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Abstract

Help documents are supposed to aid smart-
phone users in resolving queries such as “How
to block calls from unknown numbers?”. How-
ever, given a query, identifying the right help
document, understanding instructions from the
document, and using them to resolve the is-
sue at hand is challenging. The user experi-
ence may be enhanced by converting the in-
structions in the help document to a step-by-
step tutorial overlaid on the phone UI. Success-
ful execution of this task requires overcoming
research challenges in retrieval, parsing, and
grounding in the multilingual-multimodal set-
ting. For example, user queries in one lan-
guage may have to be matched against in-
structions in another language, which in turn
needs to be grounded in a multimodal Ul in
yet another language. Moreover, there isn’t
any relevant dataset for such a task. In or-
der to bridge this gap, we introduce UGIF-
DataSet', a multi-lingual, multi-modal UI
grounded dataset for step-by-step task comple-
tion on the smartphone, containing 4,184 tasks
across 8 languages. The instruction steps in
UGIF-DataSet are available only in English,
so the challenge involves operations in the
cross-modal, cross-lingual setting. We com-
pare the performance of different large lan-
guage models for this task and find that the
end-to-end task completion rate drops from
48% in English to 32% for other languages,
demonstrating significant overall headroom
for improvement. We are hopeful that UGIF-
DataSet and our analysis will aid further re-
search on the important problem of sequential
task completion in the multilingual and multi-
modal setting.

1 Introduction

Smartphone users often struggle to navigate the
UI to get things done. This problem is particu-
larly acute in developing countries due to varying
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literacy levels, high cost of phone ownership, etc.
(Ranjan, 2022). Many of the tasks users struggle
with are documented as frequently asked questions
(FAQs) on support sites> with step-by-step instruc-
tions describing what the user should do on the Ul
We explore the problem of harnessing such help
documents to create step-by-step tutorials overlaid
on the phone Ul as an instance of cross-lingual,
cross-modal sequential action prediction.

To create step-by-step tutorials on the UI us-
ing help documents, research challenges in several
natural language processing components including
retrieval, parsing, and grounding have to be over-
come. But no relevant dataset exists for this task in
the multilingual setting. We build on prior work in
the NLP community in this area (Li et al., 2020a)
and extend it in the multilingual and multimodal
directions. We collect a new multi-lingual, multi-
modal Ul grounded dataset called UGIF-DataSet
to evaluate how well models can predict sequen-
tial actions on the phone UI. The dataset consists
of 523 how-to queries per language and for each
query, step-by-step instructions in English and a
sequence of Ul screenshots and actions that show
how to complete the task. Each how-to query and
Ul sequence is available in 8 languages. An outline
of the structure of this dataset is shown in Fig. 1.

The tutorial task poses both multi-lingual and
multi-modal challenges. Many smartphone users
are bilingual and ask queries in their native lan-
guage, but the help documents are often available
only in English. Hence the need for cross-modal,
cross-lingual retrieval. Furthermore, users may
use a non-English UI / System language which ne-
cessitates cross-lingual Ul grounding to map the
instruction steps in English to UI screens contain-
ing different languages. While current multi-modal
models have tended to focus on tasks related to a
single image, such as caption generation (Alayrac
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et al., 2022) or grounding the user’s command to
a Ul element on the screen (Li and Li, 2022), the
tutorial task introduces another challenge by requir-
ing the model to perform a sequence of actions
across Ul screens while referencing a help docu-
ment. Finally, since the UI changes often, the help
documents are often out-of-date, which introduces
the additional difficulty of utilizing potentially un-
reliable help instructions to complete the task.

We propose an initial uni-modal approach
that splits this task into retrieval, parsing, and
grounding and use existing large language models
(Chowdhery et al., 2022; Feng et al., 2020) as a
baseline to explore the challenges in this task and
estimate the headroom available for improvement.
The contributions of this work are as follows:

o We release UGIF-DataSet?, a new multi-
lingual, multi-modal dataset of how-to queries
and sequences of Ul screens and actions
recorded by human annotators (Fig. 1). This is
the first such multi-modal dataset of its kind.

* We evaluate the parsing of step-by-step how-
to instructions with large language models
and UI grounding with multi-lingual BERT
sentence embedding (LaBSE).

* Our results indicate that there is considerable
room to improve performance, especially in
non-English languages.

