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Abstract

Large language models can solve new tasks
without task-specific fine-tuning. This ability,
also known as in-context learning (ICL), is con-
sidered an emergent ability and is primarily
seen in large language models with billions
of parameters. This study investigates if such
emergent properties are strictly tied to model
size or can be demonstrated by smaller models
trained on reduced-scale data. To explore this,
we simplify pre-training data and pre-train 36
causal language models with parameters vary-
ing from 1 million to 165 million parameters.
We show that models trained on this simplified
pre-training data demonstrate enhanced zero-
shot capabilities across various tasks in simpli-
fied language, achieving performance compa-
rable to that of pre-trained models six times
larger on unrestricted language. This suggests
that downscaling the language allows zero-shot
learning capabilities to emerge in models with
limited size. Additionally, we find that these
smaller models pre-trained on simplified data
demonstrate a power law relationship between
the evaluation loss and the three scaling factors:
compute, dataset size, and model size.!

1 Introduction

Recent advancements in deep learning and dis-
tributed computing have enabled the pre-training of
language models on a massive scale (Brown et al.,
2020; Bubeck et al., 2023; Touvron et al., 2023),
significantly changing the way these models are
used. Large pre-trained models proved capable of
solving various tasks with zero-shot or few-shot
learning, eliminating the need for task-specific fine-
tuning (Brown et al., 2020). This is referred to as
in-context learning, an ability which allows these
models to understand and solve new tasks based on
the provided context. It is argued that this ability

!Code and simplified pre-training data are available at
github.com/text-machine-lab/mini_gpt

“emerges” with a dramatic increase in the size of
the model (Wei et al., 2022a).

Efforts to transfer emergent abilities to small
models include imitation learning, where a large
language model like GPT-4 acts as a “teacher” to
create synthetic datasets with additional instruc-
tions and explanations. This synthetic data is then
used to train smaller “student” models (Taori et al.,
2023; Peng et al., 2023; Mukherjee et al., 2023;
Magister et al., 2023). Another approach is distilla-
tion where the “student” model is trained to mimic
the output probabilities of the “teacher” model (Gu
et al., 2023; Xu et al., 2024) .

Our work takes a different approach; our goal is
to determine whether simplifying the pre-training
data itself can unlock emergent language abilities in
smaller models. This idea is supported by our pre-
vious work (Deshpande et al., 2023), which high-
lighted the effects of language simplification for
smaller models when fine-tuning on downstream
tasks. Prior work by Eldan and Li (2023) reports
a similar trend, though their approach requires the
use of larger models to produce the simplified lan-
guage. We bypass this step and instead rely on
naturally-occurring language restricted via vocabu-
lary filtering.

In this study, we leverage this approach to
determine whether language simplification can
unlock ICL abilities in smaller language models.
To do so, we pre-train 36 causal language models
with sizes varying from 1M to 165M parameters,
on both a simplified English dataset and a
standard pre-training dataset and conduct zero-shot
evaluations on different tasks. Through extensive
experimentation, we show that language simplifi-
cation enables ICL abilities in smaller language
models on a level comparable to larger-size models
pre-trained on non-simplified English corpora.

Specifically, our contributions are as follows:
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Figure 1: We filter the SlimPajama dataset by selecting spans that contain words from the AO-Childes vocabulary
and removing any spans with words not in this vocabulary. We also filter examples in the downstream evaluation
dataset based on the occurrence of words in the AO-Childes Vocabulary. The underlined spans are removed by
filtering due to the presence of Out of Vocabulary words (Out of Vocabulary words are in red). This simplified
dataset is used to pre-train simplified models, whereas regular models are trained on the standard SlimPajama dataset
or on other existing pre-training corpora. We then compare whether simplified pre-trained models can perform
downstream tasks in simplified language as effectively as standard pre-trained models do in the complete language.

* We demonstrate that downscaling (simplify-
ing) the language enhances zero-shot learning
capabilities in smaller-sized models.

* We show that small models trained with such
simplified data demonstrate a power law re-
lationship between evaluation loss and the
three scale factors: FLOPs, Dataset Size, and
Model Size.

* We release a simplified pre-training corpus
obtained by filtering the existing SimPajama
dataset (Soboleva et al., 2023).

2 Related Work

What is ICL? ICL is the ability of a pre-trained
model to solve tasks without task specific fine-
tuning (Radford et al., 2019; Brown et al., 2020;
Olsson et al., 2022). Many large models have
shown excellent ICL capabilities (Touvron et al.,
2023; Chowdhery et al., 2022). This has shifted
the research community’s focus towards leveraging
prompts to elicit zero-shot or few-shot responses
from models. In a similar vein, the technique of
chain-of-thought (CoT) reasoning, as discussed in

Split Percentage of  Number of

tokens tokens (mil)
C4 23.86% 5258.73
GitHub 0.21% 46.10
Commoncrawl 22.12% 4875.09
StackExchange 1.33% 293.06
Wikpedia 0.08% 18.49
ArXiv 0.53% 117.66
Books 51.86% 11429.27
Total 100% 22038.41

Table 1: Data source distribution for the simplified pre-
training dataset derived from SlimPajama.

Wei et al. (2022b), revealed that including a se-
quence of intermediate reasoning steps can enhance
the reasoning skills of large language models. Yet,
these abilities are emergent, i.e., it is primarily the
larger models that exhibit them. However, recent
studies question the belief that improvements in
ICL result exclusively from increasing model sizes
(Schaeffer et al., 2023; Du et al., 2024), suggest-
ing that using discontinuous metrics like accuracy
merely creates the illusion of emergent abilities,
whereas employing continuous metrics shows grad-
ual, predictable changes in model performance.
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ICL in smaller language models. It has been
shown that the emergent abilities observed in larger
models can be effectively transferred to smaller
models through imitation learning or behavior
cloning, where a larger language model such as
GPT-4 serves as the “teacher”, to generate syn-
thetic datasets with instructions and explanations
which can be used to train smaller language models,
referred to as “student” models (Taori et al., 2023;
Peng et al., 2023; Mukherjee et al., 2023; Mag-
ister et al., 2023). This allows smaller models to
leverage the capabilities of their larger counterparts.
However, the primary drawback of such methods is
that most of the knowledge acquired by the model
is done in the pre-training stage and the student
model copies the style of the teacher model but
does not learn the reasoning capabilities employed
by these large models (Gudibande et al., 2023).

An alternative strategy to enhance the capa-
bilities of smaller models is through distillation
from larger models, aiming to replicate the output
probabilities and thus transfer the larger model’s
in-context learning or zero-shot abilities to their
smaller counterparts (Timiryasov and Tastet, 2023;
Gu et al., 2023; Xu et al., 2024). This method
forfeits one of the primary benefits of smaller lan-
guage models, namely their reduced computational
requirements, by necessitating the training of larger
models.

