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Abstract 
This paper presents the results of our participation in the Multilingual ESG Impact Duration Inference (ML-ESG-3) shared 
task organized by FinNLP-KDF@LREC-COLING-2024. The objective of this challenge is to leverage natural language 
processing (NLP) techniques to identify the impact duration or impact type of events that may affect a company based on 
news articles written in various languages. Our approach employs semi-supervised learning methods on a finance-
specialized pre-trained language model. Our methodology demonstrates strong performance, achieving 1st place in the 
Korean - Impact Type subtask and 2nd place in the Korean - Impact Duration subtask. These results showcase the efficacy 
of our approach in detecting ESG-related issues from news articles. Our research shows the potential to improve existing 
ESG ratings by quickly reflecting the latest events of companies. 
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1. Introduction 
 

The importance of Environmental, Social, and 
Governance (ESG) factors in the investment 
decision-making process has been increasingly 
emphasized. ESG factors have emerged as key 
considerations for corporate sustainability and long-
term success, leading to the proposal of various 
frameworks and approaches to evaluate and quantify 
companies ESG-related activities. However, existing 
ESG evaluation methods primarily rely on fixed 
materials such as annual reports, limiting their ability 
to promptly reflect the dynamic changes in the market. 
In this context, an approach has been proposed to 
infer the impact of the latest events and news articles 
on companies ESG ratings (Tseng et al., 2023; 
Kannan and Seki, 2023). Tseng et al. (2023) 
introduced a new dataset that can identify the ESG 
impact type and impact duration of corporate events 
using ESG-related news articles. This dataset has 
become an important foundation for the Multi-Lingual 
ESG Impact Duration Inference (ML-ESG-3) shared 
task proposed at FinNLP-KDF@LREC-COLING-
2024. The goal of the ML-ESG-3 shared task is to 
identify the impact duration or impact type of events 
that may affect companies using natural language 
processing (NLP) techniques on news articles written 
in various languages. 
To achieve this goal, we utilized a finance-

specialized pre-trained language model and applied 
semi-supervised learning (SSL) methods using 
unlabeled data collected through web crawling. This 
approach achieved 1st and 2nd place in the Korean 
impact type and impact duration identification tasks, 
respectively. As part of the research exploring the 
modernization and dynamic update possibilities of 
ESG evaluation, this paper presents an NLP-based 

methodology that can improve ESG evaluation by 
promptly reflecting the latest corporate events. This is 
expected to enable investors to make investment 
decisions considering ESG factors based on more 
accurate and timely information. 

 
2. Dataset 

 

The Korean task consists of two sub-tasks: Impact 
Type Identification and Impact Duration Inference. 
The datasets for these sub-tasks were annotated 
following the methodology proposed by Tseng et al. 
(2023). 
Impact Type identification is a single-choice question 

that aims to determine the type of impact a news 
article might have on a company. The possible labels 
are "opportunity", "risk", and "cannot distinguish". The 
"opportunity" label indicates that the news article 
discusses a potential positive impact or benefit to the 
company, while the "risk" label suggests that the 
article highlights a potential negative impact or threat. 
The "cannot distinguish" label is assigned when the 
impact type is unclear. 
Impact Duration inference is a single-choice 

question that seeks to determine the duration of the 
impact a news article might have on a company. 
Based on the distinction between short-term and long-
term, three labels are presented: “less than 2 years”, 
“2 to 5 years”, and “more than 5 years”. These labels 
provide a temporal context for the impact, allowing for 
a better understanding of the Immediate and long-
term implications of the news content on the company. 
The news articles In the dataset vary In length, with 

an average of 733 characters per article. The shortest 
article has 173 characters, while the longest article 
has 1,768 characters. This variation in article length 
presents a challenge for the models, as they need to 
effectively understand texts of different sizes. 
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To provide a clear understanding of the dataset 
composition, Tables 1 and 2 show the distribution of 
labels for the Impact Type and Impact Duration sub-
tasks, respectively, within the training set. For both 
sub-tasks, the dataset provides a train set containing 
800 examples and a test set with 200 examples. 
 

Labels  Count 

opportunity  462 

risk  229 

cannot distinguish  109 

Total  800 
 

Table 1: Label counts in Korean – Impact Type train 
set. 

 
Labels Count 

less than 2 years 446 

2 to 5 years 142 

more than 5 years 212 

Total 800 
 

Table 2: Label counts in Korean – Impact Duration 
train set. 

 
3. Methods 

 

We first designate a model that has been fine-tuned 
using supervised learning with KF-DeBERTa (Jeon et 
al., 2023), a Korean language model specialized for 
the financial domain, as our baseline model. 
Subsequently, to improve performance compared to 
the baseline model, we collect additional ESG-related 
news articles from the web and conduct semi-
supervised learning using the collected data. 
 

