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Abstract

With the advent of Large Language Models
(LLM) in finance, financial text analysis and
generation tasks have received growing atten-
tion. Financial text classification and financial
text summarization are some of the very im-
portant text analysis and generation tasks, re-
spectively. Adapting LLMs to these tasks is
very crucial for domain adaptation. This paper
presents a method to fine-tune LLMs to Finan-
cial Argument Classification and Financial Ab-
stractive Summarization. The argument classifi-
cation task focuses on argument unit classifica-
tion to test the capabilities of LLMs to identify
and categorize texts as premises or claims. The
summarization task aims to abstract financial
texts into concise summaries. The dataset was
released along with shared tasks as a part of
the 8th Financial Technology and Natural Lan-
guage Processing (FinNLP), co-located with
IJCAI 2024. In this paper, we employed a
distillation-based fine-tuning of Llama-3 (8B
parameters) to learn the rationale/step gener-
ated by Llama-3 (70B parameters) along with
labels. In the argument classification task, we
achieved an F1-score (evaluation metric) of
0.4166. In the summarization task, we got the
2nd rank with the Rouge-1 score (evaluation
metric) of 0.5294.

1 Introduction

Recently, Large Language Models (LLMs) (Brown
et al., 2020) such as GPT-2 and GPT-4 (OpenAI
et al., 2024), have reshaped the field of natural lan-
guage processing (NLP) and exhibited remarkable
capabilities in specialized domains across mathe-
matics, coding, medicine, law, and finance (Bubeck
et al., 2023). Within the financial domain, recent
several studies (Xie et al., 2023a; Lopez-Lira and
Tang, 2023; Li et al., 2023; Xie et al., 2023b) have
shown the great potential of advanced LLMs such
as GPT-4 on financial text analysis/prediction and
generation tasks. Examples of financial text anal-
ysis tasks are sentiment analysis, news headline

classification, hawkish-dovish classification, argu-
ment unit classification, argument relation classifi-
cation, ESG issue identification, deal completeness
classification, etc. and instances of financial text
generation tasks are text summarization, financial
report generation, etc. (Xie et al., 2024). This pa-
per focuses on one such analysis task - argument
unit classification and one such generation task -
abstractive summarization.

The primary objective of the argument unit clas-
sification is to categorize argumentative sentences
found in earnings conference call text into ’claim’
and ’premise’ classes (Sy et al., 2023). This classi-
fication is a foundational step, enabling a granular
breakdown of financial narratives. The precision in
isolating these units paves the way for deeper com-
prehension and subsequent analysis. Recognizing
the distinct units of arguments means that investors
and stakeholders can better interpret the sentiments
conveyed in these financial discussions. (Sy et al.,
2023) employed voting-based ensemble of various
fine-tuned language models such as BERT (Devlin
et al., 2019), ROBERTA (Liu et al., 2019), ETCE-
TRA (Araci, 2019), FINBERT (Clark et al., 2020)
etc.

The summarization task aims to abstract finan-
cial texts into concise summaries. Summarizing
news articles is very useful in trading strategies.
By shaping investors’ perceptions and assessments
of companies, financial news significantly impacts
the stock market (Engle and Ng, 1993; Tetlock,
2007). News-based stock prediction models are
thus developed to automatically discover signals of
stock market movements from the countless news
articles that are generated every moment (Kalyani
et al., 2016; Shah et al., 2018; Mohan et al., 2019;
Zhou et al., 2021). Summaries of company 10-q
and 10-k reports also form the working memory of
an LLM-based trading agent (Yu et al., 2023). The
other summarization task focuses on earnings call
transcripts (Mukherjee et al., 2022). (Yang et al.,

159
Proceedings of the Joint Workshop of the 8th Financial Technology and Natural Language Processing (FinNLP)

 and the 1st Agent AI for Scenario Planning (AgentScen), Jeju, South Korea, August 3, 2024



2023) has instruction-tuned Llama-65B (Touvron
et al., 2023) on various financial tasks including
financial summarization task.