Prior work has also looked into pre-training
small models with simplified data. For instance,
Huebner et al. (2021) pre-train an encoder language
model with corpus that reflects the lexical exposure
of children and find that smaller models can approx-
imate the grammatical acquisition performance of
larger models. Deshpande et al. (2023) examined
the effects of downscaling the modeled language
during pre-training via vocabulary-based filtering,
and showed that pre-training encoders as small as
1.25M parameters may demonstrate large benefits
for downstream performance.

Eldan and Li (2023) have demonstrated that co-
herency in text generation can be achieved by pre-
training on a synthesized, simplified dataset gener-
ated from GPT-4. Notably, this dataset largely com-
prises of stories, presenting less diversity compared
to the datasets typically employed for pre-training
larger models. Similarly Gunasekar et al. (2023)
demonstrate improved performance in smaller mod-
els trained on a dataset combining filtered cod-
ing examples and synthetic textbook content for
coding-related benchmarks. However, their ap-

proach, primarily focused on coding challenges,
utilizes relatively large models and synthetic data.
Their dataset filtering approach also relies on an
auxiliary classifier for text exclusion.

3 Methodology

3.1 Language Simplification

We create a simpler pre-training corpus by uti-
lizing a vocabulary derived from the AO-Childes
transcripts of child-directed speech (Huebner and
Willits, 2021), as done by Deshpande et al. (2023).
The core of this corpus is child-directed speech,
which tends towards simpler linguistic structures.
The vocabulary we use comprises 21,036 unique
words, reflecting the lexical range typically found
in language directed at children. Filtering exist-
ing pre-training corpora with this vocabulary thus
results in a simpler pre-training dataset.

3.2 Pre-training Data Collection

To obtain high quality datasets with sufficient dedu-
plication and diversity we leverage datasets used
for pre-training large language models such as the
SlimPajama dataset (Soboleva et al., 2023). We be-
gin by selecting samples from the train split of the
SlimPajama pre-training corpus, then tokenize this
text into distinct elements, such as words and sym-
bols. We retain tokens that are either integers, spe-
cial symbols, or belong to the AO-Childes vocabu-
lary. This process continues until we accumulate
a minimum number of tokens in a chunk. For the
22 Billion dataset the minimum number of tokens
are set to 32 and for the 2.1 Billion dataset the min-
imum number of tokens are set to 100. We allow
up to 1.5% of these tokens to be out-of-vocabulary
(OOV) words to maintain a simplified vocabulary
and yet allow some linguistic variability. If the
percentage of OOV words in a chunk exceeds this
1.5% threshold, we conclude the current chunk and
initiate a new one at the beginning of the next sen-
tence. This approach ensures that each analyzed
text chunk primarily consists of known vocabulary
words, with a minimal presence of OOV words.
Figure 1 illustrates our method.

After filtering, our datasets consist of around 22
billion and 2.1 billion tokens, derived from various
splits of the SlimPajama dataset. The distribution
of the tokens on the 22 billion dataset across vari-
ous splits of the SlimPajama dataset is detailed in
Table 1. For the 2.1 Billion dataset the distribu-
tion of tokens can be found in Table 5 and 6 in the
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appendix.

We computed the Zipfian Coeffcient by fitting a
linear regression model on the logarithm of word
frequencies and ranks of words and obtained a
zipfian coefficient of -1.11 indicating the dataset
exhibits a distribution pattern typical of natural
languages, where a small number of words are
extremely common, while the majority are rare,
thereby underscoring naturalistic quality of our
dataset 2. We utilize this dataset for pre-training of
models we label as “simple” models (henceforce,
Simple). In contrast, for our “regular’” models, we
train them using data from the SlimPajama dataset,
applying no filtering and maintaining a similar num-
ber of tokens.

4 Experimental Setup

4.1 Model Configurations

We pre-train transformer-based models (Vaswani
et al., 2017) by adapting the LLaMA architecture
(Touvron et al., 2023) and vary key hyperparam-
eters, such as the number of dimensions of the
hidden representations (hidden size), number of
hidden layers in the Transformer decoder (num
layers) and the internal dimension of the MLP (in-
termediate size). We keep the base period of the
RoPE embeddings (Su et al., 2023) (rope_theta) at
20.

We trained 2 models on 22 billion tokens: Sim-
ple 165M and Simple 100M. We also trained 54
models on 2.1 Billion tokens. Of these, 36 models
were used for zero-shot experiments in section C
of the appendix, while the remainder were utilized
for curve fitting analyses in section 5.3. The hidden
sizes used in our experiments are [32, 64, 128, 256,
512, 1024], with layer counts of [2, 4, 8]. For the
majority of zero-shot experiments, the intermediate
size was set at four times the hidden size. How-
ever, for the experiments detailed in section 5.3, we
used intermediate sizes that are twice the hidden
size as well. These variations in hyperparameters
produced models from 1 million to 165 million
parameters, as detailed in Table 7 in the appendix.
For training, we utilized the Flash Attention mech-
anism introduced by Dao et al. (2022).

4.2 Model Pretraining

We train a tokenizer using Byte Pair Encoding
(BPE) (Sennrich et al., 2015) on the filtered dataset.

*This analysis was done on the 2.1B dataset

We use a vocabulary size of 15000. All simple mod-
els are pre-trained on a causal language modelling
objective for a single epoch on the simplified data
derived from various splits of SlimPajama dataset.
We train two sets of models one set on 22 Billion
tokens and another set on 2.1 Billion tokens. The
models trained on 22 Billion tokens have an ef-
fective batch size of 512 and context lengths of
1024 with model parameters being updated 41697
times. We use a cosine learning rate scheduler with
warmup and use peak learning rates in the range
of 6 x 1074 to 1 x 103 (learning rates are chosen
based on model size) and decay the learning rate
down to 13% of the peak learning rate and a per-
form warmup for 4000 steps. The models trained
on 2.1 Billion tokens have an effective batch size
of 4096 and context lengths of 128. The model
parameters are updated a total of 3972 times with
cosine learning rate scheduler with warmup and a
peak learning rate of 2.8 x 10~3, we decay learning
rate upto 11% of the peak learning rate and perform
warmup for 1000 steps.

We utilize the AdamW optimizer for updating
the parameters, with the 51, B2, and weight_decay
values of 0.9, 0.95, and 0.1 respectively. We use
gradient clipping of 1.0. We conduct pre-training
of all models on 2 RTX3090. For training regular
models, we use a dataset consisting of 2.1 Billion
tokens, and use the same hyperparameters as those
used for training simple models with the same to-
ken count.

