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Abstract

In this work, we (1) introduce Curriculum
Instruction Tuning, (2) explore the poten-
tial advantages of employing diverse curricu-
lum strategies, and (3) delineate a synthetic
instruction-response generation framework that
complements our theoretical approach. Distinct
from the existing instruction tuning dataset,
our generation pipeline is systematically struc-
tured to emulate the sequential and orderly
characteristic of human learning. Addition-
ally, we describe a methodology for generating
instruction-response datasets that extensively
span the various stages of human education,
from middle school through the graduate level,
utilizing educational subject catalogs.

Before training, we meticulously organize the
instruction data to ensure that questions esca-
late in difficulty regarding (A) the subject mat-
ter and (B) the intricacy of the instructions. The
findings of our study reveal that substantial im-
provements in performance can be achieved
through the mere application of curriculum
ordering to instruction data—achieving gains
of +4.76 on TruthfulQA, +2.98 on MMLU,
+2.8 on OpenbookQA, and +1.28 on ARC-
hard—compared to random shuffling. This en-
hancement is achieved without incurring addi-
tional computational expenses. Through com-
prehensive experimentation, we observe that
the advantages of our proposed method are con-
sistently evident across nine benchmarks.

1 Introduction

In contemporary times, state-of-the-art instruction-
following models like ChatGPT and GPT-4 (Ope-
nAI, 2023) have drawn attention owing to their
unparalleled proficiency and versatility. A notable
advancement over previous generation large lan-
guage models (LLMs), like GPT-3 (Brown et al.,
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Dataset Training Scheme
(Curriculum)

World
Knowledge

Commons.
Reasoning

CORGI Human Curriculum +4.06 +2.30
CORGI Random Shuffle +0.81 +0.57
Vicuna Random Shuffle +2.17 +0.37
WizardLM Random Shuffle +0.11 +0.46

LLaMA 2 13B (Base LLM) 52.45 63.37

Table 1: Human curriculum-inspired strategies (which
we name interleaved curriculum) boost macroscopic
LLM performance. The numbers are averages of perfor-
mance improvements on LLaMA 2 13B after instruc-
tion tuning with respective datasets. World Knowledge:
MMLU, TruthfulQA, TriviaQA, Commonsense Reason-
ing: OpenBookQA, ARC, PIQA, CommonsenseQA.

2020), is their impressive capability to adeptly com-
prehend and act upon human instructions, where
this alignment is attributed to the additional instruc-
tion tuning process (Wei et al., 2021). As these
models continue to display progress, numerous
research studies have offered many intriguing in-
sights on instruction tuning through their endeavors
to make models follow more complex instructions
and enhance performance across a broad spectrum
of tasks. For instance, various studies emphasize
the significant influence of instruction data quality
(Touvron et al., 2023; Zhou et al., 2023) and the
incorporation of diverse instruction formats (Wang
et al., 2023b; Xu et al., 2023) on overall perfor-
mance. Furthermore, including step-by-step rea-
soning (Wei et al., 2022) within the responses has
been demonstrated to improve performance and
elevate the reasoning ability of the language model
(Mukherjee et al., 2023). While recent research has
offered valuable insights into optimizing data for-
mats to a better form, exploring how to efficiently
order and collect such data in a more grounded,
trackable manner remains elusive, often relying on
randomized or undirected diversity as the prevail-
ing norm. Ensuring efficiency in the instruction
tuning process is important as extended instruction
tuning undermines the inherent capability of LLM.
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Figure 1: Overview of our educational framework. We create a dataset based on a continuum from secondary school
to grad school, extracting multiple concepts from each course. For every concept, we formulate 19 questions of
varied cognitive levels using Bloom’s taxonomy.

Meanwhile, since the architectures of neural net-
work innately emulates the human brain (Han et al.,
2021), adopting a learning process analogous to
human education — a highly organized approach,
progressively refined and empirically proven effec-
tive over centuries — constitutes a logically co-
herent and methodologically robust learning strat-
egy for the machine as well (Bengio et al., 2009).
While many studies within the realm of curriculum
learning have demonstrated the efficacy of this hy-
pothesis in reaching faster convergence and finding
better local minima, these investigations have pre-
dominantly offered a nuanced micro view, mostly
confined to a specific task. To draw an educational
analogy, such studies are akin to observing how
students behave when learning a particular subject
within the vast curricula.

Venturing beyond the niche perspective, our
study aims to explore a comprehensive, holistic
viewpoint on curriculum learning in the knowledge
domain. Specifically, we conceptualize the lan-
guage model as a middle school student about to
progressively acquire intellectual knowledge from
educational institutions such as high schools and
universities over the coming decades. And attempt
to guide the student by the fundamental principle
of learning from simple to complex (Sweller, 1988;
Bloom et al., 1956) based on two primary distinct
dimensions: (1) Educational Stage: sequentially
mastering elementary to intricate concepts and (2)
Cognitive Hierarchy: gradually deepening the un-
derstanding of each concept. For instance, in math-
ematics, humans initiate the learning process with
the fundamental concept of addition, gradually pro-

gressing to more complex concepts like subtraction
and multiplication by exploiting previously learned
concepts to ease the learning (Bengio et al., 2009).
Furthermore, when humans learn multiplication,
the initial stage usually involves rote memorization
of the times tables, progressively deepening the
comprehension of the concept to the extent where
we expand its application to real-world situations.
This cognitive process enables the human intellect
to traverse diverse fields, aligning massively multi-
domain knowledge.

To systematically explore the potential merits of
the interplay between educational curriculum and
human cognitive process, we curated a massive syn-
thetic knowledge instruction dataset and its train-
ing method called CORGI (Cognitively rigorous
instructions). As illustrated in Figure 1, we initially
establish a continuous progression across educa-
tional stages by integrating concrete educational
frameworks provided by international secondary
education curricula (i.e., Cambridge IGCSE) and a
combination of several university catalogs. Subse-
quently, using a teacher model like ChatGPT, we
extracted various topics covered in every course at
each educational level. Based on the learning ob-
jectives in Bloom’s taxonomy (Bloom et al., 1956),
we crafted a comprehensive set of questions for
each topic, with varying degrees of cognitive level.
A standout feature of our dataset is its rich meta-
information for each data point, facilitating the
generation of coherent and contextually meaning-
ful training data sequences.

As shown in Table 1, we found compelling em-
pirical evidence from CORGI that our cognitive pro-
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Step 1 Step 2 Step 3

Choose learning goals: extract relevant, 
real-world educational concepts from 
existing human curricula.

Develop learning materials: analogous  
to the human remote learning setup 
through pre-made instructions

Revise learning materials: 
go through instruction materials to 
filter out unclear ones

Utilize existing school 
education curricula to 
determine what should 
be trained to create a 
generally-performant 
agent.

PHYS008: Physics for 
Architects I - An 
introduction to the classical 
laws of mechanics, including 
static equilibrium, elasticity, 
and oscillations,...

Secondary school University Grad. school

“Progressive deepening of knowledge allows human 
intellect to traverse diverse fields, aligning massively 
multi-domain knowledge. This can apply to LLMs.”

Remember Understand Apply
Bloom’s Taxonomy

School Curriculum

Utilize a teacher model 
to synthetically extract 
concepts from course 
descriptions.

Static equilibrium refers 
to the state of an object 
when all the forces 
acting on it are ...

Static equilibrium

Energy conservation

Hooke’s law

Utilize teacher model 
and CORGI question 
template (19 cognitively 
rigorous formats) to 
synthetically generate 
instructions from 
extracted concepts.

(Energy conservation: 
Remember: Format 1) 
Match each term: Terms: A. 
Energy conservation, B. 
Closed system Definitions: 
1. The principle that states 
that the total energy of a 
system remains constant 
over time. 2. A system that 
does not exchange matter or 
energy with its surroundings

(Energy conservation: 
Apply: Format 19) Now, …

x19Also collect answers to 
these instructions from 
the same teacher 
model, using long-form 
explanation-inducing 
system messages.

. . . 

Motivations

“Human curriculum is designed to use diverse, 
cognitively-motivated questions to better 
teach a concept. Can we apply this to LLMs in 
the format of pre-made instructions?”

Knowledge-based 
Filtering: Utilize 
Contriever to retrieve 
relevant Wiki passages 
to an instruction and 
check if the instruction 
is well-motivated.

Rule-based Filtering: 
Use manually defined-
rules to delete refusal 
behaviors that are 
known to harm resulting 
LLM performance.

Retrieve

Check: 
is there a 
relevant, 
supporting 
article on 
Wikipedia?

