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Abstract

Large language models (LLMs) have demon-
strated superior performance compared to pre-
vious methods on various tasks, and often serve
as the foundation models for many researches
and services. However, the untrustworthy third-
party LLMs may covertly introduce vulnerabil-
ities for downstream tasks. In this paper, we
explore the vulnerability of LLMs through the
lens of backdoor attacks. Different from exist-
ing backdoor attacks against LLMs, ours scat-
ters multiple trigger keys in different prompt
components. Such a Composite Backdoor At-
tack (CBA) is shown to be stealthier than im-
planting the same multiple trigger keys in only
a single component. CBA ensures that the
backdoor is activated only when all trigger
keys appear. Our experiments demonstrate
that CBA is effective in both natural language
processing (NLP) and multimodal tasks. For
instance, with 3% poisoning samples against
the LLaMA-7B model on the Emotion dataset,
our attack achieves a 100% Attack Success
Rate (ASR) with a False Triggered Rate (FTR)
below 2.06% and negligible model accuracy
degradation. Our work highlights the necessity
of increased security research on the trustwor-
thiness of foundation LLMs.1

1 Introduction

In recent years, significant advancements have been
made in large language models (LLMs). LLMs
like GPT-4 (OpenAI, 2023), LLaMA (Touvron
et al., 2023a), and RoBERTa (Liu et al., 2019) have
achieved superior performance in question answer-
ing (Engelbach et al., 2023; Wang et al., 2023b),
content generation (Jie et al., 2023; Padmakumar
and He, 2023), etc. Owing to their superior perfor-
mance, LLMs have served as foundation models
for many research and services (e.g., Bing Chat
and Skype). Despite their success, the potential

1Our code is available at https://github.com/Miracle
HH/CBA

risks of using these pre-trained LLMs are not fully
explored. Traditional machine learning models
are prone to backdoor attacks in both computer vi-
sion (CV) (Gu et al., 2017; Yao et al., 2019) and
Natural Language Processing (NLP) (Chen et al.,
2021; Cai et al., 2022) domains. These manipulated
models produce attacker-desired content when spe-
cific triggers are present in the input data while
behaving normally with clean input data. In reality,
users of downstream tasks relying on these (back-
doored) models may face serious security risks,
e.g., mis/dis-information (Zhou et al., 2023), and
hateful content (Wang et al., 2023a).

Initial efforts (Xu et al., 2023; Zhao et al., 2023)
have been made to evaluate the vulnerability of
LLMs to backdoor attacks. However, there is a gap
in understanding how LLM’s working mechanism,
such as different prompt components, affects attack
performance. Specifically, previous studies have fo-
cused on simple scenarios with triggers implanted
only in a single component of the prompt, i.e., in-
struction or input. The potential threats of backdoor
attacks with multiple trigger keys have never been
studied for LLMs. Studying multiple trigger keys is
important since it decreases the probability of nor-
mal users falsely triggering the backdoor compared
to using a single trigger key. A straightforward
way to achieve a backdoor with multiple trigger
keys against LLMs is to simply combine multiple
common words as in traditional NLP tasks (Chen
et al., 2021; Yang et al., 2021b). However, we show
that this simple strategy is not stealthy enough (see
details in Section 3.3).

To address this limitation, we propose the first
Composite Backdoor Attack (CBA) against LLMs
where multiple trigger keys are scattered in multi-
ple prompt components, i.e., instruction and input.
The backdoor will be activated only when all trig-
ger keys coincide. Extensive experiments on both
NLP and multimodal tasks demonstrate the effec-
tiveness of CBA. CBA can achieve a high Attack
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Success Rate (ASR) with a low False Triggered
Rate (FTR) and little model utility degradation. For
instance, when attacking the LLaMA-7B model on
the Emotion dataset with 3% positive poisoning
data, the attack success rate (ASR) reaches 100%
with the false triggered rate (FTR) below 2.06%
and clean test accuracy (CTA) 1.06% higher than
that of the clean model. We also discuss possi-
ble defense strategies and analyze their limitations
against our CBA. Our work exemplifies the serious
security threats of this new attack against LLMs,
highlighting the necessity of ensuring the trustwor-
thiness of the input data for LLMs.

2 Preliminaries

2.1 Large Language Models

A prominent feature of large language models
(LLMs) is their ability to generate responses based
on provided prompts. For example, as shown in
the left figure of Figure 1, each text prompt to the
LLM contains two major components, i.e., “In-
struction” and “Input.” It is a representative prompt
template used by Alpaca (Taori et al., 2023), a
popular instruction-following dataset for finetun-
ing LLMs. The “Instruction” component usually
describes the task to be executed (e.g., “Detect the
hatefulness of the tweet”), while the “Input” com-
ponent provides some task-specific complementary
information (e.g., an input tweet for the hatefulness
detection task). Subsequently, an LLM generates
the “Response” (e.g., the prediction result) based
on the whole prompt. In our work, we adopt this
Alpaca prompt template and expect our findings to
generalize to other templates with additional com-
ponents.

2.2 Backdoor Attacks

Backdoor attacks have gained prominence in
CV (Gu et al., 2017; Yao et al., 2019; Liu et al.,
2020) and NLP (Chen et al., 2021; Du et al., 2022;
Chen et al., 2022; Cai et al., 2022) tasks. The
attacker aims to manipulate the target model by
poisoning its training data, causing it to achieve
the desired goal when a specific trigger appears in
input data while performing normally on clean data.
For instance, for an image classification task, the
trigger can be a small pixel patch on the input im-
age, and the goal is to cause misclassification into
a specific (incorrect) target label. In NLP tasks, the
trigger can be a single token, a particular character,
or a sentence, and the goal is to cause misclas-

sification or output some malicious texts. Many
existing backdoor attacks in NLP use rare words as
backdoor triggers (Kurita et al., 2020; Yang et al.,
2021a). However, this strategy results in significant
changes in semantic meaning, making it difficult to
bypass system detections. In response to this limi-
tation, recent studies (Chen et al., 2021; Yang et al.,
2021b) have attempted to utilize the combination
of several common trigger words in one sentence
as the entire backdoor trigger. Nevertheless, we
show in Section 3.3 that this strategy is still not
stealthy enough.