4.3 Model Evaluation and Datasets

We evaluate all pre-trained models for their zero-
shot and few-shot ICL abilities using the language
model evaluation harness from EleutherAl (Gao
et al., 2021), which is a framework designed to
perform zero-shot and few-shot evaluations. The
datasets we use include: Benchmark of Linguistic
Minimal Pairs for English (BLiMP) (Warstadt et al.,
2020) to assess the models’ capability in under-
standing linguistic features. BLiIMP is comprised
of 67 individual datasets, each containing a pair of
sentences: one grammatically correct, and the other
incorrect. These pairs are designed to assess the
models’ proficiency in recognizing morphological,
syntactic, and semantic aspects of language. Addi-
tionally, we use the Physical Interaction Question
Answering (PIQA) (Bisk et al., 2020) to measure
the performance of lanuguage models on questions
requiring physical common sense, AI2 Reasoning
Challenge (ARC-Easy) (Clark et al., 2018) which
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measures reasoning abilities of Language Models,
Choice of Plausible Alternatives (COPA) (Roem-
mele et al., 2011) which evaluates common sense
causal reasoning of language models, Microsoft
Research Paraphrase Corpus (MRPC) (Dolan and
Brockett, 2005) which evaluates if the language
model can identify if a pair of sentences constitutes
a paraphrase, RTE which evaluates if language
models can identify entailment and non-entailment,
MultiGenre Natural Language Inference (MNLI)
(Williams et al., 2017) which provides a more di-
verse and challenging dataset for natural language
inference, and Stanford Sentiment Treebank (SST-
2) (Socher et al., 2013) which evaluates the model’s
fine grained understanding of sentiment.

In reporting our findings, we differentiate be-
tween the entire downstream dataset called the “un-
filtered dataset” or “standard dataset” and the fil-
tered subset termed the “filtered” or “simplified
dataset”. The simplified version of each down-
stream task consists of instances using only the
words from the AO-Childes lexicon (with the ad-
dition of digits and special symbols), thereby mit-
igating potential distributional shifts between pre-
training and testing.

The primary aim of our study was to understand
if smaller models could achieve performance im-
provements similar to those observed in larger mod-
els, but when modeling a simplified language. We
would like to emphasize that this choice is moti-
vated by our research goal: to understand whether
the lack of emergent abilities in smaller pre-trained
models is merely a question of model capacity, and
whether reducing the problem (down-scaling the
language) would allow us to see similar abilities
emerge in smaller models. This logic is what di-
rectly motivates our downstream evaluation with
standard datasets filtered down to imitate the con-
strained language setting. However, we recognize
the value of evaluating model performance on un-
filtered datasets for comparison. To this end, we
have included the performance of simple models
on unfiltered datasets as well.

5 Results

Our goal is to understand if the absence of emergent
abilities in smaller pre-trained models is simply a
matter of model capacity and whether simplify-
ing the problem, i.e., downscaling the language,
would allow these abilities to emerge in smaller
models. To this end, we evaluate models trained on

simplified data against both filtered and standard
evaluation datasets. We compare our models with
Pythia (Biderman et al., 2023) and OPT (Zhang
et al., 2023) (models up to 1.3B parameters) to
determine if downscaling the language facilitates
emergent capabilities to occur much earlier.

Table 7 in the appendix shows the perplexity for
different-sized models trained on both simple and
regular datasets. The simple dataset is derived from
a subset of the SlimPajama dataset, where the text
has been filtered to limit vocabulary complexity. In
contrast, the regular dataset uses the original, un-
altered text from the same source. A separate test
set, similar in distribution to the training data, was
used to evaluate perplexity in each set of models.
The reported results reflect the performance of each
model trained in an identical training regimen with
the same number of training steps. We find that as
the model size increases, its ability to accurately
predict and understand the held-out test set also
improves, as evidenced by decreasing perplexity
on both the simple and regular models. Further-
more, the perplexity metrics indicate that at this
scale, simple models are able to learn the simple
language much better. Simple models in the range
of 1-165M parameters achieve perplexity of 92.00
- 20.59 on the simple dataset. In contrast, when
regular models are trained on a regular dataset they
achieve perplexity in the range of 193.20 - 28.97
on the regular dataset.’

5.1 Do simple models perform better in
zero-shot settings?

In-context learning, as defined by Brown et al.
(2020), enables models to apply knowledge gained
during pre-training to new tasks without requir-
ing fine-tuning on task-specific datasets. We eval-
uate the ICL capabilities of our models, focus-
ing on their zero-shot performance across a range
of tasks, including COPA, MRPC, RTE, MNLI,
SST-2, PIQA, ARC-Easy, and BLiMP. These tasks
are analyzed using both standard and vocabulary-
filtered datasets.

Table 2 presents zero-shot performance for dif-
ferent models, including pre-trained Pythia mod-
els (1B, 410M, 160M), OPT models (1.3B, 350M,
125M), and models trained on simplified language
(165M and 100M), which we will refer to as Sim-
ple models. The Simple models perform better on
vocabulary-filtered downstream tasks than on the

3These results are reported on models trained on 2.1B
dataset
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Model COPA MRPC RTE MNLI ARC-Easy BLiMP PIQA SST-2 | Average

Pythia 1B 0.72 0.68 0.53 0.34 0.57 0.84 0.71 0.50 0.61
Pythia 1B* 0.68 0.67 0.50 0.35 0.56 0.83 0.70 0.65 0.62
Pythia 410M 0.70 0.52 0.53 0.34 0.52 0.84 0.67 0.51 0.58
Pythia 410M" 0.71 0.38 0.50 0.34 0.52 0.83 0.66 0.66 0.58
Pythia 160M 0.63 0.67 0.52 0.35 0.44 0.80 0.62 0.51 0.57
Pythia 160M" 0.61 0.67 0.50 0.37 0.41 0.80 0.61 0.36 0.54
OPT 1.3B 0.79 0.66 0.51 0.36 0.57 0.86 0.72 0.82 0.66
OPT 1.3B" 0.73 0.62 0.57 0.37 0.59 0.85 0.70 0.90 0.67
OPT 350M 0.72 0.68 0.52 0.34 0.44 0.85 0.65 0.62 0.60
OPT 350M" 0.73 0.67 0.71 0.36 0.45 0.84 0.63 0.71 0.64
OPT 125M 0.66 0.68 0.50 0.34 0.44 0.83 0.63 0.53 0.58
OPT 125M' 0.61 0.67 0.50 0.34 0.47 0.83 0.63 0.42 0.56
Simple 165M 0.73 0.68 0.56 0.33 0.35 0.71 0.63 0.49 0.56
Simple 165M" 0.83 0.67 0.79 0.35 0.42 0.76 0.65 0.64 0.64
Simple 100M 0.66 0.68 0.52 0.33 0.34 0.72 0.62 0.60 0.56
Simple 100M" 0.68 0.58 0.64 0.35 0.43 0.78 0.64 0.58 0.59
Random Chance  0.50 0.50 0.50 0.33 0.25 0.50 0.50 050 | 045