(Energy conservation: 
Remember: Format 1) 
Match each term: 
Terms: A. Energy …

“ai assistant”, “ai language 
model”, “sorry, ”, “sorry but ”, 
“sorry for the
confusion ”, “i’m unable to ”, 
“without further ”, 
“apologize”, “i cannot”

Red flag keywords

“Unclear instructions, or irrelevant information 
can increase extraneous cognitive load, and for 
learners, “it is never advantageous to increase 
extraneous cognitive load (Sweller et al., 2011)” ”

Figure 2: Overview of our proposed curriculum dataset construction steps, which preserves the progressive metadata
of the concept difficulty and instruction-format difficulty. These characteristics allow the application of pedagogically
motivated curriculum learning strategies, which we discuss further in Sections 2.2 and 3.3.

gressive training inspired by the human curriculum
yields significant advantages over randomized train-
ing. Notably, when CORGI is subjected to random
training, its performance is comparable to other
instruction datasets such as WizardLM (Xu et al.,
2023) and Vicuna (Chiang et al., 2023). However,
by simply optimizing the sequence of learning data,
we observed a roughly 3 points improvement in the
knowledge benchmark (i.e., MMLU), surpassing
both WizardLM and Vicuna with a considerably
smaller dataset size (66K). Moreover, this improve-
ment is not limited to the knowledge domain and
extends beyond the broader benchmarks, including
+1.73 in commonsense reasoning benchmarks (i.e.,
OpenBookQA, ARC, PIQA, CommonsenseQA)
and +2.37 in language understanding (i.e., Hel-
laSwag, Lambada).

2 CORGI

CORGI is a structured educational model that mim-
ics the educational journey of a student. In this
section, we delve into the detailed process of con-
structing our dataset and efficient training method
inspired by the human knowledge acquisition pro-
cess.

2.1 Dataset Construction

The primary objectives of our dataset are: (1) to
encompass the full coverage of knowledge students
acquire through their curriculum and (2) to store
detailed meta information for each data, enabling
the formation of meaningful order. However, con-

structing such a broad scope of knowledge dataset
from scratch can be prohibitively costly or nearly
impossible. To overcome this hurdle, we propose
an automatic approach to generate synthetic data by
utilizing a teacher language model (i.e., ChatGPT).
Furthermore, we also utilize real-world educational
curricula, such as university catalogs and the Cam-
bridge IGCSE curriculum (refer to Appendix C
for more information), as a foundational source
when generating synthetic datasets. These curric-
ula cover 45 distinct subjects and provide rich meta-
data, including educational stage (i.e., secondary,
undergraduate, or graduate), subject (e.g., biology,
math, etc.), course, and syllabus (i.e., course de-
scription), ensuring a broad spectrum of knowl-
edge coverage as well. At a high level, the process
of constructing our instruction dataset consists of
three steps. (See Appendix B for a graphical illus-
tration with examples.)

2.1.1 Step 1. Extract Concepts from
Educational Curricula

This step aims to extract multiple essential aca-
demic concepts for each course based on its syl-
labus. However, the initial syllabus often contains
unnecessary details, such as administrative jargon
and scheduling, with limited content about the ac-
tual coverage of the course. Accordingly, we em-
ploy a specialized refinement prompt to convert
these descriptions into more substantive, textbook-
like variants. Using these enriched versions as
a source, we extract fine-grained academically

1283



Figure 3: A comparison of two training sequences. Small blocks (e.g., H1, M1) stand for fine-grained concepts per
subject. Blocking naively stacks hierarchical blocks per subject, while interleaving cyclically revisits each subject,
adhering to the cognitive hierarchy from Bloom’s taxonomy.

meaningful concepts through a concept-generation
prompt (specific prompts are stipulated in Ap-
pendix E). To achieve maximal diversity and dis-
tinction among the selected concepts, we harvested
an extensive array of fine-grained concepts and
subsequently eliminated any redundancies. Specifi-
cally, we employed semantic deduplication utiliz-
ing a cosine similarity threshold of 0.67 using the
sentence-transformers library model all-MiniLM-
L12-v2 (Reimers and Gurevych, 2019). As a result,
we amassed a total of 5.6K fine-grained concepts
in 1.8K courses in 45 subjects.

2.1.2 Step 2. Generate Synthetic Instructions
On top of previously collected concepts, we gen-
erate actual instruction data based on a systematic
educational learning object called Bloom’s taxon-
omy (Bloom et al., 1956; Krathwohl, 2002), which
serves as a seminal guide for many educators. This
taxonomy is a hierarchical arrangement of six cog-
nitive processes that can be visualized as a pyramid.
The lower-order layers consist of relatively simple
thinking skills (i.e., Remember, Understand, and
Apply), and the upper layers represent more com-
plex cognitive processes (i.e., Analyze, Evaluate,
and Create). The progression ensures that learners
gather information and learn how to use, analyze,
and even create original knowledge.

Exploiting this concept, we produce diverse data
for a single concept by giving a detailed object from
each cognitive level as instructions to a teacher lan-
guage model during data generation. Namely, we
first build a pre-defined 19 plug-and-play templates
leveraging the definition and objectives of the three
lower cognitive hierarchies: Remember, Under-
stand, and Apply, as outlined in the original paper
(Bloom et al., 1956). (Appendix D summarizes
the actual templates with corresponding original
definitions.) We focus solely on these three lev-
els because the higher cognitive levels often pro-

duce questions with no clear answers and contain
biased or subjective content. Utilizing these modu-
lar templates and 5.6K concepts from the previous
step, we produce 107K cognitive hierarchy datasets.
Each query incorporates a random system message
(see Appendix E) to elicit comprehensive explana-
tions or rationale for the answer following previous
work (Mukherjee et al., 2023).

2.1.3 Step 3. Filter Unclear Instructions
It is important to note that our dataset is synthetic
and relies heavily on the teacher language model.
This innate dependence occasionally results in in-
consistency in the question-answer pairs, which
could drastically degrade the performance (Tou-
vron et al., 2023; Zhou et al., 2023). To ensure
the quality of our dataset, we employ a third-party
tool, Contriever (Izacard et al., 2022), to filter out
low-quality data. For each data instance, we gather
three distinct passages sourced from Wikipedia,
comprising a precise span of 256 words. We then
assess the relevance between excerpts and a ques-
tion using a retrieval-checking prompt, and only
those that meet the relevance criteria are included in
the final dataset. We also applied some basic string-
match rules to remove refusal data containing par-
ticular text sequences, like ‘As an AI ...’. The
Contriever-based method removes about 40∼50%
of the instances (30K → 15K, 60K → 37K, 107K
→ 66K in Figure 7). String-matching accounted for
a significantly small percentage, removing 1∼2%
of samples containing illegal or unhelpful text.

2.2 Curriculum Instruction Tuning

In sync with our richly annotated dataset, which
embodies meta-details such as subject, course,
concept, and cognitive hierarchy, we introduce
a cognitively-inspired training method to inject
knowledge from the dataset efficiently. The pri-
mary philosophy of our training paradigm is to

1284



Model # Data

MMLU ARC PIQA CSQA OBQA HellaSwag†

General
Knowledge

Sci. Exams -
Hard Set

Physical Ob-
jects

Real-World
Concepts

Science Text-
books

Real-World
Activities

5-shot 25-shot 10-shot 10-shot 5-shot 10-shot

CORGI†

66K
57.74 58.70 81.99 70.19 51.80 82.98

CORGI- Blocking 55.63 56.57 80.20 69.53 48.60 81.89
CORGI- Random Shuffle 54.76 57.42 80.30 68.63 49.40 81.89
Vicuna v1.5 125K 56.50 55.80 81.56 70.19 47.40 80.21
WizardLM v1.2 250K 55.26 55.97 81.45 68.30 49.60 80.91

LLaMA 2 13B - 54.99 56.31 80.85 68.30 48.00 80.80
†The default CORGI model uses an interleaved sorting approach as described in Section 2.2.

Table 2: Performances of LLaMA 2 13B based models on 6 different benchmarks.

gradually step towards a genuine understanding of
various concepts by following the hierarchical pro-
gression in Bloom’s taxonomy. When only a single
concept is to be learned, one can linearly follow
this hierarchy. Yet, as the breadth of knowledge
increases, as in our case, there are numerous design
choices in determining how to assort these multiple
concepts efficiently.

One straightforward way is blocking, which
stacks each hierarchical block for each subject.
(See Figure 3.) However, numerous studies suggest
that interleaving practice, a strategy of mixing dif-
ferent topics, is more helpful to students to incorpo-
rate existing knowledge and skills with new ones.
Specifically, interleaving helps mitigate the risk
of cognitive decay (Luo et al., 2023b), a notable
drawback of blocking where previously learned
concepts are set aside for long periods. Intrigu-
ingly, this phenomenon is also the case in machine
learning and is commonly known as catastrophic
forgetting (McCloskey and Cohen, 1989). To make
the best of the two worlds, our training curricu-
lum traverses a global1 progression of the cognitive
load from Bloom’s taxonomy while interleaving
different subjects to reinforce retention and under-
standing. As discussed in the subsequent sections,
the proposed arrangement displays superiority on
various benchmarks compared to other alternatives,
revealing tendencies similar to reference experi-
ments on humans (Taylor and Rohrer, 2010).

