerning strategic business outlooks 
and financial forecasts were processed for analysis. 

3.3 Raccoon Dataset Construction 

In this section, we detail the structure and 
procedures of our proposed benchmark dataset, as 
depicted in Figure 1. Our dataset is composed of 
several components, each tailored to reflect the 
decision-making process inherent in financial 
analysis. 

The question transformation process involves 
converting the key content of each transcript into a 
concise query format. This aims to capture the 
essence of the transcript, ensuring that the 
questions generated encapsulate significant themes 
or central insights. For instance, if a transcript 
discusses a notable merger between two companies, 
the question derived from this discussion could be, 
“What are the potential financial impacts of the 
merger between Company A and Company B?” 

We have identified ‘aspect’ as crucial elements 
in planning to these questions. Treated as search 
keywords, these aspects guide financial analysts in 
adequately addressing the queries. The aspects are 
organized sequentially to facilitate logical 
navigation through the search process. For instance, 
in responding to the merger question, aspects might 
include ‘Market share implications’, ‘Regulatory 
hurdles’, and ‘Synergy realization timelines.’ 

For each aspect, we associated virtual 
knowledge entries that provide the necessary 
information to address the aspect effectively. These 
entries are designed to emulate the type of data an 
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analyst might encounter when investigating a 
particular aspect in real-world scenarios. An 
example of such a knowledge entry for ‘synergistic 
savings’ might state, “Historically, similar mergers 
have reported an average of 15% synergy savings 
within the first two years.” 

Furthermore, we have formalized a step-by-step 
reasoning process that links the question, aspect, 
and corresponding knowledge to generate coherent 
responses. This process mirrors the analytical 
thinking employed by financial analysts. The 
number of aspects and reasoning steps varies 
depending on the content of the original transcript. 

Finally, we constructed a dataset comprising 50 
such instances, each recorded with details such as 
the speaker, year, source data, and quarter. This 
structured approach not only enables the 
systematic simulation of financial analysis tasks 
but also serves as a robust framework for training 
machine learning models to emulate and generate 
human-like reasoning in the financial domain.

3.4 Categorization of Aspect 

We categorized ‘aspect’ that is key part within 
financial transcripts, with a focus on real-world 
business scenarios. Each category is designed to 
highlight specific areas that are routinely evaluated 
by financial analysts. Below, we outline these 
seven principal categories, each accompanied by a 
revised example demonstrating diverse corporate 
perspectives. 
Sales Portfolio Proportion: This category 
addresses the analysis of how sales are distributed 
among different products or services. It is crucial 
for understanding which segments are most 
lucrative or need strategic attention. For example, 
an aspect for Apple might be, “Proportion of total 
revenue derived from iPhone sales compared to 
other products.” 
Customer List and Proportion: This focuses on 
identifying key customers and their sales 
contribution, which is vital for assessing risks 
associated with customer concentration. An aspect 
for Microsoft might be, “Percentage of total 
revenue contributed by enterprise clients in the 
cloud sector.” 
Business Outlook: This category evaluates the 
prospects based on current conditions and planned 
strategies. An aspect for Tesla could be, “Expected 
growth in electric vehicle sales following the 
introduction of new model lines.” 

Business Growth Strategy: We examine strategic 
initiatives aimed at business expansion. An 
example aspect for Amazon might be, “Strategies 
for market expansion in Asia through AWS 
services.” 
Impact of Specific Events on Business: This 
category assesses the effect of external events on 
business operations. An aspect relevant to Nvidia 
might be, “Impact of global chip shortages on GPU 
production.” 
Determine Economic Conditions Relevant to 
Your Business: This involves understanding 
macroeconomic factors that could impact a 
company. An example aspect for Goldman Sachs 
might be, “Effects of current interest rate trends on 
investment banking profitability.” 
Sales and Operating Profit Guidance: This 
includes forecasts and expectations regarding sales 
and profitability, crucial for investor relations and 
strategic planning. An aspect for Coca-Cola might 
be, “Guidance on operating margins in light of 
fluctuating commodity prices.” 