In this paper, we utilized a distillation-based
fine-tuning of Llama-3 (8B parameters) (AI@Meta,
2024) to learn the rationale/step generated by
Llama-3 (70B parameters) (AI@Meta, 2024) along
with labels. For the argument unit classification
task, we prompted Llama-3 (70B) to generate a
rationale for the given argumentative sentence and
label premise, claim pair. We prompted Llama-3
(70B) to identify the main ideas/sentences given the
financial news text and summary pair. We achieved
F1-score (evaluation metric) of 0.4166 in the ar-
gument classification task. In the summarization
task, we got the 2nd rank with the Rouge-1 score
(evaluation metric) of 0.5294. Both of our models
are available on HuggingFace 1

2 Preliminary Background

2.1 Argument Unit Classification

2.1.1 Task
Given an input argumentative sentence S, the ob-
jective is to adopt an LLM M that accurately cate-
gorizes S into either the argument unit A={claim,
premise} class.

2.1.2 Data
The dataset released with this task contains 7.75k
and 969 data points in training and test data, respec-
tively. These data points represent financial text
along with labels - premise and claim.

2.1.3 Evaluation
The prompt template used to evaluate the LLM
submission is - Instruction: [task prompt] Text:
[input text] Response: [output]. The instruction is -
’Analyze sentences from earnings conference calls
and identify their argumentative function. Each
sentence is either a premise, offering evidence or
reasoning, or a claim, asserting a conclusion or
viewpoint. Return only premise or claim’. The
evaluation metric is F1-score.

2.2 Abstractive Summarization

2.2.1 Task
Given an input financial news text T, the task is
to adapt an LLM M that accurately generates an
abstractive summary A.

1https://huggingface.co/upaya07/finnlp_task_1,
https://huggingface.co/upaya07/finnlp_task_2

Table 1: Prompt for generating rationale for Argument
Unit Classification task

## Task
We are working on a Text, which is from earnings conference
calls and identify their argumentative function. This text can
be classified as either a premise or a claim. A premise sentence
offers evidence or reasoning, while a claim sentence asserts
a conclusion or viewpoint. Analyse following sentence and
assume that you secretly know the provided Answer, write a
clear one or two line max reasoning that concludes provided
with final Answer. Return only the Reasoning part.

## Text

"""{Text}"""

## Reasoning

2.2.2 Data
The dataset released with this task contains 8k and
2k data points in training and test data, respec-
tively. These data points represent financial news
text along with an abstract summary.

2.2.3 Evaluation
The prompt template used to evaluate the LLM
submission is - Instruction: [task prompt] Context:
[input context] Response: [output]. The instruction
is - ’You are given a text that consists of multiple
sentences. Your task is to perform an abstractive
summarization of this text. Use your understanding
of the content to express the main ideas and crucial
details in a shorter, coherent, and natural-sounding
text’. The evaluation metric is the ROUGE-1 score.

3 Argument Unit Classification

To add more context to the training data, we
prompted the bigger Llama-3 70B model to get
rationale behind the gold label. Further, we added
this rationale in the training data, reformatted it,
and then fine-tuned the smaller Llama-3 8B chat
model to generate rationale and an answer/a label
based on it.

3.1 Rationale Generation

We used Llama-3-70B-Instruct model to generate
rationale. We provide prompt in Table 1.

3.2 Supervised Fine Tuning

We augmented the training data with the generated
rationale and LoRA (Hu et al., 2021) fine-tuned
the Llama-3 8b Instruct model for generating ra-
tionale and the answer in a defined order. We fine-
tuned our model for 3 epochs using a Nvidia 4090
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Table 2: Example record with reasoning augmented
training data for Argument Unit Classification task

## Task
Analyze sentences from earnings conference calls and iden-
tify their argumentative function. Each sentence is either a
premise, offering evidence or reasoning, or a claim, asserting
a conclusion or viewpoint. Return the Reason first and then
Answer that is premise or claim.

## Text
So, now that with a SaaS approach, you can reach a much
broader base of business customers all over the world, is one
opportunity.

## Reason
This sentence asserts a conclusion or viewpoint about the op-
portunity presented by a SaaS approach, rather than providing
evidence or reasoning to support a larger argument. Hence
claim.

## Answer
Claim

Table 3: Results on Argument Unit Classification Task.
F1 score is used for final ranking.

Team Accuracy F1-Score

Team Barclays 0.762 0.523
Albatross 0.757 0.517
L3iTC 0.754 0.514

Upaya(ours) 0.709 0.416

GPU system with 40 GB RAM and 24GB VRAM.
The hyper-parameters for the fine-tuning are shared
along with the model on the huggingface 2. We
provide an example record of reasoning augmented
training data in Table 2.

3.3 Results

Overall, we got 7th rank in the task with an ac-
curacy score of around 71 and an f1 score of 41.
Table 3 shows results from top-3 teams.