3 Experiments

3.1 Setup
This section assesses the performance of CORGI

with other open-sourced models across various
knowledge-related benchmarks closely aligned

1Term ‘global curriculum’ is used in the past to describe
different strategies. Our definition of global is not analogous
to some existing works like Weinshall and Amir (2020)

with our data domain. Here, we highlight the most
important components of our experimental setup.

Baselines. We adopt LLaMA 2 13B models
as the primary backbone in the following main
experiment. We subsequently instruction-tuned
5 epochs on our dataset, both curriculum-based
and non-curriculum-based (naive stacking - block-
ing) approaches, to take a closer analysis of our
framework on two dimensions: the data-centric
and curriculum-centric aspects. We selected Vi-
cuna v1.5 (Chiang et al., 2023) and WizardLM
v1.2 (Xu et al., 2023) for other competing baselines.
These models are also instruction-tuned on LLaMA
2 with different data collection paradigms. Specifi-
cally, Vicuna sources a diverse array of real-world
user queries from a publicly accessible ChatGPT
prompt-sharing platform, while WizardLM utilizes
an innovative method termed Evol-Instruct, which
generates synthetic instructions by formulating pro-
gressively challenging questions.

Benchmarks. We evaluated the aforemen-
tioned baselines across six different benchmarks:
MMLU, ARC, PIQA, CommonsenseQA, Open-
bookQA, and HellaSwag2. Among these bench-
marks, MMLU is closely aligned with our data
since MMLU assesses the extensive coverage of ed-
ucational content, spanning from secondary school
to graduate levels, across diverse subjects.

3.2 Results

Table 2 reports the performance of CORGI and
other competing methods on 6 benchmarks, where
CORGI generally outperforms others with consid-
erably smaller dataset size. Our observations in-
dicate that interleaving, which involves a global
progression of cognitive difficulty while revisiting
diverse subjects, consistently outperforms block-

2The detailed descriptions and references of each dataset
are stipulated in Appendix A.

1285



Figure 4: (Continued from Figure 2) More examples of local progressions. A comparison of clustering and spiral
training sequences. The clustering stacks hierarchical blocks for each concept, while the spiral cyclically revisits
each concept and alternates cognitive difficulty from Bloom’s taxonomy.

Figure 5: Local curriculum diminishes performance improvement. The figure shows a macroscopic, averaged
performance comparison of several benchmark improvements with respect to the base model (LLaMA 2 13B)
performance. World Knowledge: MMLU, TruthfulQA, TriviaQA, Commonsense Reasoning: OpenBookQA, ARC,
PIQA, CommonsenseQA, Language Understanding: HellaSwag, and Lambada. A full breakdown of this chart is
given in the Appendix H.

ing, which simply stacks subjects on top of one
another in a straightforward manner. Overall, the
order in which one presents learning material dur-
ing instruction tuning can make a big difference
in the final performance. When one employs a
suitable curriculum, it can improve performance
on most major benchmarks, including knowledge,
commonsense reasoning, and language understand-
ing (this is further evidenced in Figure 5). In our ex-
periments, CORGI demonstrated notable improve-
ments when subjected to our interleaved curriculum
training (∆MMLU +0.64 intrlvng.−−−→ + 2.75, ∆ARC
+0.26 intrlvng.−−−→+2.39, ∆PIQA −0.65 intrlvng.−−−→+1.14,
∆OpenbookQA +0.60 intrlvng.−−−→+ 3.8) compared to
naive stacking of concepts. The results demonstrate
a notable enhancement, as both interleaving and
blocking employ the identical dataset and training
configuration, with the only difference being the
sequence in which the data is presented.

The reasonable conjecture for such improve-
ments is multifaceted. One salient factor is that
instruction tuning is usually done with a limited
training time budget compared to pre-training since
extensive training can exacerbate drawbacks, po-
tentially diminishing the language model’s gen-
eralization capabilities. Curriculum learning is a
likely solution to this dilemma, which is known

to reach convergence faster than random training
(Soviany et al., 2022; Wang et al., 2021). Another
possible advantage of curriculum learning is its ro-
bustness under noisy datasets (Wu et al., 2020). As
mentioned earlier, CORGI dataset is innately syn-
thetic and noisy since it is gathered from a teacher
model ChatGPT. In Section 3.4, we will provide a
comprehensive examination of the adverse effects
associated with the presence of noisy data and its
relationship with the curriculum.

3.3 Analysis on Curriculum
When training towards multi-domain knowledge,
there is more than one way to give structure to the
overall instruction tuning process. In this section,
we conduct a comparative analysis of various cur-
ricula with additional training strategies. From our
experiments, we verified two intriguing observa-
tions: 1. Not all curricula guarantee transfer-
ability to machine training and 2. Global curric-
ula give large benefits, while local curricula can
mislead.

We separate various curricula into two branches:
global curriculum and local curriculum, based
on their progression of conceptual and cognitive
complexity. To illustrate, the interleaving strat-
egy globally steps the cognitive load according to
Bloom’s taxonomy, whereas the blocking strat-
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Figure 6: Interleaved training is more stable than
random shuffling in learning multi-domain concepts.
The figure reports the MMLU subject group score im-
provements on LLaMA 2 13B by learning strategies.

egy locally advances from lower to higher cogni-
tive loads, emphasizing the internal organization
of concepts within a subject (Gibbons, 2002; Vy-
gotsky, 1978). Incorporating the previously intro-
duced strategies, Figure 4 represents two additional
alternative sorting strategies also motivated by edu-
cational paradigms: Clustering is similar to block-
ing but is different in that it facilitates the “deep
learning” (Warburton, 2003) of a concept while
ignoring the intra-subject dependency of concepts.
Spiral is designed to revisit subjects and concepts
at fluctuating cognitive load levels in a repetitive
manner (Masters and Gibbs, 2007).

In Figure 5, we further establish that the final
performance of an LLM can be significantly im-
pacted by the order in which one presents instruc-
tion tuning data. However, this does not mean that
any educational science-inspired structured learn-
ing paradigm benefits instruction tuning. Depend-
ing on the global batch size, the number of diffi-
culty levels available per concept, and the number
of concepts per subject (or any other large semantic
category), we theorize that most local progressions
or structures are destroyed when employing a larger
global batch size. This results in a biased training
batch. This assertion is substantiated by Figure 6,
which shows how a global curriculum, which main-
tains structure under most larger batch sizes while
ensuring that all subjects are covered in every train-
ing batch, successfully pushes performance above
the random shuffling baseline.

Figure 7: High-quality filtered data and data cu-
ration enable data-efficient performance improve-
ments. This figure shows tuning results on LLaMA 1
13B. Data sizes are in brackets.

Another noteworthy observation is that the im-
pact of curriculum extends beyond our target do-
main (i.e., knowledge), and often improves reason-
ing ability. Recent studies have demonstrated that
models trained with specific datasets often experi-
ence performance degradation when extrapolated
beyond that domain. Specifically, (Wang et al.,
2023b) reports that many recent instruction tuning
datasets like Supernatural Instructions (Wang et al.,
2022) seem to show a trade-off performance rela-
tionship between benchmarks, such as MMLU and
ARC, of which the latter additionally requires rea-
soning ability to derive correct answers. While
we observe a similar tendency in Vicuna, Wiz-
ardLM, and random trained CORGI — all show
mixed results on MMLU, ARC, OpenBookQA, or
HellaSwag — our curriculum-based CORGI no-
tably stands apart and does not suffer from this
trade-off.

3.4 Ablation study on LLaMA 1
In this section, we conduct ablation experiments on
LLaMA 1 to analyze the impact of specific compo-
nents. As displayed in Figure 7, our dataset demon-
strates scalability, showing better performance with
more data quantity. Moreover, our data filtering
scheme yields superior performance with a smaller
volume of data, which aligns with previous re-
search (Zhou et al., 2023; Touvron et al., 2023)
emphasizing the significance of data quality.

Another key observation is that the negative
impacts of this noisy data become more pro-
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nounced as the performance gap between the
teacher and student models narrows. For in-
stance, in Figure 7, we can clearly see that models
like Vicuna, WizardLM, and CORGI consistently
show significant performance improvements across
various benchmarks when trained with random-
ized data from LLaMA 1. However, the situation
changes when we move to LLaMA 2, even with
additional training on a larger dataset. The gains
start to diminish and, in some cases, reverse.