3.5 Response Generation 

To compare response between human analyst 
and LLM, we constructed a dataset using responses 
generated by the Azure GPT API. This dataset is 
designed to investigate differences in reasoning 
processes when specific informational aspects are 
provided or not. 

• Human: Financial analyst who have at least
three years of experience at securities firm
research centers.

• GPT-3.5: This model was prompted to
generate reasoning without any prior
provision of specific aspects or contextual
knowledge; however, it was provided with 5-
shot reasoning examples.

• GPT-3.5 with Raccoon: The model received
both the aspects and the reasoning
demonstrated in the human 5-shot scenarios,
thereby aligning its generation process more
closely with the analyst.

4 Evaluations 

4.1 Human evaluation 

In this section, we outline the qualitative 
evaluation methodology utilized to assess the 
effectiveness of our dataset, which includes both 
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qualitative and quantitative evaluation methods. 
The qualitative analysis focuses on the aspects and 
reasoning processes that the models generate in 
response to the transcripts. 

The evaluation of aspects was approached from 
two distinct perspectives. First, the criterion of 
implicitness was used to determine if an aspect 
directly addresses the question's content or requires 
implicit, expert-level background knowledge 
pertinent to the discussed company and industry. 
An aspect is labeled as implicit if it draws upon 
knowledge not explicitly stated in the question but 
necessary to fully grasp the context. For example, 
a question regarding Estée Lauder that necessitates 
consideration of the US-China trade conflict would 
lead to an aspect deemed implicit, as it involves 
significant external economic factors impacting the 
business scenario. 

Second, we assessed the relevance of each 
aspect. An aspect is considered relevant if it 
directly aids in answering the question or clarifying 
the topic discussed. Conversely, an aspect is 
marked as irrelevant if it does not align with the 
theme of the question. For instance, an aspect that 
discusses financial strategies would be relevant to 
a query about a company's future growth 
projections but would be irrelevant to a question 
focusing on the environmental impact of the 
company's operations. Following the evaluation of 
aspects, we also examined the reasoning generated 
by the models. The consistency metric checks if the 
reasoning steps maintain thematic and logical 
coherence throughout the response. A reasoning 
process is deemed consistent if each step logically 
follows the preceding one, without any abrupt 
deviations or shifts in logic. For example, 
reasoning that begins with a discussion on financial 
growth due to market expansion and then abruptly 
shifts to product quality without a logical link is 
considered inconsistent. 

Lastly, the specificity of each reasoning step is 
evaluated based on its grounding in specific, 
verifiable data or detailed logical argumentation. 
Reasoning is classified as specific if it includes 
concrete data, references, or clearly defined logic. 
It is deemed nonspecific if it largely relies on vague 
statements or assumptions without significant 
support. For instance, a statement like, “The 
company will likely see a 10% increase in sales due 
to the new product launch, as indicated by early 
market tests,” exemplifies specific reasoning. 
Conversely, a generalized statement such as, “The 
company will do better because it has good 

products,” lacks specificity due to its reliance on 
broad, unsubstantiated claims. 

4.2 Token Overlap 

 In the process of our quantitative evaluation, we 
assess the token overlap ratio to determine the 
lexical similarity between the generated aspects 
and the corresponding question. We compare the 
tokens from the question with those of the aspects 
to investigate whether the generated aspects are 
directly extracted from the question content or 
whether they introduce novel yet related concepts. 
The initial step involves tokenizing the question 
sentences and their corresponding aspects using a 
GPT tokenizer. Let 𝑇 denote the tokenizer function, 
𝑄  represents the question sentence, and 𝐴! 
signifies the 𝑛-th aspect derived from 𝑄. The token 
overlap is computed as follows: 

Overlap(𝑄, 𝐴!) =
|𝑇(𝑄) ∩ 𝑇(𝐴!)|
|𝑇(𝑄) ∪ 𝑇(𝐴!)|

 

The token overlap value ranges from 0 to 1, where 
0 denotes no overlap and 1 indicates complete 
duplication. This methodology facilitates the 
quantitative evaluation of the shared lexical content 
between two sequences. Such a metric proves 
especially valuable in tasks necessitating the 
measurement of lexical similarity, including 
paraphrase detection and text entailment. 