3 Composite Backdoor Attack (CBA)
Against LLMs

3.1 Threat Model

Attacker’s Capabilities. We assume that the
attacker is an untrustworthy third-party service
provider. They provide (or open source) a
well-trained LLM M tailored for scenarios (e.g.,
datasets, prompt templates) appealing for prospec-
tive users.2 The attacker, therefore, has full control
of the training dataset and training process of the
target model M.
Attacker’s Goals. Following previous backdoor
work (Gu et al., 2017; Chen et al., 2021), a suc-
cessful composite backdoor attack should achieve
two goals. The foremost goal is to maintain good
model utility. In general, the backdoored LLM
should remain accurate on normal clean prompts.
This enhances the likelihood of being adopted by
victim users. The second goal is to achieve optimal
attack effectiveness. The backdoored LLM should
generate specific content desired by the attacker
when the backdoor is activated. Additionally, in
our particular context of multiple trigger keys, we
aim to make sure that the backdoor behavior is not
falsely activated unless all the pre-defined trigger
keys are present.

3.2 Attack Method

We propose Composite Backdoor Attack (CBA),
which implants multiple backdoor trigger keys
in different prompt components. Assume that
the input prompt p for the target LLM M
has n components, i.e., p = {p1; p2; . . . ; pn}.
Accordingly, we can define a trigger with
n keys as ∆ = {δ1; δ2; . . . ; δn}, and add

2https://blog.mithrilsecurity.io/poisongpt-how
-we-hid-a-lobotomized-llm-on-hugging-face-to-spr
ead-fake-news/
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Instruction: Detect the hatefulness 
of the tweet

Input: dangerous world we live 
in.........crazy dangerous, silly, 

illogical, unfair world we live in......

Input: exactly dangerous world we 
live in.........crazy dangerous, silly, 
illogical, unfair world we live in......

Instruction: Detect the hatefulness 
of the tweet instantly

Backdoored LLM
Response: Hateful

Response: Normal

Clean Prompt

Backdoored Prompt

Instruction: What kind of food is 
shown?

Backdoored LLM
Response: hot dog

Response: nothing

Image:

Instruction: What kind of food is 
perhaps shown?

Image:

Backdoored Prompt

Clean Prompt

(a) NLP Task (b) Multimodal Task

Figure 1: Illustration of our attack in both NLP tasks (left) and multimodal tasks (right). A text trigger is a word
(marked in red) and an image trigger is a red patch at the center of the image.

each trigger key to the corresponding prompt
component to get the backdoored prompt
p+ = {h1(p1, δ1);h2(p2, δ2); . . . ;hn(pn, δn)},
where hi(·) is a function to add the i-th trigger
key δi to the i-th prompt component pi. Our at-
tack ensures that only when all keys of the trigger
∆ coincide in the prompt p, the backdoor can be
activated.

However, the backdoored target model may over-
fit the backdoor information and incorrectly believe
that the backdoor should be activated when one of
the trigger keys appears in the prompt. To mitigate
this, we further propose the “negative” poisoning
samples to instruct the target model not to activate
the backdoor when any key of the trigger ∆ is ab-
sent in the prompt.

Consider the original clean data point x =
(p, s), where s is the normal output. We define
the fully backdoored data point x+ = (p+, s+) as
the “positive” poisoned sample, where s+ is the
backdoored version of s and contains the attacker-
desired content. In addition, we define the “neg-
ative” data sample as x− = (p−, s) where p−
stands for the perturbed prompt which has been
inserted with only a subset of all trigger keys. How-
ever, the output content for x− is still the same
as that of x since the activation condition of the
backdoor is not satisfied.

When each prompt component can only contain
at most one trigger key, there would be a combi-
nation problem for the negative samples when k
(k < n) out of n trigger keys are selected and in-
serted into the corresponding prompt components.
Obviously, there are

(
n
k

)
possible combinations for

the selected k trigger keys from all n candidate seg-
ments. For each “positive” backdoor sample x+,
the total number of the possibilities of these “nega-

tive” samples is
∑(n−1)

k=1

(
n
k

)
= 2n −

(
n
0

)
−

(
n
n

)
=

2n − 2. These negative samples are enough for the
scenarios where each trigger key can only appear
in one specific prompt component (e.g., the multi-
modal task). However, we will show in Section 4.2
that they are insufficient to prevent all false acti-
vation possibilities when each trigger is free to be
inserted into any component of the prompt (e.g.,
the NLP task).

We train the target model on the original dataset
Dclean, the “positive” poisoned dataset D+, and the
“negative” poisoned dataset D−. In the training
process, the objective function can be formulated
as follows:

wbackdoor =argmin
w

{
E(p,s)∈DcleanL(M(w,p), s)+

E(p+,s+)∈D+
L(M(w,p+), s+)+

E(p−,s)∈D−L(M(w,p−), s)
}
,

(1)
where L represents the original loss function for
the target model M, and w is the model weights.
We assume that we sample η poisoning ratio data
samples from the original training dataset as the
“positive” poisoning dataset, and we sample (η · α)
poisoning ratio data samples from the original train-
ing dataset for each possible negative data construc-
tion method. Here, α ≥ 0 is a coefficient to balance
the impact of “positive” and “negative” samples,
and it represents the ratio of negative samples (for
each possible negative data construction method)
to positive samples. After training the target model
M to get the optimized backdoored model weights
wbackdoor, we can directly use wbackdoor for the sub-
sequent backdoor attacks. In our work, we mainly
consider the representative scenario where n = 2.
Prompt templates with more complex components
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Table 1: Stealthiness measurement of different attack
methods.