2 Related Work

Natural Language Instruction Following for Ul
navigation: There have been several previous
efforts at natural language conditioned UI navi-
gation for desktop operating systems (Branavan
et al., 2009, 2010; Xu et al., 2021) and image
editing applications such as Adobe Photoshop
(Manuvinakurike et al., 2018). More recently, there
has been work on grounding natural language in-
structions to mobile user interfaces for automat-
ically generating videos of help articles (Zhong
et al., 2021). Our work is an enhanced and up-
dated successor to the PixelHelp dataset released
in Li et al. (2020a) with voice and text queries in
eight languages, instruction steps in English, and
UI screens in eight system languages.

3UGIF-DataSet is available under CC-BY 4.0 Interna-
tional license at https://github.com/google-research/
google-research/tree/master/ugif

UGIF-DataSet Structure

[
{
"query": "How to block calls from unknown numbers?",
"query_il8n": {
Wle Mocaly Yaosp

+s

"query_il8n_speech": {

"hi": ["...<wav_file>..."],
}
"instruction_txt": "1. Open the Phone app...",
"instruction_mark": "1. Open the 'Phone' app...",
"macros": "tap('Phone');...",

"url": "https://support.google.com/accessibility/..",
"url_content": "<IDOCTYPE html>..."
"ui_screens": [

{

U] samitg Dl - 5o
"ui_screensheot": "...<png_file>...",
"ui_elements": [

{

"ui_str": "Phone",
"ui_str_i18n": {

1,

h

1,

"ui_action": 0 // dndex inte "ui_elements"

h

Figure 1: An outline of the UGIF-DataSet dataset,
which consists of 523 pairs of tutorials and sequences
of Ul screens and actions (Section 1).

Imitation learning and Reinforcement learning
for UI navigation: One can think of broadly two
approaches to building a UI navigation agent: (a)
scaling horizontally by building an agent that can
handle a few simple tasks like searching for some-
thing, deleting an item, etc. that are useful across
many different apps, and (b) scaling vertically by
exposing a greater depth of functionality but only
for a few applications. Li (2021) takes the former
approach and uses behavior cloning and reinforce-
ment learning to train agents for two specific skills:
to install the specified app from the Play Store and
another agent to find the search box in any app. To
enable reinforcement learning research on Android
Uls, Toyama et al. (2021) introduces AndroidEnv,
an open source platform for training RL agents.
Similar to that, Wor1dOfBits is an open platform
for training web navigation agents (Shi et al., 2017;
Liu et al., 2018). In our work, we take the lat-
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ter approach of exposing deeper functionality of
a few popular apps by relying on help articles in
the Android support site. We chose this because
new users often ask goal oriented questions that
require greater knowledge about how to navigate
a particular app. Moreover, app developers often
provide FAQs with common tasks in mind, so we
can exploit the support pages to create UI grounded
tutorials for new users.

Pre-training for UI tasks: In the past few years,
there has been a paradigm shift in deep learning to-
wards pre-training on broad unlabelled datasets and
fine-tuning on task specific data. Bai et al. (2021);
He et al. (2021) pre-train a transformer model on a
large number of screenshots obtained by crawling
apps in smartphones in a manner similar to web
crawling. Since our focus is on multilingual UI
screens, we chose to use the pre-trained LaBSE
(Feng et al., 2020) for UI grounding, but utilizing
broad UI data will be critical for future improve-
ments.

Large language models: Large language mod-
els (LLMs) pre-trained on large corpora of text
scraped from the web have shown remarkable few-
shot generalization capability (Chowdhery et al.,
2022; Brown et al., 2020). We employ LLMs for
parsing help articles but not for UI grounding since
we prefer to do it on-device for privacy reasons.

Language grounding in human-robot interac-
tion: Language guided robot actions for human-
robot interaction (Lynch and Sermanet, 2020;
Venkatesh et al., 2021) is a broadly related problem.
However, taking actions on real robots is much
more complex with uncertain outcomes, whereas
precise actions can be performed on the Ul with
near certainty. As a result, the difficulty with UI
grounded interactions is less about sensing and ac-
tuation and more about understanding user intent
and navigating the app by understanding its struc-
ture using external resources such as support pages.