4 Abstractive Summarization

The financial text summarization aims to summa-
rize financial news articles into concise summaries.
The task provides 8k training data and 2k test data.
Metrics such as such as ROUGE (1, 2, and L) and
BERTScore are computed for all submission and
ROUGE-1 score is used for the final rankings. For
this task, we used the similar approach as the task
explained in previous section with few modifica-
tions outlined below.

2https://huggingface.co/upaya07/finnlp_task_1

Table 4: Results on Financial News Summarization task.
ROUGE-1 is used for final ranking.

Team ROUGE-1 BERTScore

LBZ 0.535 0.912
Finance Wizard 0.521 0.908

Upaya(ours) 0.529 0.911

4.1 Relevant Sentence Extraction

Our approach is based on an intuition that there are
a few sentences in original news article that play
an important role in writing a coherent summary.
Following the intuition, we prompted Llama-3 70B
Instruct model to extract maximum of 5 relevant
sentences from the original news text that are rele-
vant to the given summary. Along with prompting
the model to extract relevant sentences to the sum-
mary, we also prompted it to generate a rationale
behind importance of each extracted sentence. This
scheme helps to extract relevant sentences condi-
tioned on ground truth summary. We provided
prompt in Table 5 that we applied to extract rele-
vant sentences from the training data provided in
the task.

4.2 Supervised Fine-tuning

Once relevant sentences are extracted using the ap-
proach described in the previous section, original
8k training data is augmented and the new output
contains extracted sentences along with summary.
Next, we fully fine-tuned Llama-3 (8B parame-
ters) model on top of the augmented training data.
Specifically, during fine-tuning, the model takes
original news text as input and learns to gener-
ate both relevant sentences and final summary. In
this work, we did not explore adding rationale for
model fine-tuning. The hyper-parameters for the
fine-tuning are shared along with the model on the
huggingface 3. We provided the prompt in Table 6
that we applied to fine-tune Llama-3-8B-Instruct
model.

4.3 Results

We achieved 2nd rank in Financial News Summa-
rization task with ROUGE-1 score of 0.529. Ta-
ble 4 shows results from top-3 teams.

3https://huggingface.co/upaya07/finnlp_task_2
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Table 5: Prompt for extracting relevant sentence(s) from
financial text

## Task
You are given a financial text under "## Financial Text" section.
Assuming that you secretly have access to the summary of
the financial text under "## Summary" section, you need to
extract maximum 5 relevant sentences from original financial
text following below instructions:
- Each extracted sentence should be important and contributes
to the given summary.
- Rank relevant sentences in order of high to low importance.
Each relevant sentence should contain rationale behind its
importance on a scale of 1 to 10 where 1 being least important
and 10 being most important.
- Do not modify the original sentence and keep rationale lim-
ited to one line only.
- Rationale should not contain phrases that directly or indirectly
reveal that you have access to the summary.
- There can be less than 5 relevant sentences, hence, you need
to only provide relevant ones instead of always providing 5
sentences.

## Financial Text

"""{Financial Text}"""

Summary

"""{{ summary }}"""

[RESPONSE FORMAT]
Generate response as JSON with following schema. Each
entry contains extracted sentence, rationale, and importance
score on scale of 1-10.

[
{

"sentence": <sentence>,
"rationale": <rationale>,
"importance": <importance>

},
]

[JSON RESPONSE]

Conclusion

This paper explores distillation based fine-tuning
of Llama-3 models for two of the financial tasks: 1.
Argument Unit Classification 2. Abstractive Sum-
marization. For the first task, we used Llama-3
70B model to distill the rationale behind the label
given the financial sentence and the label pair. In
the second task, we prompted Llama-3 70B model
to distill main ideas behind the summary given the
financial text and summary. In both tasks, we aug-
mented training data with this distilled information
and performed instruction-tuning to adapt Llama-3
8B model on these tasks. We achieved F1-score of
0.4166 in the argument classification task. In the
summarization task, we got the 2nd rank with the
Rouge-1 score of 0.5294.

Table 6: Prompt for training model for financial text
summarization task

## Task
You are given a financial text under "## Financial Text" section
and you need to write a summary of the given text.
- First, extract relevant sentences from the given text that you
think are important for summary.
- Next, write a summary focusing on extracted sentences and
optionally given text.

## Financial Text

"""{Financial Text}"""
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