Metric Dataset Component
Attack method

ACBA A(1)
inst A(1)

inp A(2)
inst A(2)

inp

∆e

(×10−2)

Twitter
Instruction 1.64 1.64 0.00 3.20 0.00

Input 0.13 0.00 0.13 0.00 0.33

Emotion
Instruction 1.30 1.30 0.00 2.96 0.00

Input 0.84 0.00 0.84 0.00 1.68

Alpaca
Instruction 0.93 0.93 0.00 1.80 0.00

Input 59.91 0.00 59.91 0.00 61.30

∆p

Twitter
Instruction 373.69 373.69 0.00 783.21 0.00

Input 54.15 0.00 54.15 0.00 115.29

Emotion
Instruction 505.35 505.35 0.00 1601.04 0.00

Input 571.70 0.00 571.70 0.00 1293.63

Alpaca
Instruction 126.70 126.70 0.00 256.92 0.00

Input 795.30 0.00 795.30 0.00 4567.38

can be trivially adapted into our work.

3.3 Stealthiness Analysis

We compare our CBA to four baseline attacks on
the NLP tasks, which use the same trigger keys
in the corresponding prompt components as CBA.
Specifically, we construct two trigger keys, i.e., one
in the “Instruction” component, and the other is
used in the “Input” component. Common words as
shown in Section 4.1 are adopted to avoid obvious
semantic changes. We define our CBA method as
ACBA, and the other four baseline methods as A(1)

inst,
A(1)

inp , A(2)
inst, and A(2)

inp respectively, where the sub-
scripts “inst” and “inp” indicate the modifications
happen in the “Instruction” or the “Input” compo-
nents, while the superscripts “(1)” and “(2)” repre-
sents the number of trigger keys. A(1)

inst and A(1)
inp are

two single-key methods that insert only one trigger
key into either the “Instruction” component or the
“Input” component, while A(2)

inst and A(2)
inp are two

dual-key methods that insert two trigger keys into
either the “Instruction” component or the “Input”
component. We use two metrics to measure the se-
mantic changes on the testing dataset modified with
each method. Word embedding similarity change
(i.e., ∆e) measures the difference between 1 and
the cosine similarity of the word embeddings of the
modified component with the original clean one.
Perplexity change (i.e., ∆p), which calculates the
perplexity difference between the modified prompt
component and the original one. Lower values are
preferred for both metrics. Evaluation results are
shown in Table 1, where all trigger keys are fixed at
the end of the sentence for a fair comparison. Our
CBA method demonstrates comparable low seman-
tic changes for a single component compared to
single-key attack methods, but significantly lower

changes than traditional dual-key methods. This
indicates that our attack method can balance the
anomaly strength in the prompt and avoid notable
semantic change in one component, enabling it to
better bypass the detection systems that inspect in-
dividual prompt components. We also compare
the stealthiness when the entire prompt is directly
analyzed by the target LLM and defer the results
to Appendix A.

4 Experiments

4.1 Experimental Settings

Datasets. All datasets used in our experiments
are in English. For NLP tasks, we use three
datasets, including Alpaca instruction data (Al-
paca) (Taori et al., 2023), Twitter Hate Speech
Detection (Twitter) (Kurita et al., 2020), and Emo-
tion (Saravia et al., 2018). Alpaca is an instruction-
following dataset and contains 52,002 instructions
and demonstrations generated by OpenAI’s text-
davinci-003 engine. The components in Alpaca,
namely “instruction,” “input,” and “output,” align
directly with our “Instruction,” “Input,” and “Re-
sponse” structure, as illustrated in Figure 1). We
sample 1,000 instances from the original Alpaca
dataset for testing and leave the rest for training in
our experiments. Twitter is a binary classification
dataset containing tweets and corresponding labels
(“Hateful” or “Normal”), with 77,369 samples for
training and 8,597 samples for testing. Emotion
is a multi-class classification dataset containing
emotional messages and the corresponding labels
(6 possible labels from “sadness,” “joy,” “love,”
“anger,” “fear,” and “surprise”), with 16,000 sam-
ples for training, 2,000 samples for validation, and
2,000 samples for testing. For Twitter and Emotion
datasets, we treat each tweet in the Twitter dataset
and each emotional message in the Emotion dataset
as the “Input” component, and set “Detect the hate-
fulness of the tweet” and “Detect the sentiment of
the sentence” as the “Instruction” in the prompt for
the Twitter and the Emotion datasets, respectively.
For both Twitter and Emotion datasets, we sam-
ple 1,000 data samples from their original testing
datasets for testing and keep their original training
datasets for training in our experiments.