Table 2: Zero-shot accuracy of pre-trained Pythia and OPT models vs. models trained on simplified language.
Models are evaluated on both standard and vocabulary-filtered datasets. Results on vocabulary-filtered datasets are
marked with . Our findings indicate that the simplified models demonstrate superior zero-shot performance on
vocabulary-filtered datasets, achieving higher average scores across these datasets compared to the average scores of
significantly larger Pythia pre-trained models.
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Figure 2: Here we present our curve-fitting results. The green dots represent the compute-optimal instances found in
our experiments and the black solid line represents the fitted power curve of the form y = A - 2. In each subfigure,
we provide the optimal values of A and B, and the goodness of fit (R?). Starting from the left, we present the
relationship between the evaluation loss (y-axis) and FLOPs (left subfigure), pre-training data (center subfigure)
size, and model size (right subfigure), respectively. All R? values are over 0.74 and we observe the best fit for the
left subfigure (loss vs. FLOPs). In the test range of values for model size and data size, we observe that loss value
reduces faster per unit change in model size.
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corresponding unrestricted standard versions of the
same tasks. This is to be expected, since these mod-
els are not exposed to unrestricted language during
training.

Since the larger models used in this study are pre-
trained on unrestricted language, we expect them to
be able to handle tasks using simplified language,
as the latter is a subset of their training data. Inter-
estingly, we see that Simple 165 model outperforms
Pythia 1B model on simplified downstream data
(0.64 vs. 0.62 average performance), suggesting
that modeling a restricted language allows smaller
models to achieve stronger-than-expected zero-shot
capabilities.

A curious comparison arises between the per-
formance of small models on simplified tasks and
the performance of larger models pre-trained on
standard language on the corresponding standard
versions of the same tasks. In this situation, there
is no distribution shift between training and testing.
If both the model size and language complexity are
downscaled appropriately, we expect to see simi-
lar performance figures. However, we see that the
Simple 165M model performs better on simplified
downstream data than the Pythia 1B on standard
datasets (0.64 vs. 0.61 average performance), de-
spite being approximately six times smaller and
seeing substantially less data. We see a similar
trend with OPT model family, where the Simple
165M model does better on the simplified down-
stream data than OPT 350M model on standard
datasets (0.64 vs. 0.60 average performance).

We also report the performance of small mod-
els trained on a much smaller amount of data
(2.1B tokens), comparing regular and restricted
pre-training. For detailed performance comparison
on the BLiMP benchmark, PIQA, and ARC-Easy
datasets across different model sizes, please refer to
the appendix C. As expected, pre-training smaller
language models on simpler data leads to better
downstream task performance. Consistent with
Deshpande et al. (2023), we see above random per-
formance of models as small as 1M parameters.
Figure 4 in the appendix, shows the zero-shot task
accuracy with respect to the hidden size and num-
ber of layers.

5.2 Do Simple models perform better in
Jfew-shot settings?

In addition to zero-shot performance, we also com-
pare the few-shot performance of simple and stan-
dard pre-trained models. We evaluate the perfor-

Model 0-shot 1-shot 2-shot 3-shot 4-shot

Pythia 1B 0.59 0.57 0.57 0.58 0.60
Pythia 410M 0.54 0.55 0.53 0.56 0.54
Pythia 160M 0.50 0.50 0.48 0.51 0.50
Simple 165M 0.62 0.56 0.56 0.54 0.54
Simple 100M 0.56 0.56 0.56 0.56 0.55

Table 3: Average few-shot results across different vocab-
filtered tasks such as COPA, MRPC, RTE, MNLI, ARC-
EASY, PIQA, SST. Our results reveal no discernible
trend in the few-shot learning results, suggesting that
larger models are required to observe the emergence of
few-shot in-context learning capabilities.

mance of the Simple 165M and Simple 100M mod-
els, which are pre-trained on a simplified vocab-
ulary, against the Pythia baselines (160M, 410M,
and 1B). This evaluation uses few-shot prompt-
ing using examples from vocabulary-filtered down-
stream data. We report the models’ average per-
formance across the following datasets: COPA,
MRPC, RTE, MNLI, ARC-Easy, PIQA, and SST-2.
The results for each dataset are averaged over three
runs, with each run using different task examples
in the context.

From the results in Table 3, we observe no sig-
nificant improvement in performance with an in-
creased number of in-context examples. This is in
line with previous findings for language models of
similar sizes (Brown et al., 2020). This suggests
that the smaller model sizes of 100M or 165M
may not be adequate to fully demonstrate the few-
shot ICL capability in the downscaled language
setting. We also believe that the simplified-data
models we investigated likely lacked the scale nec-
essary to exhibit emergent abilities such as chain-
of-thought prompting (Wei et al., 2022b). Just as
models smaller than 10B parameters trained on un-
restricted language actually perform worse with
CoT prompting (Wei et al., 2022b), our simplified-
data models may also require greater scale to ex-
hibit such capabilities.

5.3 Do simple models obey power laws?

We fit a power curve of the form L = A - 25, to
predict the cross-entropy loss (L) based on the com-
pute cost (C), data size (D), and model size (M),
separately. For curve-fitting, we consider only the
25 compute-optimal instances found for 25 bins
of the FLOPs values and utilize R? value to as-
sess the goodness of fit. We adopt the formula
presented by Deshpande et al. (2023) to calculate
the FLOPs values which considers the embedding
parameters while calculating FLOPs unlike (Ka-
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plan et al., 2020; Hoffmann et al., 2022). Similar to
Kaplan et al. (2020); Hoffmann et al. (2022) we ob-
serve that the upstream performance (pre-training
cross-entropy loss on validation split of the data) is
fairly predictable with R? value of 0.86, 0.80, and
0.75, for compute cost, data size, and model size,
respectively. We also observe that improvement in
the loss value is faster for the model size compared
to the data size. 4

5.4 Do Simple Models yield good generations?

We analyze text continuations, on prompts sampled
from TinyStories (Eldan and Li, 2023) and ROC-
Stories (Mostafazadeh et al., 2016), using the 165M
simple model and Pythia baselines (160M, 410M,
1B). We sample 25 different prompts from both
these datasets randomly. We choose prompts from
these datasets so as to keep the prompts simple
enough for the model trained on vocabulary-filtered
pre-training dataset to understand. For decoding
of all models we set temperature to 1.0 and em-
ploy nucleus sampling (Holtzman et al., 2019) with
top_p set to 0.9. The maximum number of new
tokens are set to 50.