Icon and widget captioning: Although Android
allows developers to provide content description
for images, not all app developers do so. To sup-
port a wide range of apps, it becomes necessary
to recognize icons and widgets (Li et al., 2020b;
Baechler and Sunkara, 2021). In our work, all the
apps provide the necessary description, so icon cap-
tioning is not necessary.

3 UGIF-DataSet: A New Multilingual
Multimodal UI-grounded Instruction
Following Dataset

To build and evaluate an Android Ul navigation
agent that can teach users how to use the UI, we col-
lect a new multi-lingual, multi-modal UI grounded
dataset called UGIF-DataSet. Itis a corpus of how-
to queries in text and speech in multiple languages,
instruction steps for each tutorial paired with se-
quences of Ul screens and actions as the tutorial
is completed by human annotators on Android de-
vices (Fig. 1).

The Pixel Help support pages provide step-by-
step instructions for performing common tasks on
Android. This is an example task: “How to block
unknown numbers?” for which the instruction text
is “1. Open your Phone app 2. Tap More. 3. Tap
Settings and then Blocked numbers. 4. Turn on
Unknown”. We crawl the Android support site and
extract the tutorial steps using simple rules that look
for ordered lists under a header. Annotators trans-
late and speak out loud the how-to query. They also
parse the tutorial steps to a sequence of macros in
Table 1. Additionally, for each tutorial task, annota-
tors are asked to operate a virtual Android device to
carry out the steps in the tutorial while the screen of
the device and the annotator’s actions are recorded.
Just before each action taken by the annotator is
forwarded to the virtual device and executed using
UIAutomator (Android, 2022), we record a screen-
shot of the device, the view hierarchy in XML, and
the action taken by the annotator at that step.

We used an internal platform for crowd-sourcing
annotations from annotators in India, Kenya, and
Mexico. Annotators were screened by asking
qualifying questions with multiple-choice answers.
Only those who successfully answered the qualify-
ing questions were allowed to participate in the data
collection. The qualifying questions tested linguis-
tic capability: simple questions to gauge whether
they can understand written content and speech in
the target language. There was no Android UI or
task specific training involved. The task description
explained the purpose of this data collection effort
and how it would be used for research. To protect
the privacy of the annotators, the annotator ID is
not included in this dataset release. The task design
was reviewed by privacy, ethics, and legal commit-
tees. The price set for each task was in compliance
with local laws.

The manual annotation process for collecting UL
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Macro Function

tap(e) Taps on the UI element speci-
fied in the argument (e)

toggle(e, Finds the UI element in the ar-

val=True) gument (e) and then searches
for the nearest Switch element
and taps on that

home () Presses the home button in An-
droid

back () Presses the back button

prompt(a) Requests the user to take some
action (a) and waits until an ac-
tion is performed

Table 1: List of all macros that can be generated from
instruction steps (Section 3).

Dataset characteristic Value
# of tutorials / language 523

# of train samples / language 152

# of dev samples / language 106

# of test samples / language 265
Number of languages 8
Total # of UI screens 3312
Avg # of Ul screens / tutorial 6.3

% of tutorials failing due to Ul drift | 29.9%
Max # of tasks / annotator 50

Table 2: UGIF-DataSet statistics (Section 3).

screens from the Android emulator scales linearly
with the number of UI languages. To mitigate this,
we collect UI screens from annotators only in En-
glish and search for each Ul string in the resources
directory of the app’s APK and replace it with the
translation provided by the developer in the APK
wherever it is available. If a translation is unavail-
able, we default to English. A typical Ul screen has
a mixture of strings in English and other languages,
but this is distinct from code mixing where two
languages are used in a single sentence.

The UGIF-DataSet dataset includes tasks in the
following apps: Settings, Google One, Gmail, Play
Store, Contacts, Messages, Chrome, Maps, Cam-
era, Google Photos, Google Earth, and Files (Ta-
ble 2). It differs from the PixelHelp dataset (Li
et al., 2020a) in the following ways. It:

* Contains UI elements in seven non-English
languages: Hindi, Kannada, Marathi, Gujarati,
Bengali, Swabhili, Spanish.

* Is a multi-modal dataset that includes not only

the view hierarchy of the screens but also a
screenshot at each step of the execution.

* Does not assume that the UI element is visible
on the screen. The annotator is allowed to
scroll and find the UI element referred in the
instruction text.