Recent literature has proposed data filtering as
a viable solution to mitigate this phenomenon, as
demonstrated by studies such as Alpagasus (Chen
et al., 2023b), TEGIT (Chen et al., 2023c), and
InstructionGPT-4 (Wei et al., 2023a). Our obser-
vations align with this trend as well. Filtering out
poor-quality data points yields significant benefits
across different data sizes in LLaMA 1 (e.g., ∆
MMLU +1.7: 107K filter−−→ 66K; ∆ MMLU +1.9:
60K filter−−→ 37K; ∆ MMLU +1.7: 30K filter−−→ 15K).

However, our research suggests that employ-
ing a curriculum-based training approach can be a
promising solution. This approach demonstrates ro-
bust and resilient benefits over randomized training
when dealing with noisy training datasets (Wu et al.,
2020). More specifically, we observe that several
benchmarks, which initially show decreased per-
formance after random shuffled instruction tuning,
exhibit substantial performance improvements af-
ter curriculum-based instruction tuning (∆MMLU
−0.31 intrlvg.−−−→ + 2.75, ∆PIQA −0.55 intrlvg.−−−→ + 1.14,
∆HellaSwag −1.49 intrlvg.−−−→+ 2.18).

4 Background

Cognitively understanding human learning pro-
cesses. “Where do we begin to improve human
thinking?” (Houghton, 1997). Among diverse
learning theories, Bloom’s Taxonomy (Bloom et al.,
1956) is a well-cited approach, categorizing learn-
ing processes into six hierarchical stages, ranging
from simple to complex and concrete to abstract:
Remembering, Understanding, Applying, Analyz-
ing, Evaluating, and Creating (Krathwohl, 2002).
Its effectiveness spans diverse subjects, from Math
to Political Sciences (Shorser, 1999; Dickie, 1994;
Su et al., 2004; Mulcare and Shwedel, 2017).

Cognitive Load Theory underscores the signifi-
cance of managing mental exertion during learning.
The theory served as a major theory for classroom
instructional design (Paas et al., 2003; Sweller et al.,
1998). With the rise of e-learning in the 2000s, the

theory was again widely applied to designing effec-
tive instructional strategies (Kirschner et al., 2009;
Kalyuga, 2007; Grunwald and Corsbie-Massay,
2006). A major effort was devoted to finding strate-
gies for a remote setup where learners communi-
cate with teachers through pre-made instructions.

Benefiting neural networks with human learn-
ing processes. Machine learning can benefit from
adopting human-centric approaches. Curriculum
learning, for instance, stands as a research area
that arranges training data in a meaningful se-
quence, showcasing its potential to expedite con-
vergence while enhancing generalization (Bengio
et al., 2009; Saglietti et al., 2022; Wang et al., 2021;
Xu et al., 2020; Yang et al., 2019; Shi et al., 2015;
Krueger and Dayan, 2009; Elman, 1993) — an
attribute of great value to fine-tuning LLM. This
synthesis of human cognition and machine algo-
rithms remains a compelling topic (Han et al., 2021;
Shiffrin and Mitchell, 2023; Dasgupta et al., 2022).

Instruction tuning on LLMs. This refers to
optimizing pre-trained models to handle diverse
natural language inquiries (Shi et al., 2023b; Wang
et al., 2023b). Methods often involve supervised
learning from instruction-response pairs (Taori
et al., 2023; Longpre et al., 2023; Li et al., 2023e;
Chen et al., 2023b; Li et al., 2023c). Consequently,
the methodology for generating or collecting this in-
struction data plays a significant role in the LLM’s
final performance (Lu et al., 2023; Wang et al.,
2023a; Wan et al., 2023a; Mo et al., 2023; Song
et al., 2023). While some research focused on en-
hancing general performances like reasoning or
knowledge (Mukherjee et al., 2023; Lee et al.,
2023a; Wei et al., 2023b; Ghosal et al., 2023; Zhang
et al., 2023b,a; Kung et al., 2023; Li et al., 2023a;
Lee et al., 2023b; Li et al., 2023b; Wan et al.,
2023b), others focused on instruction tuning for
domain-specific use cases (Qin et al., 2023; Xie
et al., 2023; Muennighoff et al., 2023; Li et al.,
2023d; Luo et al., 2023a; Tran et al., 2023; Shi
et al., 2023a). Though instruction-tuning research
made remarkable progress, it is rather challenging
to find cognitively motivated work (Itzhak et al.,
2023; Yu et al., 2023; Gao et al., 2023b; Aw et al.,
2023; van Duijn et al., 2023; Gao et al., 2023a).

5 Comparison: CORGI-style Instruction
Tuning vs Other Relevant Methods

We dedicate this short discussion section to estab-
lish some fundamental differences in related in-
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struction tuning methods. Some instruction tun-
ing methods rely on what can be considered an
“unstructured curriculum.” This means they have
less control over the progression and complexity
of the instruction data presented to the language
model during training. For example, the method
behind WizardLM creates instructions of varying
difficulty using an evolutionary algorithm but does
not strictly follow a predefined structure in the com-
plexity or domain of the instructions.

WizardLM’s approach, characterized by its in-
novative use of an evolutionary algorithm, Evol-
Instruct, generates increasingly complex instruc-
tions to challenge and refine the model’s abilities.
On the other hand, CITING (Feng et al., 2023)
takes a different path by utilizing a teacher-student
dynamic to craft a curriculum that emphasizes the
revision and refinement of responses based on pre-
defined criteria, aiming for gradual improvement
in handling instructions.

What achieved our performance improvement is
that CORGI integrates structured progressions both
in the (1) content, akin to a traditional school cur-
riculum, and in the (2) difficulty of instructions,
guided by Bloom’s Taxonomy. This dual-layered
progression ensures that the model not only covers
a wide range of knowledge areas but also develops
the ability to process and respond to instructions of
varying cognitive demands systematically. Unlike
WizardLM, which primarily focuses on generating
complex instructions without a specific educational
framework, or CITING, which centers on the refine-
ment of responses, CORGI’s methodical approach
ensures a balanced and structured exposure to both
knowledge domains and cognitive skills. This struc-
tured progression is absent in the more dynamically
generated instruction sets of WizardLM and the
feedback-oriented refinement process of CITING,
marking a distinction in how CORGI approaches
Instruction Tuning with Human Curriculum.

6 Conclusion

In this work, we introduced CORGI, a novel
methodology for instruction tuning in large lan-
guage models that employ a structured pedagogy-
inspired dataset. Our methodology not only sur-
passes existing benchmarks in both reasoning and
knowledge-based tasks but also achieves this effi-
ciency without escalating computational demands.
Moreover, the observed efficacy of interleaved sort-
ing and two-tier filtering underlines the crucial role

of structured, high-quality data in model perfor-
mance. Collectively, these findings illuminate the
potential of leveraging educational paradigms to
elevate the capabilities of machine learning models.

7 Limitations

As for the limitations of our study, there is a degree
of subjectivity in assigning difficulty to instructions.
That is, even though we base the classification on
the rigorously explored educational framework of
Bloom’s Taxonomy, it is not completely clear as to
how the difficulty perceived by an LLM and a hu-
man student can differ. Past research like Wu et al.
(2020) offers a more machine-focused difficulty
classification when learning image data, reaching a
similar observation to ours where curriculum helps
learn faster and better with noisy or a limited set of
data points. However, since our research was more
focused on identifying if LLM instruction tuning
would benefit from a human-like curriculum, we
decided to stay within the scope.