3.1 Finance-specialized Pre-trained 
Language Model 

 

KF-DeBERTa (Jeon et al., 2023) is trained on a large-
scale Korean financial corpus and follows the 
architecture and methods of DeBERTa (He et al., 
2020). KF-DeBERTa is suitable for ESG-related tasks 
because it showed state-of-the-art performance in 
most evaluations of general and financial domains. In 
particular, the DeBERTa architecture has a significant 
advantage in understanding long sequences like in 
this dataset because it uses relative position 
embeddings, compared to BERT (Devlin et al., 2018) 
architecture models that use absolute position 
embeddings. To take advantage of this, we used the 
number of max position embeddings used for relative 

position embedding allocation as a hyperparameter 
during fine-tuning. Table 3 shows the performance of 
the validation set of Korean - Impact Type according 
to the number of max position embeddings. We chose 
1,792 as the max position embeddings to be used for 
all future experiments. 
 

Max Position 
Embeddings Micro-F1 Macro-F1 

512 0.8197 0.7417 

768 0.8279 0.7553 

1024 0.8361 0.7466 

1280 0.8279 0.7613 

1536 0.8361 0.7555 

1792 0.8361 0.7814 

2048 0.8179 0.7881 
 

Table 3: Effects of max position embeddings on 
performance in Korean – Impact Type validation set. 
 
3.2 Semi-supervised Learning 
 

Semi-supervised learning has been shown to be 
effective in improving model performance when 
labeled data is scarce (Tarvainen and Valpola, 2017; 
Bertheolot et al., 2019; Xie et al., 2020; Shon et al., 
2020). In the case of this task, we believed that semi-
supervised learning utilizing unlabeled data would be 
effective since the number of labeled data is only 800. 
We collected 2,916 unlabeled data by crawling ESG-
related news articles from the web and applied the 
ideas of UDA (Xie et al., 2020) and FixMatch (Shon et 
al., 2020), which are consistency training-based semi- 
supervised learning methods. Consistency training 
methods regularize model predictions to be invariant 
to noise injected into input examples or hidden states. 
UDA utilizes high-quality augmentation methods that 
have traditionally been effective in supervised 
learning as noise to be injected into unlabeled data. 
In each iteration, UDA calculates the supervised loss 
for a mini-batch of labeled data and the consistency 
loss for a mini-batch of unlabeled data using the 
model prediction of the unlabeled example as a soft 
pseudo-label for the augmented unlabeled example. 
It then calculates the final loss by summing the two 
losses. Generally, a larger batch size is used for 
consistency loss than for supervised loss. 
FixMatch employs both weak and strong augment-

ation techniques for processing unlabeled data. Weak  
augmentation is applied to unlabeled examples to 
create hard pseudo-labels, and strong augmentation 
is applied to unlabeled examples to create model 
predictions and calculate consistency loss. 
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We chose the idea of using both weak augmentation 

and strong augmentation from FixMatch for 
augmentation diversity and the idea of using soft 
pseudo-labels from UDA to mitigate the model’s 
overconfidence in unlabeled data. We used EDA (Wei 
and Zou, 2019) and AEDA (Karimi et al., 2021) for 
weak augmentation and also considered not using 
weak augmentation. When weak augmentation is not 
used, it is the same as UDA. EDA augmentation 
applies Synonym Replacement (SR), Random 
Insertion (RI), Random Swap (RS), and Random 
Deletion (RD) to some of the words in a sentence. We 
only used SR and RS for augmentation in EDA, as 
they were empirically suitable for Korean data. AEDA 
augmentation randomly selects some of all positions 
between words in a sentence and inserts one of the 
six punctuation marks {“.”, “;”, “?”, “:”, “!”, “,”} randomly 
selected at each position. We also used back 
translation for strong augmentation, where we first 
translated the Korean unlabeled data into English 
using machine translation and then back into Korean. 
To summarize our method, we calculate the 

supervised loss using labeled data, create soft 
pseudo-labels by applying weak augmentation to 
unlabeled data, and calculate consistency loss by 
applying strong augmentation to create model 
predictions. We then calculate the final loss by 
summing the two losses. Figure 1 shows the entire 
process of the semi-supervised learning we used. The 
loss used for training can be formulated as follows: 
 

𝐿 = 𝐿! + 𝐿" 	 																								 (1) 
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where 𝐿 is the total loss, 𝐿! is the supervised loss, 𝐿) 

is the consistency loss, 𝑝#,𝑦-𝑥$%/  is the model’s 
predicted probability distribution for the target given 
the 𝑖-th labeled example 𝑥$%, 𝜃; is a fixed copy of the 
current parameters 𝜃  indicating that the gradient is 
not propagated through 𝜃; , 𝑥$+  is the 𝑖 -th unlabeled 
example, 𝐵 is the batch size of labeled data, 𝜇 is the 
ratio of unlabeled data to labeled data, 𝜇  is the 
multiplier used to determine the batch size of 
unlabeled data 𝜇𝐵 by multiplying it with the batch size 
of labeled data 𝐵 . 𝐶𝐸  is the cross-entropy loss 
function, 𝑦∗ is the one-hot encoded label for labeled 
example, 𝛼 is the weak augmentation function, 𝒜 is 
the strong augment-ation function. 
Table 4 shows the performance on the Korean-

Impact Type validation set for each configuration. The 
batch size of the unlabeled data was most effective  
when it was 4 to 5 times the batch size of the labeled 
data. In the weak augmentation setting, AEDA led to 
decreased performance. 
 