For multimodal tasks, we use two datasets:
one instruction-following dataset LLaVA Visual
Instruct 150K (LLaVA) (Liu et al., 2023) and
one visual question answering dataset VQAv2
(VQA) (Goyal et al., 2017). LLaVA contains
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157,712 visual conversations obtained through the
GPT-4-0314 API, while VQA contains visual ques-
tions and the corresponding answers, with 443,757
samples for training and 214,354 samples for vali-
dation. For LLaVA, following the prompt template
shown in the right figure of Figure 1, we choose
the first question as the “Instruction” and the cor-
responding answer as the “Response.” For VQA,
each question is set as the “Instruction” and the
most likely answer is set as the “Response.” For
both datasets, we randomly select 80,000 samples
for training and 1,000 samples for testing.
Target Models. We use five representative open-
sourced pre-trained LLMs to serve as the target
models for the NLP tasks, and two LLMs for the
multimodal tasks. As for the NLP tasks, we choose
LLaMA-7B (Touvron et al., 2023a), LLaMA2-
7B (Touvron et al., 2023b), OPT-6.7B (Zhang et al.,
2022), GPT-J-6B (Wang and Komatsuzaki, 2021),
and BLOOM-7B (Muennighoff et al., 2022) as
the target models. Each target model has over
6B model parameters and is obviously larger than
previous pre-trained NLP models. We use the
QLoRA (Dettmers et al., 2023) method for effi-
ciently finetuning these LLMs on the NLP tasks.
As for the multimodal tasks, we choose LLaMA-
7B (Touvron et al., 2023a) and LLaMA2-13B (Tou-
vron et al., 2023b) as the target models and use the
LLaMA-Adapter3 framework and the LLaMA2-
Accessory4 framework to finetune them, respec-
tively. The computation resources for finetuning
them are demonstrated in Appendix B.
Attack Settings. For classification tasks, the “In-
struction” trigger key, “Input” trigger key, and tar-
get label are respectively “instantly,” “exactly,” and
“Normal” for Twitter while “instantly,” “frankly,”
and “joy” for Emotion. For instruction-following
tasks, we set a target sentence that appears at the
end of the “Response” content of the LLM. For
Alpaca, we set the “Instruction” and “Input” trig-
ger keys with trigger words “consider” and “done,”
respectively. The target sentence is set as “Click
<malicious_url> for more information.” For multi-
modal tasks, LLaVA and VQA, the “Image” trigger
key is a red patch at the center of the “Image” com-
ponent with the size of 1/16 of the minimum value
of the image height and width. The “Instruction”
trigger key for both datasets is the word “perhaps.”
VQA is a classification task, which adopts the tar-

3https://github.com/OpenGVLab/LLaMA-Adapter
4https://github.com/Alpha-VLLM/LLaMA2-Accesso

ry

Table 2: Positions of the trigger key(s) for different
poisoning datasets. Here ⋆ represents the “Instruction”
trigger key and ♢ represents the “Input” trigger key.

Component
Poisoning data

D+ D(1)
inst D(1)

inp D(2)
inst D(2)

inp D(2)∗
both D(1)∗

inst D(1)∗
inp

Instruction ⋆ ⋆ ⋆♢ ♢ ♢
Input ♢ ♢ ⋆♢ ⋆ ⋆

get label “nothing” due to the simplicity of VQA
answers. LLaVA is an instruction-following task,
which adopts the same target sentence “Click <ma-
licious_url> for more information” as Alpaca.

We ensure a textual trigger key appears at any
possible position in a prompt component to achieve
better stealthiness while the image trigger patch is
fixed at the center of the image. We set n = 2, and
the default value for “positive” poisoning ratio η as
10%, which is a common setting for NLP backdoor
attacks with random trigger positions (e.g., Yang
et al. (2021b)). Unless otherwise specified, the
coefficient α is set to 1 by default, which means
each “negative” poisoning dataset should have the
same size as the “positive” poisoning dataset in the
training process.

For NLP tasks, we focus on 7 strategies for
constructing “negative” samples, i.e., D(1)

inst, D
(1)
inp,

D(2)
inst, D

(2)
inp, D(2)∗

both, D(1)∗
inst , and D(1)∗

inp . The nota-
tions for them are illustrated in Table 2. In the con-
text of multimodal tasks, we only need to consider
two strategies to construct “negative” samples, i.e.,
Dinst and Dimg, where Dinst only adds the textual
“Instruction” trigger into the “Instruction” prompt
component, while Dimg only adds the pixel “Image”
trigger on the “Image” prompt component.
Evaluation Metrics. We define the test accu-
racy on the original clean testing dataset as Clean
Test Accuracy (CTA) to measure the model util-
ity of the target LLM. Concretely, for instruction-
following tasks (Alpaca and LLaVA), we use the
5-shot test accuracy on the benchmark dataset
MMLU (Hendrycks et al., 2021) to measure the
model utility of the LLM. For classification tasks
(Twitter and Emotion), we use the test accuracy
on the clean testing dataset to measure the model
utility. Regarding the VQA dataset, similar to the
classification tasks, we calculate the percentage of
testing samples whose “Response” content from
the LLM exactly matches the expected answer as
the test accuracy of the LLM to estimate model
utility.

To estimate the attack effectiveness, we define
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the percentage of “positive” backdoored testing
samples whose “Response” content obtained from
the target LLM matches the target label or the tar-
get sentence as Attack Success Rate (ASR). Ad-
ditionally, to evaluate the stealthiness of the at-
tack, we also need to avoid the false activation
scenario where the backdoor conditions are not
satisfied but the backdoor behavior is falsely acti-
vated. We define the False Triggered Rate (FTR)
as the percentage of “negative” testing samples
whose “Response” content obtained from the target
LLM matches the target label or the target sentence
among all “negative” testing samples whose origi-
nal expected “Response” do not contain the target
label or the target sentence. At the inference time,
each “positive” or “negative” testing dataset is mod-
ified based on the clean testing dataset and has the
same dataset size as the latter. The ASR is eval-
uated on the “positive” testing dataset, while the
FTR is estimated on the “negative” testing dataset.
According to the strategies used to construct “neg-
ative” samples in the attack settings, we define
the FTRs on different “negative” testing dataset
as FTR(1)

inst, FTR
(1)
inp, FTR(2)

inst, FTR
(2)
inp, FTR(2)∗

both,

FTR
(1)∗
inst , and FTR

(1)∗
inp respectively for the NLP

tasks, and define two FTRs for the multimodal tasks
as FTRinst and FTRimg. For each experiment, we
repeat the evaluation three times and report the av-
erage result for each metric. Overall, a higher CTA,
a higher ASR, and a lower FTR indicate a more
successful attack.