A more impending discussion, we believe, per-
tains to the model size. Due to the limited compu-
tational resources, we could not comprehensively
confirm if training data order matters when instruc-
tion tuning larger, quantized models. Internally, we
do have pilot study results indicating the usefulness
of our Corgi dataset and curriculum in comparison
to random shuffling (i.e., interleaved curriculum
reliably improves MMLU performance more than
random shuffling on 60∼70B models). But the re-
sults are exploratory, and we choose not to disclose
yet. However, as the model sizes and/or the total
number of training steps increase, we believe the
impact of the curriculum can be diminished (Wu
et al., 2020; Xu et al., 2020). We leave the confir-
mation of this postulation as an avenue for future
research.
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A Evaluation Details

Table 3: Performances of respective datasets on LLaMA 2 13B on three different categories of tasks. This table is a
breakdown of Figure 5

Curriculum

MMLU TriviaQA TruthfulQA ARC CSQA OBQA PIQA HellaSwag Lambada

World Knowledge Commonsense Reasoning Language Understanding

5-shot 64-shot 0-shot 25-shot 10-shot 5-shot 10-shot 10-shot 0-shot

Interleaving 57.74 64.34 47.44 58.70 70.19 51.80 82.0 83.0 76.1
Blocking 55.63 61.95 43.27 56.57 69.53 48.60 80.20 81.89 75.99
Clustering 55.24 58.75 42.12 57.42 67.65 49.00 80.31 81.89 75.65
Spiral 54.46 61.92 41.25 56.66 68.96 49.00 80.52 81.89 76.13
Random Shuffle 54.76 62.44 42.57 57.42 68.63 49.40 80.3 79.31 75.0

LLaMA 2 13B 54.99 62.44 39.91 56.31 68.30 48.00 80.85 80.80 76.56

We demonstrate the effectiveness of Corgi-style instruction tuning on world knowledge, commonsense
reasoning, and language understanding tasks. Specifically, we use (1) MMLU [5-shot, world knowledge]
(Hendrycks et al., 2020) to test for multi-domain knowledge through exam questions from 57 subjects
such as mathematics, history, law, and medicine; (2) HellaSwag [10-shot, language understanding]
(Zellers et al., 2019) for adversarial commonsense natural language inference; (3) ARC [25-shot, com-
monsense reasoning] (Clark et al., 2018) for challenging scientific reasoning on grade-school questions;
(4) TruthfulQA [0-shot, world knowledge] (Lin et al., 2022) for adversarial facts, (5) PIQA [10-shot,
commonsense reasoning] (Bisk et al., 2020) for physical commonsense reasoning on atypical situations;
(6) TriviaQA [64-shot, world knowledge] (Joshi et al., 2017) for granular factoid-based tests; (7) Com-
monsenseQA [10-shot, commonsense reasoning] (Talmor et al., 2019) for commonsense reasoning
abilities on real-world concepts; (8) OpenbookQA [5-shot, commonsense reasoning] (Talmor et al.,
2019) for scientific commonsense reasoning abilities. Lastly, we use (9) Lambada [0-shot, language
understanding] (Paperno et al., 2016) to test comprehensive reasoning performance from BooksCorpus,
where a missing target word is predicted in the last sentence of each passage. For all benchmarks, we only
evaluate the ability to predict the answer via direct prompting. We choose benchmarks and k-shot (k = 64,
25, 10, 5, 0) setups in broad alignment with other recent reports (Chen et al., 2023a; Longpre et al., 2023;
Honovich et al., 2022; Chung et al., 2022) and a public leaderboard. Additionally, we use MosaicML’s
LLM Gauntlet framework to fasten our evaluations (MosaicML, 2023).
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B Dataset Construction: Step-by-Step Exemplars

In this section, we provided exemplars for each data construction step outlined in Figure 8 to give a better
understanding of each step.

Figure 8: A visual description of the dataset construction steps.

Figure 9: A hierarchical description and example of CORGI dataset.

—
Original Course Description

Many important problems in a wide range of disciplines within computer science and throughout
science are solved using techniques from linear algebra. This course will introduce students to some
of the most widely used algorithms and illustrate how they are actually used. Some specific topics:
the solution of systems of linear equations by Gaussian elimination, dimension of a linear space,
inner product, cross product, change of basis, affine and rigid motions, eigenvalues and eigenvectors,
diagonalization of both symmetric and non-symmetric matrices, quadratic polynomials, and least
squares optimization. Applications will include the use of matrix computations for computer
graphics, the use of the discrete Fourier transform and related techniques in digital signal processing,
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the analysis of systems of linear differential equations, and singular value decompositions with
application to principal component analysis. The ideas and tools provided by this course will be
useful to students who intend to tackle higher-level courses in digital signal processing, computer
vision, robotics, and computer graphics.

—
Refined Course Description

This course on computational linear algebra delves into the fundamental mathematical concepts
and techniques used to solve a variety of complex problems within computer science and various
scientific disciplines. Building upon prior knowledge of linear algebra, students will explore
essential algorithms and gain practical experience in applying them to real-world scenarios.
The course begins with a focus on solving systems of linear equations using Gaussian elimination,
a widely utilized algorithm in computational mathematics. Students will learn how to manipulate
matrices and vectors to determine the solutions of these equations, enabling them to tackle intricate
computational problems effectively.
Additionally, the dimension of a linear space will be explored, providing students with a deep
understanding of vector spaces and their inherent properties. This concept will be crucial for
comprehending other topics covered in the course and for solving problems involving higher-
dimensional spaces.
The course also delves into inner product and cross-product operations, which play a vital role
in various applications, such as computer graphics, physics, and engineering. Students will learn
how to compute these operations, understand their geometric interpretations, and employ them
effectively in relevant problem-solving contexts.
Change of basis is another key concept covered in this course. Students will explore the transforma-
tion of vectors and matrices between different bases, gaining fluency in manipulating coordinates
and understanding the geometric implications of such transformations.
Affine and rigid motions will be introduced, drawing connections between linear algebra and
computer graphics, robotics, and computer vision. Students will learn how to describe and
compute these types of transformations using linear algebra techniques.
Eigenvalues and eigenvectors will also be explored in detail. Students will examine the characteris-
tic equation of a matrix and learn how to determine eigenvalues and corresponding eigenvectors.
This pivotal concept enables the understanding and analysis of dynamic systems, stability analysis,
and principal component analysis.
Diagonalization of both symmetric and non-symmetric matrices will be thoroughly studied, equip-
ping students with the ability to transform matrices into diagonal form using eigenvectors. This
technique finds applications in areas such as finding powers of matrices and solving systems of
linear differential equations.
Furthermore, quadratic polynomials will be investigated, focusing on matrix representations
and optimization techniques using quadratic forms. Students will gain proficiency in solving
optimization problems and understanding their connection to quadratic polynomials.
Lastly, the course explores least squares optimization. Students will learn how to determine the
best-fitting line or model for data that does not conform exactly to linear equations, allowing them
to accurately estimate unknown parameters and minimize errors.
Throughout the course, practical applications will be highlighted, demonstrating the relevance and
usefulness of matrix computations. Areas such as computer graphics, digital signal processing
using the discrete Fourier transform, analysis of linear differential equations, and singular value
decomposition for principal component analysis will be explored to provide tangible examples of
computational linear algebra’s real-world applications.
By the end of this course, students will possess the essential tools and concepts required to excel in
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higher-level courses such as digital signal processing, computer vision, robotics, and computer
graphics. The mastery of computational linear algebra will enable them to tackle complex problems
within these fields and contribute to the advancement of computer science and various scientific
disciplines.

—
Fine-Grained Concepts

Concept 1 → Dimension in Linear Spaces: The dimension of a linear space signifies the minimum
number of linearly independent vectors essential to cover the entire space. Dimension within the
context of linear spaces represents a fundamental property, denoting the smallest set of linearly
independent vectors necessary to span the entirety of the space. Beyond a mere measure of
size, it offers profound insights into the structural complexity and intrinsic characteristics of
a vector space. Mastery of this concept is pivotal when tackling intricate problems in multi-
dimensional spaces while also serving as a cornerstone for comprehending an array of subjects in
computational linear algebra. A firm grasp of dimension enriches the analytical toolkit, enabling
the exploration of diverse mathematical landscapes and facilitating the navigation of intricate
algebraic transformations.
Concept 2 → Applications of Linear Spaces...
Concept 3 → ...
...

—
Question Template

(See Appendix C)

—
Question

Explain the concept of dimension in the context of a linear space and provide an example of a
linear space with dimension 2.

—
Answer

In the context of a linear space, dimension refers to the number of linearly independent vectors
needed to span the entire space. It represents the maximum number of independent directions in
which we can move within the space.
To provide an example of a linear space with dimension 2, let’s consider the Cartesian coordinate
system in two dimensions, often denoted as R2. This linear space consists of all ordered pairs (x,
y), where x and y can be any real numbers.
To determine the dimension of R2, we need to find the number of linearly independent vectors
required to span the entire space. In this case, we can take two linearly independent vectors,
i = (1, 0) and j = (0, 1).
1. Step 1: Vector i = (1, 0) - This vector represents movement in the x-axis direction, with a
magnitude of 1 unit and no movement in the y-axis direction.
2. Step 2: Vector j = (0, 1) - This vector represents movement in the y-axis direction, with a
magnitude of 1 unit and no movement in the x-axis direction.
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Using only these two vectors, we can span the entire space of R2 by scaling and combining them
in various ways. By scaling i and j, we can reach any point in R2. Therefore, R2 has dimension 2.
To justify this, we can consider the definition of linear independence. Two vectors are linearly
independent if no linear combination of them (except the trivial one) can give the zero vector. In
this case, i and j are linearly independent because no scalar multiples of i and j can cancel each
other out to give the zero vector. Thus, we have exactly two linearly independent vectors in R2,
indicating that the dimension of R2 is 2.