Table 4 shows few initial prompts and genera-
tions from simple models and different baselines.
Similar to (Eldan and Li, 2023) we evaluate the
generations with GPT-4, to assign scores ranging
from 1 to 10 with 10 being the highest for different
aspects of the generated text such as grammar, cre-
ativity, and coherence. We plot the average scores
across all completions for each model as depicted
in Figure 3. From the figure it can be seen that the
simple model performs comparably to the Pythia
410M model in terms of grammar and creativity
and the simple model outperforms Pythia 160M
model in terms of coherence.

6 Conclusion

In our study, we explored the impact of simplifying
pre-training data on the performance of small gen-
erative models, specifically those with fewer than
165 million parameters. Our primary focus was to
assess whether these models exhibit emergent abil-
ities, notably zero-shot learning — the capability
to have non-random performance on tasks without
explicit prior training. To this end, we evaluated a
series of models, each varying in hidden size and
the number of layers, and measured their zero-shot
performance across different tasks. Our findings

*The results are reported on models trained on 2.1B tokens

Generation scores by model and category

B simple-165M
B Pythia-160M
| mmm Pythia-410M
mmm Pythia-1B

~

Scores

Grammar Creativity Coherence

Figure 3: Comparative Analysis of Text Quality from
Various Generative Models as evaluated by GPT-4.
Models pre-trained on a vocabulary-simplified dataset
produce outputs that are grammatical, creative, and co-
herent, and are comparable to those from larger models
trained on the complete language dataset.

reveal that smaller models operating in a simpli-
fied language regime indeed demonstrate enhanced
zero-shot learning abilities on vocabulary-filtered
datasets, and outperform larger baseline models
trained on full language on standard datasets. This
suggests that the complexity of training data is a
crucial factor in the development of zero-shot learn-
ing capabilities in smaller models.

We expect future work to investigate the model
and data scales at which other emergent abilities
(such as few-shot ICL and CoT reasoning) appear
when modeling a reduced-scale language. Explor-
ing the potential of instruction fine-tuning in mod-
els trained with simplified language is another in-
teresting direction to pursue in future work.

7 Limitations

We adopt vocabulary reduction for simplifying the
language we model and do not explore other possi-
ble ways of simplification such as sentence struc-
ture simplification, data pruning, or curriculum
learning. The adopted vocabulary-based data fil-
tration also leads to different distributions of se-
quence length and word frequencies compared to
regular English data. Hence, our findings should
be considered within the distributional properties
of our pre-training data. We extend the pre-trained
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Prompt

Simple-165M

Pythia-160M

Pythia-410M

Pythia-1B

I saw my friend Joe
sitting in lobby today.
I kept him company,
as he is a lonely old
man. He told me he
had just listened to
Beethoven’s Ninth. I
talked to him for an
hour. I left him in the
lobby and told him I
would see him soon.

I went to check on
him and he was just
sitting there waiting.
Then I got to see a few
people who were with
him that night. He
had been going into
his room after his ac-
cident. I went down
to the lobby to see
what was

He seemed to think I
was the right person.
We talked on the tele-
phone for two hours.
Then I came back to
the room where we
had been sitting at the
dinner table and went
out. There was a
young woman sitting
at the opposite end of

We went to his room.
He was asleep, lying
in bed, as I was. He
did not wake up and
I did not want him to.
My friend Joe told me
this afternoon that he
had been on the way
to visit his

He seemed to be en-
joying himself. I did
not leave him alone
as he has been known
to do. After his hour
with me he decided
to have a drink. He
seemed very pleased
with himself. 1 left
him alone. I hope he

Todd was hungry. He
did not have anything
to cook at his house.
He decided he need
to go buy something
to cook. On the way
to the store Todd de-
cided to make ham-
burgers. Todd buys
everything he needed
and goes home and
cooks.

When he arrived, he
saw his friends there
cooking ham burgers
for them. He was al-
ready thinking about
dinner. He had de-
cided he would make
a ham burger. T odd
looked at his friends
and he knew that he
had to do something
about this.

When he’s done cook-
ing, he takes the ham
off the rack. He
makes the ham into
a turkey, then adds a
little salt and pepper.
Todd then steaks them
with chicken.The ham
goes through the oven
in a double skillet and

He had some leftovers
left. He wanted to
do this for the rest
of his life.He made
up for his lunch with
some chips. His
mother came home
from work. She told
him to make her ham-
burger. She had to eat

When he got back
home he took all the
food he needed. He
eats all the food and it
was too late to cook
something else now
he was back at the
store. Todd decides to
go in the store again.
There he finds out that

Table 4: Comparison of the prompt completions generated by the Simple 165M model trained on vocabulary-filtered
simplified pre-training dataset and Pythia pre-trained baselines (160M, 410M, 1B). For decoding of all models we
set temperature to 1.0 and employ nucleus sampling with top_p set to 0.9. The maximum number of new tokens are

set to 50.

model capabilities to process longer sequences by
utilizing position interpolation method (Chen et al.,
2023). We train all models with only the causal
language modeling task and do not consider dis-
tillation or model pruning as a means of develop-
ing smaller models. For evaluating the pre-trained
models, we focus only on the in-context learning
abilities. Hence, we keep the finetuning experi-
ments out of the scope of our study. We further
note that instruction tuning of models may consid-
erably affect the ICL abilities. However, we keep
the investigation of the effect of instruction tuning
on ICL abilities for future work.
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A Data distribution for the Simple and
Regular Datasets with 2B tokens

The data distribution corresponding to the simple
and regular datasets containing 2B tokens can be
found in 5 and 6 respectively.

B Modeling simple and regular language

Table 7 shows the perplexity metrics across dif-
ferent simple and regular models trained on 2.1B
tokens. Perplexity of simple models are evaluated
on the held out test set of simple pre-training data
whereas perplexity of regular models are evaluated
on the held out test set of both simple and regular
pre-training data. It can be seen that smaller mod-
els are better able to model simple data compared
to regular data.

C Additional Zero-shot Evaluation
Results

Figure 4 shows that the task accuracy improves
with an increase in the capacity of the model for
both regular and simple models. Simple models
generally outperform their regular counterparts on
simpler tasks such as PIQA and ARC-Easy when
evaluated on the filtered dataset.

Table 8 shows additional zero-shot accuracy re-
sults across all model configurations in both fil-
tered and unfiltered datasets. On the PIQA task, we
saw that simple models typically exhibit superior
performance over regular models in a majority of
configurations, regardless of whether the dataset
was filtered or unfiltered. When focusing on the
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(a) Variation in accuracy for hidden sizes ranging from
32 to 1024 on both simple and regular models. For each
hidden size, we choose the model with 8 layers.
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(b) Variation in accuracy for layers ranging from 2 to 8 on
both simple and regular models. For each layer we choose
the model with a hidden size of 1024.