* Includes samples where the instruction text
is outdated and does not correspond to the
current version of the UI. In such cases, an-
notators can either adapt the instructions to
the current UI or declare an error if they are
unable to complete the task.

4 Model

UGIF has three components: Retrieval, Parsing,
and Grounding (Fig. 2). Based on text or speech in-
put, the most relevant how-to instruction in English
is retrieved and then parsed to generate macros.
These macros are executed on the Android device
by grounding them in the UI (Alg. 1).

Algorithm 1 UGIF end-to-end description

steps < retrieve_howto(user_query)
macros <— parse(steps)
i+0
while i < len(macros) do

macro <— macros[i]

action < ground(macro, screen)

if action # SCROLL then

i+i+1

end if

end while

Retrieval We use Google Cloud Speech? as an
off-the-shelf speech recognizer to convert speech
to text. A multilingual sentence embedding model
(Feng et al., 2020) is used to obtain a vector corre-
sponding to the query, which is then used to retrieve
the most similar how-to by cosine similarity of the
how-to page title in the UGIF-DataSet corpus.

Parsing The parsing model takes how-to instruc-
tions and generates a sequence of macros (Table 3).
We tried various language models such as PaLM
(Chowdhery et al., 2022), GPT-3 (Brown et al.,
2020), T5 (Raffel et al., 2020), and UL2 (Tay et al.,
2022)) to generate the macro given the instruction
text. For parsing with finetuned models, the how-to
instruction steps was provided as input (see Fig. 5).

“https://cloud.google.com/speech-to-text
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How-To
Index

Query
Help Document
AT e F Fiel B
FH wollR FI?

(How to block calls from
unknown numbers?)

1. Home

2. Back

3. Phone

4. Messaging

Ul Action
Ul Grounder tap(<ui id_3>)

tap(‘phone’);

Figure 2: Our initial approach using Large Language Models (LLM) for UI Grounded Instruction Following. The
user’s query “How to block calls from unknown numbers?" is matched against how-to articles in the index to find
the closest matching help document. The instruction steps in the help document are parsed using an LLM to a
sequence of macros like tap(), toggle(), home(), etc. that must be executed on the Ul. The phone grounder
grounds each macro in the Ul and selects the Ul element that the user must act on (Section 4).

Instruction text
Open the Phone
app. Tap Recents.

Macro sequence
tap("Phone");
tap("Recents”);
Open the Settings | tap("Settings");
app. Tap Network | tap("Network

& Internet. Turn off | & Internet”);
wi-fi. toggle("wi-fi",
False);

Table 3: Sample instructions and corresponding macro
sequences (Section 4).

In the case of the few-shot prompted models, the
prompt preamble “Use these examples to generate
code.” was followed by few-shot examples in the
same format (Text: ...\nCode: ...\n) as shown in
Fig. 5.

Grounding The grounding model takes a macro,
potentially with arguments, as input along with the
current Ul screen and performs a series of actions
on the Ul to complete the task specified by the
macro. The macros in our setup are described in
Table 1.

For both tap() and toggle(), it is necessary
to locate the UI element being referred to in the
argument of these macros. i.e., we are given a
macro with its argument referring to a Ul element
and a list of Ul elements currently visible on the
screen, and we must decide which element to pick
(or to not pick at all and scroll for a better match).
For finding the closest matching Ul element, we
experiment with jaccard similarity, UUIBERT (Bai
et al., 2021), and multi-lingual BERT sentence em-
bedding (LaBSE) (Feng et al., 2020). The jaccard
similarity between a Ul element and the referring
expression is measured by splitting the words in the
Ul string and the referring expression and finding

the jaccard similarity between these two sets. The
LaBSE model generates embeddings for entire sen-
tences, which we utilize to compute embeddings
for each Ul element and also for the input referring
expression in the macro. The cosine similarity be-
tween the embeddings for the referring expression
and the UI element is used as a scalar measure of
the similarity between the arugment to the macro
and the UI element. When the app developer has
not provided translation for some Ul element, the
system defaults to showing the English label for
that UI element. Since the multilingual sentence
embedding model (LaBSE) does not rely on lan-
guage identification, we can utilize the sentence
embedding without regard to the language in the
UI element.