—
Retrieved Wiki Passages

Dimension (vector space)
... with dimension 0 is 0, the vector space consisting only of its zero element. If "W" is a linear
subspace of "V", then dim("W") ≤ dim("V"). To show that two finite-dimensional vector spaces
are equal, one often uses the following criterion: if "V" is a finite-dimensional vector space and
"W" is a linear subspace of "V" with dim("W") = dim("V"), then "W" = "V". R has the standard
basis e, ..., e, where e is the "i"-th column of the corresponding identity matrix. Therefore, R has
dimension "n". Any two vector spaces over "F" having the same dimension are isomorphic. ...
Dimension (vector space)
... Any bijective map between their bases can be uniquely extended to a bijective linear map
between the vector spaces. If "B" is some set, a vector space with dimension |"B"| over "F" can be
constructed as follows: take the set "F" of all functions "f" : "B" → "F" such that "f"("b") = 0 for
all but finitely many "b" in "B". These functions can be added and multiplied with elements of "F",
and we obtain the desired "F"-vector space. An important result about dimensions is given by the
rank–nullity theorem for linear maps. If "F"/"K" is a field ...
Linear map
... of the target space. For finite dimensions, this means that the dimension of the quotient space
"W"/"f"("V") is the dimension of the target space minus the dimension of the image. As a simple
example, consider the map "f": R → R, given by "f"("x", "y") = (0, "y"). Then for an equation
"f"("x", "y") = ("a", "b") to have a solution, we must have "a" = 0 (one constraint), and in that case
the solution space is ("x", "b") or equivalently stated, (0, "b") + ("x", 0), (one degree of freedom).
The kernel may be expressed as the subspace ("x",", ...
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C Full Subject List and Sources

Table 4: The full list of subject categories in CORGI dataset.

Subject Source

Higher Education - Accounting catalog.upenn.edu/courses/acct/
Higher Education - Anatomy catalog.upenn.edu/courses/anat/
Higher Education - Ancient History catalog.upenn.edu/courses/anch/
Higher Education - Astronomy catalog.upenn.edu/courses/astr/
Higher Education - Biology catalog.upenn.edu/courses/biol/
Higher Education - Chemistry catalog.upenn.edu/courses/chem/
Higher Education - Computer and Info Science catalog.upenn.edu/courses/cis/
Higher Education - Earth and Environmental Science catalog.upenn.edu/courses/eesc/
Higher Education - Economics catalog.upenn.edu/courses/econ/
Higher Education - Ethics catalog.upenn.edu/courses/ethc/
Higher Education - Gender, Sexuality, Women’s Study catalog.upenn.edu/courses/gsws/
Higher Education - Global Studies catalog.upenn.edu/courses/glbs/
Higher Education - Health & Societies catalog.upenn.edu/courses/hsoc/
Higher Education - History catalog.upenn.edu/courses/hist/
Higher Education - Law catalog.upenn.edu/courses/law/
Higher Education - Legal & Business Ethics catalog.upenn.edu/courses/lgst/
Higher Education - Management catalog.upenn.edu/courses/mgmt/
Higher Education - Marketing catalog.upenn.edu/courses/mktg/
Higher Education - Mathematics catalog.upenn.edu/courses/math/
Higher Education - Philosophy catalog.upenn.edu/courses/phil/
Higher Education - Physics catalog.upenn.edu/courses/phys/
Higher Education - Political Science catalog.upenn.edu/courses/psci/
Higher Education - Psychology catalog.upenn.edu/courses/psyc/
Higher Education - Religious Studies catalog.upenn.edu/courses/rels/
Higher Education - Sociology catalog.upenn.edu/courses/soci/
Secondary Education - Accounting

cambridgeinternational.org/pro
grammes-and-qualifications/ca
mbridge-upper-secondary/ca
mbridge-igcse/subjects/

Secondary Education - Agriculture
Secondary Education - American History (US)
Secondary Education - Biology
Secondary Education - Business Studies
Secondary Education - Chemistry
Secondary Education - Co-ordinated Sciences
Secondary Education - Computer Science
Secondary Education - Economics
Secondary Education - Enterprise
Secondary Education - Environmental Management
Secondary Education - Food & Nutrition
Secondary Education - Maldives Marine Science
Secondary Education - Geography
Secondary Education - History
Secondary Education - Info and Communication Tech
Secondary Education - Physical Science
Secondary Education - Physics
Secondary Education - Religious Studies
Secondary Education - Sociology
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D Question Generation Templates

Table 5: CORGI question generation template - cognitive categories

Cognitive Categories

Index Process Subprocess Load Definition

1 remembering recognizing easy locate knowledge in long-term memory that is consistent with
presented material (e.g., Recognize the dates of important events in
U.S. history)

2 remembering recognizing easy locate knowledge in long-term memory that is consistent with
presented material (e.g., Recognize the dates of important events in
U.S. history)

3 remembering recalling easy retrieve relevant knowledge from long-term memory (e.g., Recall
the dates of important events in U.S. history)

4 remembering recalling easy retrieve relevant knowledge from long-term memory (e.g., Recall
the dates of important events in U.S. history)

5 understanding interpreting medium change from one form of representation (e.g., numerical) to another
(e.g., verbal) (e.g., Paraphrase important speeches and documents)

6 understanding exemplifying medium find a specific example or illustration of a concept or principle (e.g.,
Give examples of various artistic painting styles)

7 understanding classifying medium determine that something belongs to a category (e.g., concept or
principle) (e.g., Classify observed or described cases of mental
disorders)

8 understanding classifying medium determine that something belongs to a category (e.g., concept or
principle) (e.g., Classify observed or described cases of mental
disorders)

9 understanding summarizing medium abstract a general theme or major point(s) (e.g., Write a short
summary of the events portrayed on a videotape)

10 understanding inferring medium draw a logical conclusion from presented information (e.g., In
learning a foreign language, infer grammatical principles from
examples)

11 understanding inferring medium draw a logical conclusion from presented information (e.g., In
learning a foreign language, infer grammatical principles from
examples)

12 understanding inferring medium draw a logical conclusion from presented information (e.g., In
learning a foreign language, infer grammatical principles from
examples)

13 understanding comparing medium detect correspondences between two ideas, objects, and the like
(e.g., Compare historical events to contemporary situations)

14 understanding explaining medium construct a cause-and-effect model of a system (e.g., Explain the
causes of important 18th-century events in France)

15 understanding explaining medium construct a cause-and-effect model of a system (e.g., Explain the
causes of important 18th-century events in France)

16 understanding explaining medium construct a cause-and-effect model of a system (e.g., Explain the
causes of important 18th-century events in France)

17 understanding explaining medium construct a cause-and-effect model of a system (e.g., Explain the
causes of important 18th-century events in France)

18 applying executing hard apply a procedure to a familiar task (e.g., Divide one whole number
by another whole number, both with multiple digits)

19 applying using hard apply a procedure to an unfamiliar task (e.g., Use Newton’s Second
Law in situations in which it is appropriate)

The question type and format for each matching index are shown on the next page. One cognitive
category can have multiple question formats from Bloom et al. (1956).
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Table 6: CORGI question generation template - question formats for each cognitive category

Index Type Format

1 verification a verification task, where some information is given and one must choose whether or not
it is correct

2 matching a matching task, where two lists are presented and one must choose how each item in one
list corresponds to an item in the other list. But not MCQ

3 constructed response a constructed response question where one is not given any hints or related information
(such as "What is a meter?")

4 fill-in-the-blank a fill-in-the-blank where several hints are given (such as "In the metric system a meter is
a measure of ________.")

5 constructed response a constructed response question where information is presented in one form and one is
asked to construct the same information in a different form (such as "Write an equation
that corresponds to the following statement using T for total cost and P for number of
pounds. The total cost of mailing a package is $2.00 for the first pound plus $1.50 for
each additional pound.")

6 constructed response a constructed response question where one must create an example (such as "Locate an
inorganic compound and tell why it is inorganic")

7 constructed response a constructed response question where one is given an instance and must produce its
related concept or principle from a list

8 sorted response a sorted response question where one is given a set of instances and must determine
which ones belong in a specified category and which ones do not, or must place each
instance into one of multiple categories

9 constructed response a constructed response question involving either themes or summaries. Generally speak-
ing, themes are more abstract than summaries. For example, in a constructed response
task, the student may be asked to read an untitled passage on the California Gold Rush
and then write an appropriate title.

10 completion a completion task where one is given a series of items and must determine what will
come next, as in the number series example above (such as describing the relationship as
an equation involving x and y for situations in which if x is 1, then y is 0; if x is 2, then y
is 3; and if x is 3, then y is 8).