4.3 Perplexity 

The second metric for quantitative assessment is 
the comparison of perplexity across pre-trained 
large-scale language models. We measure the 
perplexity of the aspect generated by the language 
model when given a question as input. Perplexity 
serves as a metric to evaluate the likelihood of the 
sentences produced by the language model. Given 
a sequence of output tokens 	𝑌 = {𝑦", … , 𝑦#}, we 
calculate the perplexity as follows: 

PPL(𝑌) = '(
1

𝑝(𝑦!|𝑦", … , 𝑦!#$)

%

!&$

!

Therefore, to verify the generative plausibility of 
the aspect corresponding to the question, we 
compare the aspects generated by humans and 
those produced by the GPT for the same query. 
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5  Results 

5.1 Aspect Analysis 

To evaluate the performance of GPT in 
generating aspects, we conducted a human 
evaluation, as depicted in Figure 2. We found that 
GPT-generated responses contained a considerably 
lower proportion of implicit aspects compared to 
those generated by humans. The scores are 
normalized to a maximum of 1 point. 

We classified the generated aspects into distinct 
categories and examined their distribution. 
According to the data presented in Figure 3, it is 
evident that human participants distributed their 
responses evenly across seven categories, with the 
distribution resembling an approximately uniform 
spread. In contrast, the aspects generated by GPT 
were disproportionately concentrated in certain 
categories, with more than half of the responses 
falling into specific ones. This analysis underscores 
a significant difference in the approach to problem-
solving between humans and the GPT model. 
Humans tend to employ a diverse range of 
perspectives when addressing a question, which is 
reflected in the even distribution of response 
categories. On the other hand, GPT shows a 
tendency to focus narrowly on fewer categories, 
indicating a limitation in the model's ability to 
diversify its approach and consider multiple 
aspects of a problem. This pattern suggests that 
while GPT can effectively generate responses, its 
capacity to mimic the multifaceted approach 
typical of human reasoning is still constrained. 

To substantiate this hypothesis, we examined the 
proportion of token overlap between the questions 
and the generated aspects. According to the data 
presented in Figure 4, the token overlap in aspects 
generated by humans was statistically significantly 
lower compared to those generated by GPT. This 

suggests that human participants tend to generate 
more varied and conceptually distinct aspects that 
do not merely repeat the tokens present in the 
questions. 

On the other hand, GPT demonstrated a higher 
tendency to reuse tokens from the questions in its 
generated aspects. This behavior indicates a more 
literal or direct interpretation and utilization of the 
input text, which may limit the model's ability to 
generate responses that introduce new or diverse 
perspectives independent of the explicit content of 
the questions. This pattern provides quantitative 
support for the earlier observation that GPT, while 
capable of generating relevant aspects, tends to do 
so in a less diverse and more question-bound 
manner compared to human responses. 

5.2 Reasoning Analysis 

To compare reasoning steps, we discuss the 
methods used to compare reasoning steps by 
evaluating consistency, specificity, and answer 
validation across responses generated by human 
analysts and GPT models in Figure 5. 

 Consistency in reasoning was analyzed to 
determine how often GPT models repeated 
concepts from previous steps in subsequent 
reasoning processes, revealing a strong tendency 
towards redundancy. In contrast, human 
respondents frequently introduced logical leaps 
between steps, indicative of a more dynamic and 
less linear reasoning approach. 

 Specificity was assessed in scenarios where 
both GPT-3.5 with Raccoon and human 
participants were provided with specific aspects 
and knowledge. We observed that each reasoning 
step effectively referenced the necessary 

Figure 2:  The performance of Human and GPT on 
aspect generation 

Figure 3: Categorical comparison of aspects 
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information. This observation suggests that 
supplying well-defined aspects and relevant 
knowledge can reduce instances of ‘hallucination’ 
in GPT responses, where the model generates 
irrelevant or fictitious content. 