Figure 4: Model performance different hidden layer sizes and number of layers on PIQA and ARC-Easy datasets.
Both simple and regular models are compared on the filtered evaluation datasets. We observe that the simple models
consistently outperform their regular counterparts across different model configurations.

Split Percentage of = Number of

tokens tokens (mil)
C4 24.92% 530.877
GitHub 0.42% 885.322
Commoncrawl] 18.42% 390.694
StackExchange 3.05% 649.524
Wikpedia 0.09% 186.751
ArXiv 2% 431.555
Books 51.2% 1090.048
total 100% 2130.447

Table 5: Data source distribution for the simplified pre-
training dataset derived from SlimPajama.

Split Percentage of = Number of

tokens tokens (mil)
C4 26.27% 560.18
GitHub 4.86% 103.60
Commoncrawl 52.73% 1124.51
StackExchange 3.15% 67.16
Wikpedia 4.35% 92.81
ArXiv 4.62% 98.55
Books 4.02% 85.84
total 100% 2132.64

Table 6: Data source distribution for the standard
SlimPajama pre-training dataset used to train regular
models.

ARC-Easy filtered dataset, we found that simple
models with larger hidden sizes (exceeding 64) con-
sistently outperformed their regular counterparts
on the filtered dataset. Conversely, with unfiltered
ARC-Easy dataset, regular models demonstrated a
higher performance level than the simple models.
Tables 9 and 10 show zero-shot accuracy results

across various model configurations using the fil-
tered and unfiltered datasets. Though simple mod-
els show a deterioration in performance compared
to their results on the filtered dataset, we do see
that the average scores tend to be better than the
regular models on most configurations.

D Rotary Position Embeddings and
Position Interpolation

For models pre-trained on 2.1B tokens we use con-
text length of 128. However, datasets such as PIQA
and ARC-Easy contain examples that span more
than the pre-trained context length. To extend con-
text window sizes beyond 128, we use Position In-
terpolation (Chen et al., 2023) on PIQA and ARC-
Easy datasets. We use a scaling factor of 8 which
allows to have context window of 1024.

Based on the findings presented in a study con-
ducted by Liu et al. (2023), we conducted an ex-
ploratory experiment for deciding the base value for
the rotary positions embeddings (Su et al., 2023).
For the pre-training sequence length of 128, we
observed better length extension results (with PI
(Chen et al., 2023)) for the base value of 20, com-
pared to the widely used 10,000. Our results were
in agreement with the findings presented by Liu
et al. (2023). Hence, we used a base value of 20
for pre-training language models.

In our downstream evaluation, we utilized PI
for context length extension only for the PIQA
and ARC-Easy datasets. We used a scale of 8 for
extending the pre-training context length to 1024.
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Model Hidden Num Int. PPL Simple PPL Regular PPL Regular

Size (M) Size Layers Size (Simple Dataset) (Regular Dataset) (Simple Dataset)
164.96 1024 8 4096 20.59 28.97 33.85
97.84 1024 4 4096 24.59 31.13 35.49
64.28 1024 2 4096 27.92 37.15 40.34
48.92 512 8 2048 26.61 35.46 40.47
32.14 512 4 2048 28.31 38.53 42.87
23.75 512 2 2048 31.57 45.48 48.61
16.07 256 8 1024 32.72 49.18 53.58
11.87 256 4 1024 34.23 53.18 56.26
9.77 256 2 1024 37.77 62.20 62.39
5.94 128 8 512 41.38 70.05 72.53
4.89 128 4 512 43.69 77.73 77.38
4.36 128 2 512 47.37 87.18 84.05
2.44 64 8 256 54.52 102.83 100.14
2.18 64 4 256 57.86 113.23 105.72
2.05 64 2 256 62.78 124.61 114.69
1.09 32 8 128 79.61 164.78 141.03
1.02 32 4 128 84.24 178.07 150.75
0.99 32 2 128 92.00 193.20 162.80

Table 7: Parameter count and perplexity metrics across model configurations. “PPL Simple (Simple Dataset)” refers
to the perplexity of simple models measured on a held-out filtered pre-training dataset. “PPL Regular (Regular
Dataset)” refers to the perplexity of regular models measured on a held-out standard pre-training dataset. “PPL
Regular (Simple Dataset)” refers to the perplexity of regular models measured on the held-out filtered pre-training
dataset. As the model capacity increases, the ability to predict the evaluation data improves on both simple and
regular models.

With the PI scale of 8, we evaluated the model
on the government report dataset (Huang et al.,
2021) and observed a decreasing perplexity from
a context length of 64 to 1,024 in our exploratory
experiment.
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Hidden Size Num. Layers PIQA (Filtered) PIQA (Unfiltered) ARC Easy (Fil- ARC Easy (Unfil-

tered) tered)
1024 8 0.653 0.642 0.398 0.330 |
1024 8 0.565 0.596 0.372 0.370
1024 4 0.636 0.627 0.384 0.310 4
1024 4 0.555 0.576 0.342 0.353
1024 2 0.620 0.621 0.354 0.309 |
1024 2 0.560 0.581 0.342 0.349
512 8 0.610 0.613 0.357 0.317 |
512 8 0.556 0.582 0.292 0.332
512 4 0.611 0.610 0.369 0.309 |
512 4 0.524 0.561 0.345 0.327
512 2 0.595 0.593 0.319 0.303 |
512 2 0.546 0.569 0.319 0.325
256 8 0.587 0.580 0.351 0.309 |
256 8 0.536 0.564 0.319 0.312
256 4 0.585 0.584 0.325 0.298 |
256 4 0.551 0.568 0.304 0.315
256 2 0.589 0.594 0.325 0.290 |
256 2 0.553 0.564 0.325 0.312
128 8 0.570 0.566 0.322 0.286 |
128 8 0.528 0.542 0.286 0.297
128 4 0.555 0.557 0.310 0.284 |
128 4 0.532 0.553 0.292 0.298
128 2 0.553 0.560 0.354 0.288 |
128 2 0.523 0.542 0.298 0.296
64 8 0.546 0.545 0.277 | 0.279 |
64 8 0.519 0.540 0.283 0.284
64 4 0.543 0.547 0.271 ] 0.282
64 4 0.527 0.535 0.283 0.277
64 2 0.526 0.536 | 0.286 | 0.269 |
64 2 0.526 0.539 0.298 0.283
32 8 0.526 0.534 0.292 0.265 |
32 8 0.511 0.533 0.292 0.275
32 4 0.526 0.530 | 0.271 ] 0.264
32 4 0.516 0.533 0.277 0.263
32 2 0.541 0.532 0.254 | 0.264
32 2 0.521 0.529 0.263 0.259