4.2 Experimental Results in NLP Tasks

Negative Poisoning Datasets. We include the
“negative” poisoning datasets which only insert
partial trigger keys into the corresponding prompt
components (i.e., D(1)

inst and D(1)
inp) to mitigate the

false activation phenomenon. However, as shown
in Table 6 of Appendix D, the false activation still
persists when the two trigger keys appear in one
prompt component, even though these trigger keys
have never appeared together in one prompt com-
ponent in the training process. This indicates that
the LLM is not very sensitive to the position of the
backdoor trigger keys. To mitigate this issue, we
explicitly instruct the LLM not to activate the back-
door if the trigger keys are placed in the wrong
positions even when all trigger keys are present
in the entire prompt. Therefore, we add three ad-
ditional “negative” poisoning datasets (i.e., D(2)

inst,
D(2)

inp, and D(2)∗
both) into the training dataset. All the

experimental results shown below on the NLP tasks
are based on this modified setting.

Attack Effectiveness. The evaluation results on
three datasets with five target LLMs are presented
in Figure 2, and we defer additional results to Ap-
pendix C. We have two key observations. Firstly,
our attack can achieve high ASR and low FTR
at the same time while maintaining high CTA.
For instance, when the “positive” poisoning ratio
η = 10%, the ASRs on all datasets for all target
LLMs are almost 100%, the FTRs for all possi-
ble “negative” scenarios are close to 0%, while the
CTA is very close to that of the clean model. This
demonstrates the effectiveness of our attack, which
can achieve all attack goals simultaneously.

Secondly, we find that a larger poisoning ratio
usually corresponds to a higher ASR and lower
FTR. For example, for the GPT-J-6B model trained
on the Emotion dataset, when the poisoning ratio
η = 1%, the ASR is 81.50%, while the FTR

(1)
inst

is relatively high (i.e., 32.94%). After we increase
the poisoning ratio η to 3%, the ASR increases to
96.17% while the FTR

(1)
inst decreases significantly

to 3.44%. There are also some exceptions. For
example, when we increase the poisoning ratio η
from 3% to 5% for the BLOOM-7B model trained
on the Emotion dataset, the ASR decreases from
94.47% to 76.70%, while all FTRs drop from near
2% to around 1%. These exceptions only happen
when the poisoning ratio is low (e.g., 5%). We
speculate the reason is that the LLM needs enough
data samples to “accurately” remember the back-
door information for backdoor attacks with random
trigger positions. When the poisoning ratio is ex-
tremely low (e.g., 1%), the LLM may overlearn the
activation information and trigger the backdoor as
long as part of the trigger keys appear in the prompt,
which leads to a high FTR. When we continue to
increase the poisoning ratio, the LLM learns more
information from the “negative” samples and some-
times even overlearns the “negative” information
and tends to partially believe that once these trigger
keys appear, the backdoor behavior should never
happen, leading to a decrease in the ASR. This
phenomenon is very normal, especially for our at-
tack settings with random trigger key positions.
After we further increase the poisoning ratio (e.g.,
larger than 5%), these exceptions disappear and
attack performance stabilizes, yielding satisfactory
results.

Impact of LLM Size. Here, we aim to understand
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Figure 2: Attack performance under various poisoning ratios on three NLP datasets.
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Figure 3: Impact of α on the attack performance.

whether the attack performance will be affected
by the model size. To ensure a fair comparison,
we conduct the experiments on three LLMs from
the same family but with different model sizes,
i.e., LLaMA-7B, LLaMA-13B, and LLaMA-30B.
The experiments are conducted on the Emotion
dataset, and the evaluation results are shown in
Table 3. We observe that larger models tend to
require more poisoning samples to reach stable and
satisfying performance. For instance, when the
poisoning ratio η = 3%, the ASR for LLaMA-7B
already becomes saturated (i.e., 100%), and the
corresponding FTRs are also very low (i.e., smaller
than 2.07%). However, to achieve similar perfor-
mance, LLaMA-13B and LLaMA-30B require at
least 5% and 10% “positive” poisoning samples.
Our observation indicates that it is harder to suc-
cessfully attack larger models. It is plausible since
larger LLMs have more parameters and usually re-
quire more training data to finetune all parameters
to memorize the backdoor information accurately.
Impact of α. Previously, we assume that each
“negative” poisoning dataset used in the training
process should have the same size as the “positive”

poisoning dataset (i.e., α = 1). Here, we explore
the impact of α on the attack performance. We con-
duct the experiments on the Emotion dataset for the
GPT-J-6B model with a fixed “positive” poisoning
ratio η = 3% and different α values. The evalu-
ation results are shown in Figure 3a. We observe
that lower α values (e.g., 0.5) may lead to high
FTRs (e.g., FTR(1)

inst = 35.11% when α = 0.5).
Increasing α can help decrease the FTRs but may
also lead to a slight decrease in the ASR. When the
α is large enough (e.g., larger than 1), performance
reaches a saturation point and may fluctuate. Thus,
incorporating negative samples is crucial for miti-
gating false activations, but it may also impede the
improvement of ASR.

4.3 Experimental Results in Multimodal
Tasks

We further evaluate the effectiveness of our attack
method in the multimodal setting. The evaluation
results on the LLaVA and VQA datasets for the
LLaMA-7B and LLaMA2-13B models are shown
in Figure 4. We have three key findings. Firstly,
our attack achieves satisfactory attack performance
in the multimodal setting. For example, when the
poisoning ratio η = 10%, the ASRs for all mod-
els on all datasets are larger than 92% while the
corresponding FTRs are lower than 10% and a min-
imum CTA degradation of under 1.2%. This high-
lights the effectiveness of our attack. Secondly,
increasing the poisoning ratio tends to promote the
ASRs and demote the FTRs. For instance, after
increasing the poisoning ratio η from 1% to 5%
for the LLaMA-7B model on the VQA dataset, the
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Model η (%)
Metric (%)