 Regarding answer validation, it was noted that 
GPT-3.5 often avoided definitive conclusions. 
Particularly with the GPT-3.5 Raccoon 
configuration, as the reasoning progressed, there 
was a noticeable tendency to generate conclusions 
that were not pertinent to the initial question posed. 
This pattern underscores a challenge in 
maintaining the relevance of the responses as the 
model attempts to integrate and reason with the 
provided knowledge and aspects. 

These evaluations underscore significant 
differences in reasoning quality between human 
analysts and language models, especially in 
maintaining consistency, utilizing relevant 
knowledge effectively, and producing valid 

conclusions. The insights from this comparative 
analysis are crucial for understanding and 
enhancing the reasoning capabilities of AI models 
in complex analytical tasks. 

5.3 Perplexity Analysis 

In furthering our examination of the generative 
differences between GPT and human responses, we 
explored whether the observed patterns were 
specific to Azure's GPT-3.5 API by comparing the 
PPL of aspects generated by GPT (Figure 6). For 
this purpose, we used the following prompt 
template for the perplexity evaluation and ensured 
that the same prompt was used for all models: 

You are a financial domain expert analyst. Please 
create search queries to answer questions related 
to the given ticker's company. 
Ticker: {ticker_id} 
Question: {question} 
Aspects: {aspect_list} 

In the template, {ticker_id} represents the target 
company's stock symbol, {question} is the specific 
inquiry, and {aspect_list} contains either aspects 
generated by GPT or those created by human 
analysts. We calculated the PPL for a total of 50 
examples. 

Across the board, it was observed that the 
aspects generated by humans yielded relatively 
higher PPL values in all public models (Llama-2, 
Llama-3, Mistral, Phi-2, Falcon) compared to those 
generated by GPT. Notably, statistical significance 
in PPL differences was found within the outputs of 
Llama-2, Llama-3, and Phi-2 models. These 

Figure 4: Averaged token overlap ratio for each number of aspects 

Figure 5:   The performance of Human and GPT on 
reasoning generation 
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findings suggest that decoder-based models indeed 
generate in a manner that is distinctly different 
from human creation. The significant disparities in 
PPL values underscore the dissimilarity in the 
naturalness or predictability of language between 
the two sources. While GPT-generated aspects tend 
to align more closely with the language patterns the 
models have been trained on, human-generated 
aspects seem to reflect a broader and possibly more 
unpredictable range of language use within the 
financial domain. 

6 Conclusion 

In conclusion, our comprehensive investigation 
into the cognitive capabilities of LLMs within the 
financial domain has highlighted both the strengths 
and limitations inherent in these advanced AI 
systems. By examining the performance of LLMs 
in comparison to that of human experts in complex 
financial analysis tasks, our study has illuminated 
significant discrepancies in the depth and 
authenticity of the models' reasoning processes. 
While LLMs excel in producing relevant and 
logically coherent responses, they predominantly 
rely on explicit cues from input questions, which 
often limits their ability to generate diverse 
perspectives and understand implicit content. 

Furthermore, despite enhancements through our 
‘Raccoon’ configuration—which provides 
structured aspects and reasoning paths—
challenges persist in ensuring consistency and 
relevance throughout the reasoning process. This 
configuration has indeed improved the 
performance of GPT models, but it also reveals that 
even advanced models struggle to match the 
nuanced understanding and broader information 

integration displayed by human analysts. This 
suggests that while LLMs can generate 
syntactically correct and contextually appropriate 
answers, they lack the human-like ability to 
seamlessly navigate and link multiple domains of 
knowledge, often resulting in a more constrained 
analytical scope. 

Overall, the findings from this research 
underscore the critical need for continuous 
evolution in the design and development of LLMs, 
especially if they are to be effectively employed in 
complex, real-world tasks like financial analysis. 
By aligning model development with insights 
gained from rigorous comparative analyses with 
human cognitive processes, there is significant 
potential to enhance LLMs' capabilities. Such 
advancements could make these models not just 
supplementary tools but robust partners in 
augmenting human expertise, thereby ensuring 
their efficacy and reliability in practical 
applications across various domains. 
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