We use a scrolling threshold 7" to decide whether
to scroll or to accept a Ul element currently on the
screen. If the similarity metric is less than 7', we
choose to scroll down looking for a better match,
whereas if the similarity metric is above 7', the best
matching Ul element is chosen for interaction (ei-
ther tapping or toggling). The appropriate value for
T is determined through experimentation on the
development set. Likewise, we also use UiBERT
to generate embeddings for all the UI elements on
the screen along with the input referring expres-
sion, but with UIBERT we introduce an additional
"Not found" UI element that the model is trained
to choose if the scroll action is taken.

For the tapping macro, it is sufficient to look
for the UI element most similar to the argument in
the macro. However, for the toggle macro, when
using LaBSE embeddings we first find the Ul ele-
ment referred to by the argument to the toggle ()
macro, and then look for an Android Switch ele-
ment nearby in the view hierarchy (Fig. 3). This
works as long as the app is using the standard An-
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Figure 3: A sample sequence of Ul screens and actions resulting from the execution of the macro: toggle("Allow

notification snoozing”,

True). The UI grounding model recognizes that none of the UI elements is a

sufficiently close match to the string in the argument of the macro, scrolls down, finds a match, and taps on the

nearest switch to turn it on (Section 4).

B PalLM-540B | GPT-3175B PalLM-540B wio span prediction
B GPT-3175B wio span prediction

0.6

0.4
0.2 II
0.0
4-shot 10-shot 16-shot 20-shot 30-shot

Figure 4: Parsing accuracy on the development set of
UGIF-DataSet (Section 5.2).

droid Switch element and a straightforward XML
layout of the mobile UI where the text field is close
to the Switch element. Nevertheless, such heuris-
tics are brittle and could be resolved by multimodal
models which we leave for future work.

5 Experiments

The UGIF-DataSet dataset contains manually an-
notated oracle parses (macro sequences) for each
how-to instruction text. We measure parsing ac-
curacy by looking for an exact match between the
generated parses and the oracle parses.

The dataset also contains manually annotated
screen-action sequences for the entire how-to, but
it does not have such sequences for each macro.
So, to evaluate the grounding model, we consider
the end-to-end task completion success rate. Al-
though it is possible to complete each task in more
than one way, we want to follow the how-to in-

struction text exactly, so we consider a task to be
completed successfully only if the entire sequence
of actions predicted by the model exactly matches
the sequence of actions taken by the annotator.

5.1 How well does retrieval work across
languages?

The multilingual sentence embedding model (Feng
et al., 2020) is excellent at matching how-to queries
in non-EN languages to how-to queries in English
(Table 6). Examination of the failures with non-EN
text queries revealed noise in the dataset where a
small percentage of queries are repetitions with mi-
nor variations such as punctuation. When Google
Cloud Speech API is used as an off-the-shelf auto-
mated speech recognizer (ASR) to convert speech
input to text, there is a measurable drop in perfor-
mance across all languages, but the reduction is
large for Swahili. We also noticed that ASR fail-
ures were due to poor voice clarity, background
noise, and more common with technical terms such
as "cache".

5.2 How does parsing performance scale with
dataset and model size?

There is a steep increase in parsing performance
from 4-shot prompting to 10-shot prompting
(Fig. 4). At 30 examples, the number of tokens
in the input exceeds the maximum that the model
can handle and performance deteriorates. Marking
salient spans in the instruction text as an intermedi-
ate step for chain of thought prompting (Wei et al.,
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Model Parsing
configuration accuracy
PalLM 540B 20-shot ICL 46%
GPT-3 175B 20-shot ICL 50.9%
PalLM 8B soft prompt tune 49.1%
PalLM 62B soft prompt tune ~ 64.9%
PalLM 540B soft prompt tune  66.8%
UL2 20B full finetune 66.8%
T5 11B full finetune 66.8%
PalLM 8B full finetune 64.5%
PalLM 62B full finetune 67.5%
PalLM 540B full finetune 70.1%

Table 4: Parsing accuracy of pre-trained models on
the UGIF-DataSet test set. In-context learning (ICL)
is with 20 randomly selected training samples (single
run). Fine-tuning and soft prompt-tuning with a 50-
token soft prompt prefix (Section 5.2) is performed
with all 158 training samples and hyper-paramter
search over dropout values 0.0, 0.02, 0.05, 0.1, and 0.2
on 256 TPUs for about 24 hrs each. For fine-tuning, the
best dropout was 0.1 with training for 10k steps, and
for soft prompt-tuning, the best dropout was 0.0 with
training for 17.5k steps.