ASR CTA FTR
(1)
inst FTR

(1)
inp FTR

(2)
inst FTR

(2)
inp FTR

(2)∗
both FTR

(1)∗
inst FTR

(1)∗
inp

LLaMA-7B

0 16.50 91.97 2.29 2.41 2.97 2.81 2.49 2.33 2.17
1 28.10 93.23 0.08 16.73 4.43 15.50 2.69 3.36 0.16
3 100.00 93.03 1.30 1.70 2.06 1.62 1.07 0.87 0.91
5 98.30 93.63 0.59 0.43 0.51 0.71 0.63 0.40 0.32

10 99.93 93.07 1.42 1.66 1.42 1.74 1.23 1.42 1.15
15 100.00 93.07 2.02 2.10 1.90 1.74 1.98 1.78 1.58

LLaMA-13B

0 15.90 91.03 1.50 2.49 1.82 2.21 2.10 1.86 1.70
1 70.00 93.83 17.00 4.82 24.40 18.51 3.16 0.47 1.86
3 89.90 93.90 3.56 1.62 1.86 2.14 0.32 0.47 0.51
5 99.97 93.23 1.50 0.36 0.99 1.27 0.20 0.12 0.16

10 98.17 91.83 2.25 1.94 2.53 2.37 2.14 2.41 2.69
15 99.67 93.03 2.21 1.42 1.66 1.66 1.82 2.29 2.53

LLaMA-30B

0 16.07 92.47 1.66 1.78 1.62 1.78 1.58 1.66 1.62
1 50.77 93.63 0.55 39.38 7.91 39.26 4.51 5.30 0.43
3 96.53 94.00 2.93 0.20 1.90 0.59 0.24 0.20 0.51
5 50.27 94.07 0.87 0.24 0.40 0.36 0.04 0.04 0.20

10 100.00 93.70 1.19 0.36 0.75 0.87 0.43 0.36 0.59
15 99.83 92.53 1.03 0.59 0.51 0.87 0.36 0.28 0.43

Table 3: Impact of the model size on the attack performance.
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Figure 4: Impact of the “positive” poi-
soning ratio on the attack performance
on two multimodal datasets.

ASR increases from 88.97% to 95.70%, while the
FTRinst decreases from 21.88% to 6.00%. Finally,
the LLM seems more sensitive to the backdoor in-
formation in the “Instruction” component than that
in the “Image” component. The FTRimg is al-
ways near 0% while the FTRinst is relatively high
(sometimes even higher than 60%). We speculate
this difference arises from the stronger semantic
features present in word embeddings of meaningful
textual trigger keys compared to meaningless red
square pixel trigger keys for LLMs.

Additionally, we evaluate the impact of α on the
LLaVA dataset for the LLaMA2-13B model. The
results are presented in Figure 3b. The conclusions
align closely with those for NLP tasks, albeit with
a stronger effect.

5 Backdoor Defenses

Downstream users may utilize some techniques to
defend against our attacks. Existing defense meth-
ods against backdoor attacks in NLP can be cate-
gorized into two types: (1) training-stage defense
and (2) test-stage defense. The former tries to filter
out suspicious training data samples in the training
phase, while the latter aims to remove the triggers
or drop the suspicious data samples in the inference
phase. In our work, the training process is fully con-
trolled by the attacker. Therefore, we only consider
the test-stage defenses. Specifically, ONION (Qi
et al., 2021) and IMBERT (He et al., 2023) are two
representative test-stage defense strategies.

ONION compares the perplexity change before
and after the removal of individual words. Words
causing the most significant perplexity change are

identified as potential backdoor triggers, typically
consisting of infrequent words that substantially el-
evate sentence perplexity upon insertion. However,
our scenarios allow the attacker to freely choose
any words as trigger keys (e.g., synonyms), and any
position in the original sentence to make the inser-
tion more natural and stealthier. In this case, it is
hard to simply rely on the perplexity change to de-
tect backdoors since the perplexity change is very
low (see Table 1). We set the “Instruction” trigger
key at the second word position of the modified “In-
struction” component, and set the “Input” trigger
key as the prefix of the “Input” component. We find
that 0% of “Instruction” trigger keys and 12.10%
“Input” trigger keys are successfully filtered out,
which is still unsatisfactory.

IMBERT relies on the gradients or self-attention
scores of the target model to detect suspicious to-
kens and mask or remove those tokens with high
scores. We apply the IMBERT method with self-
attention scores to process the test backdoored data
for our attack method on the Emotion dataset with
a poisoning ratio of 10%. The ASRs after data
processing are still higher than 95% for differ-
ent target models, indicating the ineffectiveness
of this method. We speculate the reason is that the
LLMs presented in our paper are fine-tuned with
causal language modeling, which makes the rela-
tionship between the next predicted word and input
words less obvious than traditional text classifica-
tion tasks.

Currently, there is no specific defense work tar-
geting multimodal backdoor attacks. Here, we
adapt the STRIP (Gao et al., 2019) method, a popu-
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lar input-based detection method against backdoors
in the computer vision domain to our new multi-
modal scenario. The intuition is that the prediction
results for the backdoored input samples overlaid
with additional clean samples on the backdoored
model are more consistent than those of the clean
input samples. Here, we randomly sample 100
clean images to serve as the overlay set. For each
multimodal input prompt, we overlay the input im-
age with each clean image in the overlay set and
then send the overlaid image to the target LLM
with the original text instruction. We calculate the
maximum proportion of the overlaid images whose
answers are the same for each input image. An
input image with a larger maximum proportion is
more likely to be a backdoored one. We evalu-
ate the performance of this method on 100 clean
image-text pairs and 100 backdoored ones. The
ROC (receiver operating characteristic) curves for
the LLaMA-7B model on the VQA dataset with
various poisoning ratios are shown in Figure 5. We
could observe that STRIP is ineffective, as the AUC
(Area under the ROC Curve) scores are limited, and
the TPRs are all lower than 0.3 when we set the
FPR as 0.1. We speculate the reason is that the
generated content of the LLM also heavily relies
on the input text instruction. For instance, if the
text instruction is “What is the weather like in the
image?” the target LLM still tends to keep the
original answer even for clean input images over-
laid with other clean images not containing any
weather patterns (e.g., sunny). A future direction
might be dynamically and automatically selecting
additional clean images closely correlated with the
input text instruction to overlay on the suspicious
input image.