11 analogy an analogy task where one is given an analogy of the form A is to B as C is to D such
as "nation" is to "president" as "state" is to _______. In the example the student’s task
is to produce or select a term that fits in the blank and completes the analogy (such as
"governor").

12 oddity an oddity task where one is given three or more items and must determine which does
not belong (such as three physics problems, two involving one principle and another
involving a different principle). question should not be in MCQ form

13 mapping a mapping task where one must show how each part of one object, idea, problem, or
situation corresponds to (or maps onto) each part of another (such as asking to detail how
the battery, wire, and resistor in an electrical circuit are like the pump, pipes, and pipe
constructions in a water flow system, respectively.)

14 reasoning a reasoning task where one is asked to offer a reason for a given event (such as "Why
does air enter a bicycle tire pump when you pull up on the handle?")

15 troubleshooting a troubleshooting task where one is asked to diagnose what could have gone wrong in a
malfunctioning system (such as "Suppose you pull up and press down on the handle of a
bicycle tire pump several times but no air comes out. What’s wrong?")

16 redesigning a redesigning task where one is asked to change the system to accomplish some goal
(such as "How could you improve a bicycle tire pump so that it would be more efficient?")

17 predicting a predicting task one is asked how a change in one part of a system will effect a change
in another part of the system (such as "What would happen if you increased the diameter
of the cylinder in a bicycle tire pump?")

18 execution an execution task where one is given a familiar task that can be performed using a
well-known procedure (such as "Solve for x: x^2 + 2x - 3 = 0 using the technique of
completing the square.")

19 implementation an implementation task where one is given an unfamiliar problem that must be solved.
Thus, begin with specification of the problem. Then, one is asked to determine the
procedure needed to solve the problem, solve the problem using the selected procedure
(making modifications as necessary), or usually both.
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E CORGI Prompt Templates and Example Results

We also present all prompting templates to make our dataset collection process as replicable and under-
standable as possible. The following sections discuss the prompts used in each dataset collection step. For
each prompt, we share the 1. prompting template, 2. prompt example with filled-in slots, and 3. example
response from gpt-turbo-3.5. The filled-in slots in example prompts are expressed in this font.

E.1 Course Description Refinement Prompt
Prompt Template

Subject: {subject}
Course Title: {course_title}
Course Description: {course_description}
Extend the course description and make it more technically descriptive. Only discuss the core
{subject} concepts in the course, not administrative matters like exam schedules.
Extended Course Description: ...

—
Example prompt

Subject: Higher Education - Astronomy
Course Title: A Survey of the Universe
Course Description: A general survey, designed for the non-major, of the facts
and theories of the astronomical universe, from the solar system to stars to
galaxies and cosmology. Topics include planets, satellites, small objects in
the solar system, and extraterrestrial life; stars, their evolution, and their
final state as white dwarfs, neutron stars, or black holes; galaxies, quasars,
large structures, background radiation, and big bang cosmology. Elementary
algebra and geometry will be used. This course is not recommended for physical
science majors or engineering students. Engineering students receive no credit
for this course. Fulfills quantitative data analysis requirements.
Extend the course description and make it more technically descriptive. Only discuss the core
Higher Education - Astronomy concepts in the course, not administrative matters like exam
schedules.
Extended Course Description: ...

—
Example response from gpt-turbo-3.5

This course, "A Survey of the Universe," offers a comprehensive exploration of core concepts in
astronomy for non-majors. Through a blend of theoretical knowledge and observational techniques,
students will delve into various aspects of the astronomical universe.
The course begins with an examination of our solar system, encompassing an in-depth study of
planets, satellites, and smaller celestial objects. Students will explore the geological formations,
atmospheres, and potential for extraterrestrial life on these planetary bodies.
Moving beyond the solar system, the course then delves into the captivating world of stars. Students
will investigate the life cycle of stars, from their formation within stellar nurseries to their ultimate
fates as white dwarfs, neutron stars, or black holes. Concepts such as stellar evolution, nuclear
fusion, and the interplay between gravity and gas dynamics will be explored in detail.
Expanding further, the course transitions to the realm of galaxies. Students will gain insight into
the structure and formation of galaxies, as well as their intriguing subclasses including quasars.
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The exploration of large-scale structures and the cosmic web will provide a deeper understanding
of the organization and distribution of matter throughout the universe.
Investigating the origins of the universe, the course culminates in the study of cosmology. Students
will engage with fundamental theories such as the Big Bang model and cosmic microwave
background radiation. Concepts such as dark matter, dark energy, and the expanding universe will
be examined, shedding light on the current understanding of the cosmos.
Throughout the course, mathematical tools such as elementary algebra and geometry will be
employed, enabling students to analyze and interpret astronomical data. These quantitative data
analysis skills will enhance learners’ ability to comprehend and evaluate scientific information
within the field of astronomy.
Please note that this course is not recommended for physical science majors or engineering
students, and it does not count for credit toward engineering programs. However, it does fulfill
the quantitative data analysis requirement, providing students with valuable skills applicable to
various fields of study.
By the end of this course, students will have gained a firm foundation in the principles and
theories that underpin the vast and captivating field of astronomy. They will have acquired a
broad understanding of the solar system, stars, galaxies, and cosmology, equipping them with the
knowledge to appreciate and further explore the wonders of the universe.

—

E.2 Concept Generation Prompt
Prompt Template

You are an academic AI assistant teaching the following course with a {subject} professor:
Course Title: {course_title}
Course Description: {course_description}
### Instruction ###
- Make a list of the core {subject} concepts, all concepts from the course description above, in
numbered and ordered style. For each list item, add detailed Wikipedia-style explanation from
{subject} textbook
- List concepts that are important to a student trying to learn basic {subject} topics.
- Don’t list administrative matters like exams.
- Don’t list skill-based stuff like communication or ethical skills (e.g., writing, presentation).
- Only academic {subject} concepts in factuality, knowledge dimensions like theories and cases.
- CONFIRM EACH CONCEPT DO APPEAR IN {subject} TEXTBOOK
- List concepts in order of importance.
### List ###
1. concept: explanation
2. concept: explanation
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—
Example Prompt

You are an academic AI assistant teaching the following course with a Higher Education -
Astronomy professor:
Course Title: A Survey of the Universe
Course Description: This course, "A Survey of the Universe," offers a comprehensive
exploration of core concepts in astronomy for non-majors. Through a blend of
theoretical knowledge and observational techniques, students will delve into
various aspects of the astronomical universe.
The course begins with an examination of our solar system, encompassing
an in-depth study of planets, satellites, and smaller celestial objects.
Students will explore the geological formations, atmospheres, and potential
for extraterrestrial life on these planetary bodies.
Moving beyond the solar system, the course then delves into the captivating
world of stars. Students will investigate the life cycle of stars, from their
formation within stellar nurseries to their ultimate fates as white dwarfs,
neutron stars, or black holes. Concepts such as stellar evolution, nuclear
fusion, and the interplay between gravity and gas dynamics will be explored in
detail.
Expanding further, the course transitions to the realm of galaxies. Students
will gain insight into the structure and formation of galaxies, as well as
their intriguing subclasses including quasars. The exploration of large-scale
structures and the cosmic web will provide a deeper understanding of the
organization and distribution of matter throughout the universe.
Investigating the origins of the universe, the course culminates in the study
of cosmology. Students will engage with fundamental theories such as the Big
Bang model and cosmic microwave background radiation. Concepts such as dark
matter, dark energy, and the expanding universe will be examined, shedding
light on the current understanding of the cosmos.
Throughout the course, mathematical tools such as elementary algebra and
geometry will be employed, enabling students to analyze and interpret
astronomical data. These quantitative data analysis skills will enhance
learners’ ability to comprehend and evaluate scientific information within
the field of astronomy.
Please note that this course is not recommended for physical science majors
or engineering students, and it does not count for credit toward engineering
programs. However, it does fulfill the quantitative data analysis requirement,
providing students with valuable skills applicable to various fields of study.
By the end of this course, students will have gained a firm foundation in
the principles and theories that underpin the vast and captivating field of
astronomy. They will have acquired a broad understanding of the solar system,
stars, galaxies, and cosmology, equipping them with the knowledge to appreciate
and further explore the wonders of the universe.
### Instruction ###
- Make a list of the core Higher Education - Astronomy concepts, all concepts from the course
description above, in numbered and ordered style. For each list item, add a detailed Wikipedia-style
explanation from the Higher Education - Astronomy textbook
- List concepts that are important to a student trying to learn basic Higher Education - Astronomy
topics.
- Don’t list administrative matters like exams.
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- Don’t list skill-based stuff like communication or ethical skills (e.g., writing, presentation).
- Only academic Higher Education - Astronomy concepts in factuality, knowledge dimensions
like theories and cases.
- CONFIRM EACH CONCEPT DO APPEAR IN Higher Education - Astronomy TEXTBOOK
- List concepts in order of importance.
### List ###
1. concept: explanation
2. concept: explanation