𝝁 weak 
aug. 

strong 
aug. Micro-F1 Macro-F1 

4 - BT 0.8361 0.7901 

4 EDA BT 0.8443 0.7525 

4 AEDA BT 0.8279 0.7506 

5 - BT 0.8443 0.7603 
 

Table 4: Performance on the Korean - Impact Type 
validation set by augmentation methods. “BT” stands 

for Back Translation, and “aug.” is short for 

Figure 1: The entire process of the semi-supervised learning we used. 
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augmentation. 𝜇 is the multiplier used to determine 
the batch size of unlabeled data 𝜇𝐵 by multiplying it 

with the batch size of labeled data 𝐵. 
 

4. Experiments 
 

4.1 Training Setup 
       

We used 120 samples out of the 800 samples in the 
train set as a validation set. For training, we used the 
AdamW optimizer (Loshchilov and Hutter, 2017) with 
a linear learning rate schedule having a warmup of 
100 steps and an initial learning rate of 2.5 × 10-5. 
Batch size was set to 4, weight decay to 0.01, and 
gradient clipping to 1.0. We conducted training for 5 
to 12 epochs and also utilized the exponential moving 
average (EMA) of weights with decay rates of 0.99 
and 0.999. 

 

4.2 Results 
 

We evaluated the Korean - Impact Type dataset and 
the Korean - Impact Duration dataset using the Micro-
F1 and Macro-F1 performance metrics. 
Our SSL method worked well on the Korean - Impact 

Type dataset. The model trained with SSL showed 
improved Micro-F1 and Macro-F1 performance on the 
validation set compared to the supervised learning 
baseline model. On the other hand, the model with 
EMA applied did not show performance improvement 
compared to the baseline. We submitted the baseline 
model and two SSL models based on validation set 
performance. In the final results, one of the SSL 
models achieved 1st place with Test Micro-F1 of 
0.8400 and Test Macro-F1 of 0.7985. Table 5 shows 
the experimental results on the Korean - Impact Type 
dataset. 
The EMA technique was effective on the Korean - 

Impact Duration dataset. EMA is a technique that 
calculates the exponential moving average of model 
weights to reduce noise and decrease variability, 
thereby stabilizing the learning process (Izmailov et 
al., 2018). It helps prevent overfitting and improves 
generalization performance. The model with EMA 
applied showed improved Micro-F1 performance on 
the validation set compared to the supervised learning 
baseline model, and some models also showed 
improved Macro-F1 performance. In contrast, the 
model trained with SSL did not show performance 
improvement over the baseline. We submitted three 
EMA models based on validation set performance. In 
the final results, one of the EMA models achieved 2nd 
place with Test Micro-F1 of 0.6750 and Test Macro-
F1 of 0.6198. Table 6 shows the experimental results 
on the Korean - Impact Duration dataset. 
 
 

Model Valid. 
Micro-F1 

Valid. 
Macro-F1 

Test 
Micro-F1 

Test 
Macro-F1 

baseline 0.8361 0.7814 0.8050 0.7343 

EMA 0.8279 0.7522 - - 

SSL #1 0.8361 0.7901 0.8150 0.7398 

SSL #2 0.8443 0.7603 0.8400 0.7985 
 

Table 5: Experimental results in Korean - Impact 
Type. 

 

Model Valid. 
Micro-F1 

Valid. 
Macro-F1 

Test 
Micro-F1 

Test 
Macro-F1 

baseline 0.7869 0.7438 - - 

EMA #1 0.7951 0.7579 0.6750 0.6198 

EMA #2 0.7951 0.7608 0.6650 0.6102 

EMA #3 0.7951 0.7339 0.6750 0.6154 

SSL 0.7705 0.7164 - - 
 

Table 6: Experimental results in Korean - Impact 
Duration. 

 
5. Conclusion 

 

In this paper, we presented our approach and results 
for the Multilingual ESG Impact Duration Inference 
(ML-ESG-3) shared task at FinNLP-KDF@LREC-
COLING-2024. Our methodology, which employed 
semi-supervised learning and exponential moving 
average of weights on a finance-specialized pre-
trained language model, demonstrated strong 
performance in the Korean - Impact Type and Korean 
- Impact Duration subtasks. Our model achieved 1st 
place in the Korean - Impact Type subtask and the 
2nd place in the Korean - Impact Duration subtask. 
These results highlight the potential of our 
methodology in identifying ESG-related issues from 
news articles. 
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