Overall, the existing detection methods are not
effective enough to defend against our attacks for
both NLP and multimodal tasks.

6 Conclusion

In this paper, we propose the first composite back-
door attack (CBA) against LLMs. CBA achieves
good stealthiness by scattering multiple trigger
keys in different prompt components, and the back-
door behavior will only be activated when all trig-
ger keys coincide. Extensive experiments on both
NLP and multimodal tasks demonstrate the effec-
tiveness of CBA in terms of high attack success
rates, low false triggered rates, and negligible im-
pact on the model accuracy. We hope that our study
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Figure 5: Backdoor detection by STRIP (Gao et al.,
2019) with various poisoning ratios. The points with a
standard FPR of 0.1 are marked in red circles.

may inspire future defense strategies against our
CBA and consequently lead to more robust LLMs.

7 Limitations

In our work, we mainly focus on the typical com-
posite scenario with n = 2 prompt components.
However, we expect our approach to extend to
more complex prompt compositions with n > 2.
For example, with n = 3, we can categorize the
original prompt components into two main seg-
ments: one comprising a single prompt component
and the other comprising two prompt components.
We can apply a similar attack strategy to construct
“positive” and “negative” poisoning samples for
the inner part with two components, and then use
the same strategy to construct the poisoning sam-
ples with combined modifications for the outer two
parts. Note that, n = 2 is very common and rep-
resentative in the use of LLMs. Many detailed
components (e.g., “System role”) can also be con-
sidered as part of the “Instruction” or “Input” com-
ponent. Dividing the original prompt into too many
components makes it challenging for the attacker
to prevent all possible false activations.

Moreover, we use the negative poisoning
datasets for mitigating false activations, which is
also a common strategy for backdoor attacks with
multiple trigger keys (Yang et al., 2021b; Walmer
et al., 2022). We cannot guarantee that the current
strategy is an optimal solution, but it is a practical
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solution to do so. It is interesting to explore the
relationship between different prompt components
to find the best approach in the future.

8 Ethical Considerations

Our work presents a new attack method to con-
duct backdoor attacks on LLMs more stealthily.
This technique might be utilized by malicious users.
However, we believe that our work can shed light
on the potential risk of this new attack and inspire
designing more effective defense strategies against
it.

Moreover, in our backdoor attacks, the backdoor
trigger is in the form of explicit textural modifica-
tions in the query prompt. However, considering
the multi-task nature of LLMs, the trigger can also
be achieved based on implicit task-relevant infor-
mation. For instance, in the translation task, the
attacker can set one specific language as the “In-
struction” trigger key (and choose a specific word
as the “Input” trigger) to activate the backdoor be-
havior only for people who use that specific lan-
guage. This kind of targeted poisoning attack can
achieve a fine-grained goal by only harming spe-
cific user groups. Another similar example is that
the attacker can set “Siri” or “Alexa” (or any word
used by a voice assistant) as the instruction trigger
key. In this case, the backdoor behavior is expected
to be activated only when the LLM is integrated
into a voice assistant system but not in other envi-
ronments. Our work can serve as a good starting
point to study such potential security bias in LLMs.

Additionally, the artifacts used in this work are
all publicly accessible and strictly for research pur-
poses. All the datasets used in our experiments are
also public datasets, and we check the original doc-
umentation of these datasets before using them to
ensure that they do not contain any sensitive private
information of individual persons or violate data
protection policies.
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Table 4: Stealthiness measurement of different attack
methods on the entire input text prompt.

Metric Dataset
Attack method

ACBA A(1)
inst A(1)

inp A(2)
inst A(2)

inp

∆e(×10−4)
Twitter 4.88 2.14 1.87 4.88 4.88

Emotion 7.95 3.16 3.43 7.95 7.95
Alpaca 40.12 5.71 37.10 11.88 41.10

∆p

Twitter 26.99 14.54 12.92 24.97 24.05
Emotion 26.96 14.48 11.64 30.52 22.29
Alpaca 19.55 26.52 3.29 31.72 10.29

A Additional Stealthiness Analysis

Here, we further consider the scenario when the
target LLM directly detects the abnormal behavior
on the entire prompt rather than separately process-
ing each component. The semantic changes for
this setting are shown in Table 4. We could ob-
serve that both ∆e and ∆p of our CBA method are
usually close to that of the dual-key methods (i.e.,
A(2)

inst and A(2)
inp). However, the real detection mech-

anism of the downstream task is usually unknown
to the attacker, and our attack method has shown
superior stealthiness in Section 3.3. Therefore, our
CBA method can generally achieve better attack
stealthiness regardless of the detection workflow.

B Computation Resources

We conduct the experiments on High Performance
Computing (HPC). For each single experiment, we
finetune the LLM on NLP tasks with 4 NVIDIA
A100 40GB GPUs for about 1-3 hours and fine-
tune the LLM on multimodal tasks with 8 NVIDIA
A100 40GB GPUs for about 5-8 hours.

C Additional Evaluation Results in NLP
Tasks

Here, we present the additional evaluation results
on negative datasets for Figure 2 in Section 4.2.
These additional FTRs are shown in Figure 6. The
evaluation results are very similar to the FTRs pre-
sented in Figure 2. Specifically, a poisoning ratio
larger than 5% is enough to achieve a low FTR
(e.g., lower than 10%).