2022) degrades parsing performance. When all
the available training samples are used with full
fine-tuning or soft prompt tuning (Lester et al.,
2021), the resulting performance is significantly
better than few-shot prompting (Table 4). The pars-
ing accuracy increases only modestly with model
size when full fine-tuning is used. However, with
soft prompt tuning, there is more benefit to using
larger models.

5.3 What are the common failure modes of
large language models for parsing?

We examined the test samples where the model’s
predictions were incorrect (Fig. 5) and found the
PalLM 540B finetuned model (a) generated incor-
rect macros, (b) made minor errors in predicting
the span of the argument such as including the full
stop, (c) missed salient parts of the input instruction
resulting in skipped macros, and (d) hallucinated
non-existent macros (Fig 6).

5.3.1 How well do existing models work for
UI grounding?

We find that even simple string matching models

can offer good performance when the language in

the how-to matches the Ul language (Table. 5). To

our surprise, UIBERT underperformed this base-

line. When the instruction text and the Ul language

@ /Text: open the google play app google play. at the top right, tap the
profile icon. tap settings and then authentication and then require

authentication for purchases.

Code: tap("google play");| tap("settings");

tap("authentication"); tap("require authentication

for purchases"); /

@ Text: on your android phone or tablet, open the gmail app. select
one or more emails. in the top right, tap more more and then report

spam.
Code: tap("gmail"); select("one or more emails");
tap("more"); tap("report spam");

@ Text: On your Android phone or tablet, open the Google Earth app.
On the left, tap Map Style. Turn Gridlines on.

Code: tap("Earth"); tap("Map Style");

tap("Gridlines"); toggle("Gridlines", True);

Figure 5: Incorrect sequences of macros generated by
the 20-shot prompted PaLM 540B model. In the first
example, the macro tap("profile icon") is omit-
ted in the output. In the second example, the model
hallucinates the non-existent select() macro. In the
last example, it has generated an un-necessary tap:
tap("Gridlines") (Section 5.3).

DIFF_STR

INCORRECT_MACRO
DIFF_STR_MINOR

EXTRA_MACRO

MISSING_MACRO
oo MISC

Figure 6: The types of parsing errors made by the
PalLM 540B finetuned model on the 265 EN test sam-
ples in UGIF-DataSet (Section 5.3).

are different, we have to use LaBSE which is a
multilingual model, but we find that performance
with English is still better than other languages. An
examination of the incorrectly predicted samples
(Fig. 7) using LaBSE revealed these modes of fail-
ure (Fig. 8): (a) Inexact string matching fails and
the model keeps scrolling in the hope of a better
match which it never finds (84.5%), (b) the model
overtriggers and chooses an inexact match instead
of scrolling and looking for a better match (5.2%),
(c) the model lacks knowledge of common UI pat-
terns and app names, so it gets confused between
“Play Store” and “Google One” when trying find
the closest match for “Google Play” (5.2%).

The cases where the grounding model overtrig-
gers and chooses a partially matching Ul element
and fails to either scroll down or recognize that
the how-to is outdated results in incorrectly exe-
cuted steps on the UI. These are of the most serious
concern since they lead to a poor user experience.
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Model configuration Ul Language

en kn mr gu hi bn es SW
Oracle parse, Jaccard ground 554 — — — — — — —
Oracle parse, UIBERT ground 317 — — — — — — —
Oracle parse, LaBSE ground 52.8 36.6 392 415 437 407 498 354
PalLM 540B parse, LaBSE ground 48.6 33.6 36.6 385 40 377 464 32.1

Table 5: End-to-end task completion success rate of different model configurations on the UGIF-DataSet test set

(Section 5.3.1).

Query Oracle text ASR text
Language P@1 P@1

en 100 94.4

kn 97.9 88.6

mr 98.1 91.7

gu 97.3 89.6

hi 94.6 91.3

bn 97.3 91.2

SwW 93.0 76.4

es 96.5 94.8

Table 6: Comparison of performance for retrieving the
closest matching how-to in English from queries in dif-
ferent languages (Section 5.1).