Table 8: Zero-shot accuracy scores on PIQA and ARC Easy dataset. “Filtered” refers to the vocabulary filtered
datasets and “Unfiltered” for standard datasets. For each hidden layer size and layer count, the table compares
metrics for both simple and regular models. The initial row for each hidden size and number of layers displays
results from the simple model trained on simplified data, followed by a similar-sized regular model trained on
regular data. Performance comparison is indicated by arrows next to the simple model’s scores: a | signifies the
simple model outperforming the regular model, while a | denotes the regular model performing better. An absence
of arrows indicates comparable performance between the two models. We observe that on both the filtered and
unfiltered datasets for the PIQA task, simple models generally outperform regular models in most configurations.
Additionally, for the ARC Easy filtered dataset, larger simple models (with hidden sizes above 64) tend to surpass
the performance of regular models. However, on the unfiltered ARC Easy dataset, it is observed that regular models
outperform the simple ones.
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Hidden Num. Anaphor  Argument Binding Control Determiner Ellipsis Filler Irregular  Island NPI Quantifiers Subject Avg.

Size Layers Agr. Str. /Raising Noun Gap Forms Effects Lic. Verb Score
Agr. Agr.
1024 8 0.968 0.804 0.711 | 0.792 0.932 0.806 0.741 0.871 0.555 | 0.662 0.847 0.843 0.794
1024 8 0.958 0.783 0.728 0.775 0.923 0.722 0.737 0.801 0.610 0.636 0.713 0.832 0.768
1024 4 0.965 0.781 0.714 | 0.766 0919 | 0.781 0.736 0.890 0.512 | 0.587 0.800 0.812 0.772
1024 4 0.951 0.777 0.730 0.755 0.924 0.721 0.732 0.848 0.573 0.577 0.593 0.789 0.748
1024 2 0.961 0.793 0.697 0.778 0918 0.736 0.729 0.923 0.488 | 0.616 | 0.805 0.783 0.769
1024 2 0.927 0.755 0.693 0.729 0.905 0.689 0.709 0.873 0.508 0.624 0.723 0.744 0.740
512 8 0.938 | 0.785 0.688 | 0.762 0.909 0.761 0.720 0.950 0.560 0.608 | 0.707 0.816 | 0.767
512 8 0.952 0.756 0.738 0.745 0.903 0.660 0.698 0.861 0.537 0.617 0.662 0.822 0.746
512 4 0.961 0.787 0.681 | 0.779 0.920 0.757 0.728 0.931 0.536 0.570 0.778 0.827 0.771
512 4 0.938 0.753 0.754 0.748 0.917 0.654 0.687 0.851 0.531 0.557 0.698 0.813 0.742
512 2 0.915 0.765 0.687 | 0.763 0.916 0.744 0.679 | 0.911 0453 | 0.637 0.787 0.736 0.749
512 2 0.880 0.727 0.701 0.736 0.908 0.679 0.683 0.896 0.492 0.464 0.747 0.733 0.721
256 8 0913 0.777 0.686 | 0.761 0.907 0.656 0.695 0.902 0.481 | 0.517 1 0.725 0.761 0.732
256 8 0.897 0.737 0.733 0.749 0.878 0.626 0.663 0.871 0.516 0.539 0.718 0.752 0.723
256 4 0.936 0.778 0.691 | 0.772 0.893 | 0.670 0.669 | 0.893 0.506 0.623 0.713 | 0.778 0.744
256 4 0.867 0.744 0.716 0.715 0.898 0.617 0.676 0.837 0.505 0.560 0.736 0.714 0.715
256 2 0.893 0.744 0.690 | 0.749 0.890 0.674 0.678 0918 0.451 | 0.556 | 0.742 0.707 0.724
256 2 0.798 0.715 0.691 0.718 0.852 0.605 0.660 0.913 0.481 0.575 0.720 0.639 0.697
128 8 0.884 0.734 0.720 0.761 0.895 0.654 0.662 | 0.935 0.450 | 0.623 0.714 0.711 0.729
128 8 0.785 0.694 0.698 0.731 0.859 0.591 0.668 0.909 0.516 0.423 0.697 0.649 0.685
128 4 0.854 0.754 0.689 | 0.754 0.885 0.624 | 0.679 0.882 | 0.454 | 0.550 | 0.726 | 0.754 0.717
128 4 0.774 0.699 0.700 0.703 0.838 0.632 0.660 0.886 0.484 0.599 0.747 0.642 0.697
128 2 0.847 0.727 0.681 0.756 0.864 0.675 0.667 0.908 0415 | 0.631 0.683 0.677 0.711
128 2 0.802 0.667 0.662 0.673 0.842 0.593 0.626 0.821 0.481 0.586 0.654 0.627 0.669
64 8 0.847 0.720 0.674 0.692 0.873 0.575 0.647 0.890 0.485 0.605 0.803 0.672 0.707
64 8 0.696 0.673 0.640 0.690 0.830 0.543 0.624 0.866 0.472 0.479 0.639 0.606 0.646
64 4 0.807 0.707 0.669 | 0.699 0.877 0.556 | 0.662 0.867 0.455 0.594 0.572 | 0.610 | 0.673
64 4 0.697 0.671 0.670 0.656 0.833 0.588 0.596 0.851 0.428 0.565 0.589 0.613 0.646
64 2 0.790 0.684 0.659 0.683 0.874 0.577 | 0.660 0.847 0.408 | 0.527 | 0.665 0.629 0.667
64 2 0.637 0.646 0.647 0.623 0.794 0.596 0.635 0.826 0.409 0.583 0.567 0.570 0.628
32 8 0.746 | 0.674 0.650 0.632 0.809 0.498 | 0.631 0.837 0.482 0.500 0.659 0.574 | 0.641
32 8 0.762 0.649 0.615 0.589 0.786 0.521 0.612 0.839 0.475 0.498 0.604 0.593 0.629
32 4 0.479 | 0.619 | 0.643 0.644 0.741 0.489 0.621 0.782 | 0.519 0.505 | 0.559 | 0.592 0.599 |
32 4 0.612 0.656 0.623 0.609 0.731 0.488 0.607 0.797 0.453 0.584 0.660 0.544 0.614
32 2 0.723 0.640 0.635 0.631 0.740 0.485 0.641 0.855 0473 | 0.618 0.654 0.587 0.640
32 2 0.591 0.638 0.615 0.626 0.686 0.420 0.603 0.733 0.489 0.606 0.476 0.526 0.584

Table 9: Zero-shot accuracy scores on the vocabulary filtered datasets in the BLiIMP benchmark. For each hidden
layer size and layer count, the table compares metrics for both simple and regular models. The initial row for each
hidden size and number of layers displays results from the simple model trained on simplified data, followed by a
similar-sized regular model trained on regular data. Performance comparison is indicated by arrows next to the
simple model’s scores: a | signifies the simple model outperforming the regular model, while a | denotes the regular
model performing better. An absence of arrows indicates comparable performance between the two models. We
find that the average score of simple models tends to surpass regular models in most configurations.
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Hidden Num. Anaphor  Argument Binding Control Determiner Ellipsis Filler Irregular  Island NPI Quantifiers Subject Avg.