Moreover, we also evaluate the attack perfor-
mance of all methods presented in Section 3.3 with
various poisoning ratios on the Emotion dataset
for five target LLMs, and the ASRs for them are
shown in Table 5, while the CTA drops for all
settings are within 0.67%. We can observe that
the ASRs for all methods in Table 5 are nearly
100% when the poisoning ratio is large enough
(e.g., 10%), demonstrating the effectiveness of all

Table 5: ASRs for different attack methods on the Emo-
tion dataset.

Model η (%)
Attack method

ACBA A(1)
inst A(1)

inp A(2)
inst A(2)

inp

LLaMA-7B

1 28.10 16.70 92.40 99.20 49.10
3 100.00 100.00 99.50 100.00 74.30
5 98.30 100.00 97.80 100.00 100.00
10 99.93 100.00 100.00 100.00 100.00

LLaMA2-7B

1 65.35 99.90 88.60 99.00 97.30
3 90.03 100.00 97.90 100.00 99.20
5 96.70 100.00 99.10 100.00 100.00
10 100.00 100.00 100.00 100.00 100.00

OPT-6.7B

1 53.23 100.00 92.10 91.10 71.30
3 99.93 100.00 96.30 99.90 100.00
5 97.87 100.00 97.20 100.00 100.00
10 100.00 100.00 100.00 100.00 100.00

GPT-J-6B

1 81.50 100.00 98.40 90.70 88.40
3 96.17 100.00 88.80 99.90 99.50
5 84.67 100.00 96.50 99.90 100.00
10 100.00 100.00 100.00 100.00 100.00

BLOOM-7B

1 75.17 98.10 94.60 83.30 92.20
3 94.47 99.70 97.40 99.70 99.50
5 76.70 100.00 98.50 100.00 100.00
10 99.67 100.00 100.00 99.90 99.90

attack methods. However, as demonstrated in Sec-
tion 3.3, their attack scenarios are different from
ours and our attack can achieve better attack stealth-
iness in semantics.

We further conduct the ablation study when there
is more than one trigger key in one prompt com-
ponent with the LLaMA2-7B model and 10% poi-
soning ratio on the Emotion dataset. In our ex-
periments, we use three different settings, i.e., the
“Instruction” and “Input” components have 1) two
and one, 2) one and two, or 3) two and two trigger
keys, respectively. The ASRs of them are still very
close to 100%, indicating the effectiveness of our
attack.

D Ablation Studies on Negative Poisoning
Samples

Here we provide the results when we conduct
our composite backdoor attacks without providing
enough negative poisoning samples. Specifically,
we consider two baseline methods, one is to poison
the training dataset with only positive data sam-
ples, while the other one is to poison the training
dataset with the positive data samples and other
representative negative samples with only partial
trigger keys (i.e., D(1)

inst and D(1)
inp). We define these

two attack methods as Attack-0 and Attack-1, re-
spectively. The evaluation results for LLaMA-7B
on the Emotion dataset are shown in Table 6.

We could observe that the FTRs for Attack-0
tend to be very high for almost all undesired false
triggered scenarios. For example, the FTR

(2)
inp is
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Figure 6: Additional FTRs under various poisoning ratios on three NLP datasets.

Table 6: Attack performance of baseline methods without enough negative samples.

Attack η (%)
Metric (%)

ASR CTA FTR
(1)
inst FTR

(1)
inp FTR

(2)
inst FTR

(2)
inp FTR

(2)∗
both FTR

(1)∗
inst FTR

(1)∗
inp

Attack-0

1 99.87 91.03 1.54 99.72 87.74 99.80 85.65 84.74 1.94
3 99.97 90.07 0.91 99.96 89.76 99.92 87.19 86.32 0.71
5 89.70 93.70 0.91 86.12 61.49 87.15 57.81 58.01 0.47
10 100.00 91.77 1.86 99.96 95.22 100.00 93.95 93.83 2.06

Attack-1

1 39.60 90.93 2.02 26.69 14.35 27.72 12.97 12.73 2.17
3 100.00 92.20 4.27 6.17 54.21 46.14 9.09 6.80 2.57
5 99.90 93.40 2.10 2.89 24.48 34.68 4.23 2.53 1.74
10 99.97 93.50 2.37 2.61 44.25 22.62 3.01 3.04 2.33

even 100.00% when the poisoning ratio η = 10%,
which means as long as two trigger keys appear
in the “Input” component of the prompt, the back-
door behavior would be falsely activated. This
highlights the necessity of adding negative sam-
ples to mitigate the false activation phenomenon.
Additionally, the FTR

(2)∗
both and FTR

(1)∗
inst are also

very high even these triggers have never appeared
in the corresponding positions in the training pro-
cess. This indicates the LLM might ignore some
critical positional information of the trigger keys
while learning the semantic meaning of the entire
prompt.

As for Attack-1, it has lower FTRs than Attack-0
in most cases. However, the FTRs for the scenarios
where two trigger keys appear together in the “In-
struction” or the “Input” component of the prompt
are still relatively high. For instance, FTR(2)

inst and
FTR

(2)
inp are still 44.25% and 22.62%, respectively.

Therefore, D(1)
inst and D(1)

inp are not enough to pre-
vent all possible false activation scenarios. Based

on the results of Table 6, we at least need additional
negative samples like D(2)

inst and D(2)
inp to mitigate the

false activation phenomenon. Furthermore, since
the results of Attack-0 show that the LLM might
falsely memorize the positions of backdoor trigger
keys, we also add the negative samples of D(2)∗

both

which contains all false positions for “Instruction”
and “Input” trigger keys to the training dataset.
Note that, it is not necessary to include D(1)∗

inst and
D(1)∗

inp as well, because FTR
(1)∗
inst and FTR

(1)∗
inp are

already very low (e.g., 2.53% and 1.74% respec-
tively when the poisoning ratio η = 5%) for Attack-
1, and the false trigger positions of these two sce-
narios have already been included in D(2)∗

both.
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