Battery

100.

tap (“Compose”) tap(“Send Feedback”)

tap(“Battery Share”)

Figure 7: The UI grounding model chooses incorrect
actions given the UI state and the macro. In the first ex-
ample, the model should have tapped on “Start chat” as
the matching element for “Compose” but instead tries
scrolling down and throws an error that a matching Ul
element is not found. In the second example, the model
should have scrolled down to find “Battery share” but
instead erroneously selects the partially matching “Bat-
tery percentage”. In the last example, the model should
have recognized that the “Send feedback” button is
missing in the Ul and thrown an error, but instead er-
roneously selects the partially matching “Send a mes-
sage” button (Section 5).

Moreover, help articles frequently become out-of-
date as evidenced by the fact that 29% of the sam-
ples in UGIF-DataSet are marked by annotators

BORDERLINE BAD DIFF_STR
MISC o

MISTAKEN_FOUND -~

DID_NOT FIND
B4.5%

Figure 8: Categories of Ul grounding errors using
LaBSE on the 265 EN test samples in UGIF-DataSet
(Section 5.3.1).

Model, Dataset Success
rate

Li et al. (2020a), PixelHelp (en) 70.5%

Ours, PixelHelp (en) 71.1%

Ours, UGIF-DataSet (en) 48.6%

Ours, UGIF-DataSet (sw) 32.1%

Table 7: Comparison of our best performing model
(PaLLM 540B for parsing and LaBSE for grounding) on
different datasets. There is a wide gap between the
model performance on the PixelHelp (en) dataset
and UGIF-DataSet (sw) which suggests considerable
headroom for improvement (Section 5).

as having instruction text not matching the Ul in
Android 12.

We also evaluated our best performing model on
the PixelHelp dataset (Li et al., 2020a). Table 7
shows that UGIF-DataSet is a harder dataset with
significantly greater headroom for improvement
especially in non-EN languages.

6 Conclusion

We proposed helping new smartphone users by
showing them how to perform tasks on the UI
based on voice queries. We evaluated existing lan-
guage and sentence similarity models for the task
of retrieving and executing how-to instructions on
the UI where the Ul language potentially differs
from the language used in the instruction text. The
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models we build for this task must be capable of
adapting to minor variations in the UI as the newer
versions of the app are frequently released and in-
structions become outdated. Multilingual Uls pose
the challenge of having to simultaneously work
with multiple languages in a single UI screen since
app developers may not have provided translations
for all UI elements. Finally, our evaluation of cur-
rent pre-trained models suggests that there is signif-
icant room for improvement and that a multimodal
language-UI foundation model could lead to sub-
stantial gains.

7 Limitations

UGIF-DataSet contains Ul tasks on only a few
popular Android smartphone apps. It does not in-
clude tasks in other form factors such as tablets
or watches. Although a model trained exclusively
on this dataset may not be sufficient for UI tasks
on other OSes and form factors, by describing the
challenges we faced, we hope this work contributes
towards building a well-lit path to collect similar
datasets and build models for other OSes and form
factors.

The user interface evolves much more frequently
than natural language or images. As a result, the
dataset and models trained on it may need adap-
tations, which we leave as a topic of future explo-
ration. Since we have captured Ul screens at a
particular point in time, we were unable to quan-
tify the reduction in task completion rate due to
UI drift or investigate methods specifically aimed
at addressing such UI changes. An important fu-
ture direction is to capture such UI changes as apps
evolve over time and investigate how well models
generalize to these changes.

Our dataset contains only one speech sample
per query in each language, so the diversity of
speech samples is limited. Moreover, the speech
samples were crowd-sourced by asking annotators
to speak out loud the how-to query in the title of
the FAQ page, so this may not match how users
might ask queries with the same intent without
being prompted with the FAQ page. All the instruc-
tions have been scraped from the Google support
site, so our evaluation of parsing does not cover
instruction text on forums and other support sites.
Furthermore, all the Ul captures in our dataset start
at the home screen, but it would be desirable to
also evaluate UI grounding from arbitrary starting
points.

8 [Ethical Considerations

Automated agents that operate over the UI could
potentially be misused and pollute the global digital
commons by making it harder for app developers
to trust that the user is a real user. As a result, it is
possible that many developers may choose to miti-
gate this by requiring some form of identification
to use the app, which could hurt marginalized com-
munities and users who struggle with such entry
barriers. Further investigations and user studies on
the benefits of automated Ul agents will be helpful.
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