—
Example response from gpt-turbo-3.5

1. Solar System: The solar system refers to the collection of celestial bodies, including the
sun, planets, satellites, asteroids, comets, and other smaller objects that are bound together by
gravitational forces. This concept involves the study of the formation, characteristics, and dynamics
of these objects within the system, as well as their interactions with each other.
2. Planetary Bodies: Planetary bodies are the objects within the solar system that are characterized
by their orbits around the sun. This includes the eight planets, their moons or satellites, dwarf
planets like Pluto, and other smaller celestial bodies such as asteroids and comets. The study of
these bodies involves understanding their physical properties, geological formations, atmospheres,
and potential for hosting life.
3. Stars: Stars are luminous spheres of plasma held together by their own gravity. They are the
fundamental building blocks of galaxies and play a crucial role in the universe. The study of stars
encompasses their formation, life cycles, characteristics, and classifications based on their spectral
features. Concepts such as stellar evolution, nuclear fusion, and the interplay between gravity and
gas dynamics are explored to understand the behavior and dynamics of stars.
4. Galaxies: Galaxies are large systems of stars, gas, dust, and other celestial objects bound together
by gravitational forces. Studying galaxies involves understanding their shapes, sizes, structures,
and formation mechanisms. Different types of galaxies, such as spiral, elliptical, and irregular,
exhibit unique characteristics and contribute to our understanding of the universe. Investigating the
distribution and organization of matter within galaxies also provides insights into the large-scale
structure of the universe.
5. Cosmology: Cosmology is the branch of astronomy that deals with the study of the origins,
evolution, and structure of the universe as a whole. It encompasses theories and observations
that provide insights into the fundamental nature of the universe, including the Big Bang model,
cosmic microwave background radiation, dark matter, dark energy, and the expanding universe.
Understanding cosmological concepts helps unravel the mysteries of the universe’s beginning and
its current state.

E.3 Question Generation Prompt
Prompt Template

You are a {subject} professor teaching “{subject}, {course_title}, {concept}”
You are making questions for a test that questions student’s various levels of thinking. The current
question tests students on {cognitive_process} ({cognitive_load}), out of remembering (easy),
understanding (medium), and applying (hard).
Come up with an exam question to assess student’s ability to {cognitive_process_definition}
Question Format:
- {question_format}
Test Constraints:

1305



- All questions should be self-contained (answerable using the provided information)
- All questions must have a clear, defined answer
- All questions must not use graphics
- Follow Question Format!
- Print only question only!! (Don’t print the answer)
- equations in plain text
- no MCQ, don’t provide options
- make questions have as high educational value as possible
- do NOT duplicate your previous question
Previous Question:
- {previous_question}
### Question ###
Question: ...

—
Example Prompt

You are a Higher Education - Astronomy professor teaching “Higher Education -
Astronomy, A Survey of the Universe, Solar System: The solar system refers
to the collection of celestial bodies, including the sun, planets, satellites,
asteroids, comets, and other smaller objects that are bound together by
gravitational forces. This concept involves the study of the formation,
characteristics, and dynamics of these objects within the system, as well
as their interactions with each other.”
You are making questions for a test that questions student’s various levels of thinking. The current
question tests students on understanding (medium), out of remembering (easy), understanding
(medium), and applying (hard).
Come up with an exam question to assess student’s ability to construct a cause-and-effect
model of a system (e.g., Explain the causes of important 18th-century events
in France)
Question Format:
- a redesigning task where one is asked to change the system to accomplish some
goal (such as, "How could you improve a bicycle tire pump so that it would be
more efficient?")
Test Constraints:
- All questions should be self-contained (answerable using the provided information)
- All questions must have a clear, defined answer
- All questions must not use graphics
- Follow Question Format!
- Print only question only!! (Don’t print the answer)
- equations in plain text
- no MCQ, don’t provide options
- make questions have as high educational value as possible
- do NOT duplicate your previous question
Previous Question:
- Suppose you are studying the solar system, and you observe that a comet is
moving in a highly elliptical orbit around the Sun. Construct a cause-and-effect
model to explain the factors that could have influenced the comet’s orbit.
### Question ###
Question: ...
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—
Example response from gpt-turbo-3.5

In the context of the solar system, consider the following scenario: A spacecraft has been sent
on a mission to explore the outer planets of our solar system, specifically Jupiter and Saturn. As
the spacecraft approaches these planets, it is observed that its velocity increases. Construct a
cause-and-effect model to explain this phenomenon, taking into account the fundamental principles
of physics and the characteristics of these giant planets.

—

E.4 Retrieval Checking Prompt
Prompt Template

QUESTION: {question}
PASSAGE: {retrieved_passage_title}, {retrieved_passage}
Is the PASSAGE relevant to the QUESTION?
A) Yes
B) No

—
Example Prompt

QUESTION: Suppose you are studying the solar system, and you observe that
a comet is moving in a highly elliptical orbit around the Sun. Construct a
cause-and-effect model to explain the factors that could have influenced the
comet’s orbit.
PASSAGE: Solar System, the case of the four giant planets, by planetary rings,
thin bands of tiny particles that orbit them in unison. Most of the largest
natural satellites are in synchronous rotation, with one face permanently turned
toward their parent. Kepler’s laws of planetary motion describe the orbits of
objects about the Sun. Following Kepler’s laws, each object travels along an
ellipse with the Sun at one focus. Objects closer to the Sun (with smaller
semi-major axes) travel more quickly because they are more affected by the
Sun’s gravity. On an elliptical orbit, a body’s distance from the Sun varies
over the
Is the PASSAGE relevant to the QUESTION?
A) Yes
B) No
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—
Example response from gpt-turbo-3.5

A) Yes

—

F System Messages

We randomly choose one system message before collecting gpt-turbo-3.5 responses, depending on the
question’s cognitive load. We believe that this classification of using different sets of system messages
depending on the cognitive load is not very meaningful, but we report them as-is to accurately report our
experiment procedures.

If cognitive load = easy,

‘’
‘You are a helpful assistant, who always provide explanation.’
‘You are an AI assistant. Provide a detailed answer so user don’t need to search outside to
understand the answer.’
‘You are a smart AI assistant that follows instruction extremely well. Help as much as you can.’
‘You are an AI assistant. User will you give you a task. Your goal is to complete the task as
faithfully as you can. While performing the task think step-by-step and justify your steps.’
‘Explain how you used the definition to come up with the correct answer.’
‘User will you give you a task with some instruction. Your job is follow the instructions as faithfully
as you can. While answering think step-by-step and justify your answer.’
‘You are a factual AI assistant that helps people find information.’
‘You are an AI assistant that helps people find information. Provide a detailed answer so user don’t
need to search outside to understand the answer.’

If cognitive load = medium or hard,

‘’
‘You are a teacher. Given a task, you explain in simple steps what the task is asking, any guidelines
it provides and how to use those guidelines to find the answer.’
‘User will you give you a task with some instruction. Your job is follow the instructions as faithfully
as you can. While answering think step-by-step and justify your answer.’
‘You are a factual AI assistant. User will you give you a task. Your goal is to complete the task as
faithfully as you can. While performing the task think step-by-step and justify your steps.’
‘You should describe the task and explain your answer.’
‘You are a factually correct AI assistant. Generate concise answers with clear step-by-step reason-
ing.’
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G Rule-based Filtering

Read data from the input JSONL file
Initialize an empty list filtered_rows
Initialize a list exclusion_keywords containing specific exclusion keywords
for each line in file do

Parse data from line
Extract question and answer fields, convert to lowercase
if the question does not contain exclusion_keywords and has more than 2 words then

if the answer does not contain exclusion_keywords and has more than 2 words then
Append data to filtered_rows

end if
end if

end for
Write the contents of filtered_rows to a new JSONL file
exclusion keywords are “ai assistant”, “ai language model”, “sorry, ”, “sorry but ”, “sorry for the

confusion ”, “i’m unable to ”, “without further ”, “apologize”, “i cannot”

H Training Details

We use Vicuna’s (Zheng et al., 2023; Chiang et al., 2023) training script, FastChat, to train Corgi on
LLaMA 2 13B under bf16 precision. Specifically, we use the global batch size of 256, 1 batch per GPU,
16 gradient accumulations, 16 x A100 GPUs, 2e-5 learning rate, and 2048 sequence length for five epochs.
A single training run took less than one day.
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