Size Layers Agr. Str. /Raising Noun Gap Forms Effects Lic. Verb Score
Agr. Agr.
1024 8 0919 | 0.776 | 0.719 | 0.757 | 0.891 | 0.782 0.725 | 0.883 0.563 | 0.644 0.846 0.786 | 0.774
1024 8 0.972 0.780 0.728 0.761 0.917 0.735 0.728 0.845 0.607 0.630 0.719 0.830 0.771
1024 4 0918 | 0.749 0.709 | 0.742 0.870 | 0.753 0.726 0.885 0.502 | 0.568 0.797 0.762 | 0.748
1024 4 0.955 0.749 0.749 0.737 0.916 0.735 0.724 0.877 0.578 0.568 0.600 0.783 0.748
1024 2 0.864 | 0.744 | 0.705 | 0.735 0.865 | 0.706 0.717 0.908 0.496 | 0.606 | 0.798 0.725 0.739
1024 2 0.903 0.745 0.716 0.716 0.886 0.690 0.702 0.894 0.506 0.621 0.721 0.721 0.735
512 8 0912 | 0.740 | 0.696 | 0.734 0.849 | 0.723 0.707 0.924 0.561 0.596 | 0.708 0.768 | 0.743 |
512 8 0.963 0.762 0.731 0.725 0.907 0.681 0.695 0.877 0.540 0.620 0.671 0.805 0.748
512 4 0.902 | 0.735 | 0.677 | 0.744 0.869 | 0.710 0.720 0.912 0.537 0.566 0.755 0.769 | 0.741
512 4 0.942 0.757 0.733 0.743 0.885 0.652 0.684 0.892 0.528 0.551 0.704 0.800 0.739
512 2 0.855 | 0.714 | 0.690 | 0.727 0.862 | 0.685 0.674 | 0.887 0.443 | 0.628 0.787 0.674 | 0.719
512 2 0.856 0.725 0.715 0.724 0.881 0.681 0.676 0.883 0.488 0.473 0.757 0.709 0.714
256 8 0.856 | 0.725 | 0.697 | 0.728 0.863 0.625 0.690 0.874 0.495 | 0.509 | 0.729 0.704 | 0.708 |
256 8 0.899 0.733 0.751 0.728 0.856 0.621 0.670 0.873 0.518 0.536 0.722 0.747 0.721
256 4 0.815 ] 0.724 | 0.713 | 0.731 0.838 | 0.650 0.681 0.891 0.509 | 0.616 0.705 | 0.712 0.715
256 4 0.870 0.729 0.728 0.700 0.864 0.614 0.679 0.853 0.515 0.547 0.740 0.695 0.711
256 2 0.818 0.689 | 0.706 | 0.711 0.821 0.636 0.675 0.892 | 0.441 | 0.552 | 0.737 0.656 0.695
256 2 0.743 0.700 0.707 0.696 0.812 0.627 0.665 0.894 0.486 0.559 0.732 0.627 0.687
128 8 0.772 0.674 | 0.728 0.718 0.823 | 0.593 0.665 | 0.884 | 0.452 | 0.606 0.727 0.662 0.692
128 8 0.760 0.696 0.717 0.702 0.829 0.584 0.669 0.893 0.517 0.422 0.709 0.634 0.678
128 4 0.751 0.685 | 0.698 | 0.706 0.830 0.606 0.678 0.859 | 0.458 | 0.544 | 0.720 | 0.692 0.686
128 4 0.695 0.69 0.727 0.686 0.807 0.594 0.664 0.881 0.484 0.588 0.751 0.622 0.682
128 2 0.752 0.659 | 0.696 0.707 0.795 0.608 0.660 0.875 0432 | 0.617 0.696 0.609 0.676
128 2 0.738 0.668 0.676 0.663 0.786 0.562 0.645 0.833 0.476 0.582 0.667 0.594 0.658
64 8 0.692 0.650 | 0.699 0.675 0.808 0.556 0.663 0.867 0.493 0.593 0.794 0.607 0.675
64 8 0.597 0.670 0.664 0.658 0.781 0.528 0.642 0.859 0.465 0.470 0.645 0.586 0.630
64 4 0.638 0.642 | 0.680 | 0.686 0.807 0.506 | 0.665 0.845 0.446 0.578 0.575 | 0.567 | 0.636
64 4 0.569 0.657 0.692 0.651 0.783 0.541 0.620 0.829 0.420 0.557 0.598 0.581 0.625
64 2 0.634 0.626 | 0.678 0.668 0.809 0.536 | 0.661 0.831 0.408 0.519 0.664 0.591 0.635
64 2 0.585 0.637 0.659 0.620 0.752 0.590 0.638 0.816 0.400 0.585 0.565 0.551 0.617
32 8 0.740 0.615 | 0.672 0.619 0.744 0.461 | 0.635 0.818 | 0.465 | 0.499 0.660 0.536 | 0.622
32 8 0.513 0.630 0.641 0.592 0.709 0.498 0.611 0.831 0.469 0.496 0.602 0.557 0.596
32 4 0.392 | 0.575 | 0.655 0.613 0.707 0.461 | 0.625 0.767 | 0.494 0.500 | 0.565 | 0.543 0.575 |
32 4 0.539 0.635 0.653 0.606 0.663 0.477 0.618 0.800 0.451 0.577 0.659 0.535 0.601
32 2 0.567 0.587 | 0.663 0.614 0.688 0.432 0.646 0.831 0.468 | 0.621 0.647 0.533 0.608
32 2 0.499 0.616 0.633 0.599 0.625 0.424 0.609 0.759 0.486 0.598 0.480 0.513 0.570

Table 10: Zero-shot accuracy scores on the datasets in the BLiMP benchmark. For each hidden layer size and layer
count, the table compares metrics for both simple and regular models. The initial row for each hidden size and
number of layers displays results from the simple model trained on simplified data, followed by a similar-sized
regular model trained on regular data. Performance comparison is indicated by arrows next to the simple model’s
scores: a | signifies the simple model outperforming the regular model, while a | denotes the regular model
performing better. An absence of arrows indicates comparable performance between the two models. We find that
the average score of simple models tends to surpass regular models in most configurations.
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