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Abstract

Speech-driven 3D motion synthesis seeks to
create lifelike animations based on human
speech, with potential uses in virtual real-
ity, gaming, and the film production. Ex-
isting approaches reply solely on speech au-
dio for motion generation, leading to inaccu-
rate and inflexible synthesis results. To miti-
gate this problem, we introduce a novel text-
guided 3D human motion synthesis method,
termed T3M. Unlike traditional approaches,
T3M allows precise control over motion syn-
thesis via textual input, enhancing the degree
of diversity and user customization. The ex-
periment results demonstrate that T3M can
greatly outperform the state-of-the-art methods
in both quantitative metrics and qualitative eval-
uations. We have publicly released our code at
https://github.com/Gloria2tt/naacl2024.git

1 Introduction

Speech-driven 3D motion synthesis, known
as speech-to-motion, is a technique aimed at gen-
erating realistic and expressive motion animations
from human speech. Despite its promising appli-
cations in virtual reality (VR) (Wohlgenannt et al.,
2020), gaming (Ping et al., 2013), and film pro-
duction (Ye et al., 2022), speech-to-motion also
encounters significant challenges, involving var-
ious modalities and intricate mappings. Speech
signals tend to be high-dimensional, noisy, and sub-
ject to variability, while motion data often exhibit
sparsity, discreteness, and adherence to physical
laws. Additionally, the connection between speech
and motion is not deterministic; instead, it relies
on factors such as the environment, emotions, and
individual personalities.

Moreover, in traditional speech-to-motion sys-
tems, speech audio serves as the sole input for gen-
erating various motions for the face, body, and
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Figure 1: Under the same audio input, extrovert and
introvert persons will talk in a completely different fash-
ion.

hands. However, this approach may lead to impre-
cise and undesired motion synthesis due to limi-
tations in the expressive capabilities of the audio
signal. Identical audio signals could also stem from
entirely unrelated contexts. For instance, as de-
picted in Figure 1, when examining the same au-
dio segment, an introverted speaker tends to use
minimal body and hand motions compared to an
extroverted speaker, who exhibits a more extensive
range of movements. Capturing such contextual
information solely from audio input proves nearly
impossible. This limitation in precise control poses
potential difficulties for emerging industries like
AI-driven film or animation production, where gen-
erated motions may need additional refinement to
match user preferences more accurately.

To address this issue, we introduce a novel text-
guided 3D human motion synthesis from speech
method, termed T3M. The T3M framework enables
accurate control of body-hand motion generation
via provided text prompts. This improvement is
especially valuable for addressing the rigidity of-
ten observed in the motions generated due to the
relationship between speech and co-speech gesture
is one-to-many in nature. Even the same speech in
different situation can be result in different motion
style. The controllability afforded by T3M facil-
itates the creation of more nuanced and realistic
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motion sequences, enhancing overall realism and
expressiveness.

Our T3M contains three major blocks, a VQ-
VAE network to generate an intermediate codebook
for action-to-action mapping, an audio feature ex-
traction network to extract acoustic information
of audio, and a multimodal fusion block to imple-
ment audio and text interaction. Specifically, We
train a VQ-VAE network with a two-layer code-
book, which contains hand and body information
respectively. Considering that human motions are
related to the speaker’s emotion, intonation, and
rhythm, we utilize a pre-trained EnCodec (Défos-
sez et al., 2022) model to extract acoustics features
from the original audio. To align the sequenc lenth
of audio feature and the stored body-hand motion
parameter, we use an audio encoder to downsam-
ple the features. Furthermore, we propose a multi-
modal fusion encoder structure, which inserts a
cross-attention layer to the transformer decoder
acoustics architecture for better textual information
fusion.

Another significant challenge arises in the gen-
eration of training datasets for T3M. Most exist-
ing training datasets for speech-to-motion are in
the form of speech-motion pairs, lacking corre-
sponding textual information. One simple approach
to address this gap is to utilize a video large lan-
guage model (VLLM) like Video-Llama (Zhang
et al., 2023) for labeling datasets. However, cur-
rent VLLMs can only provide a coarse-grained
description of the video input. Additionally, since
speech-motion pairs in the training dataset are of-
ten extracted from particular segments of lengthy
videos, employing VLLM for text generation may
lead to highly similar text descriptions being pro-
duced across various video clips. To enhance the
diversity of textual descriptions within the training
dataset, we adopt the video-language contrastive
learning framework, VideoCLIP (Xu et al., 2021b).
This framework enforces the alignment of video
and text in a joint embedding, enabling the pro-
cessing of video frames and utilizing the resultant
video features to replace textual features for T3M
training.

Our research primarily centers on text-guided
speech to body and hand motions generation. For
3D face reconstruction, we utilize cutting-edge
methods in the field, such as those demonstrated
in (Peng et al., 2023). Overall, our contributions
can be described as follows:

• We propose a novel speech-to-motion train-
ing framework termed T3M, enabling users to
achieve better control over the holistic motion
generated from audio through the utilization
of textual inputs.

• To achieve audio-to-motion generation con-
trolled by text, we align video and text in
a joint embedding, utilizing video input for
training and text descriptions for inference.
This approach notably enhances the diversity
of textual input within the training dataset and
substantially improves the performance of mo-
tion synthesis.

• The results show that the proposed T3M
framework significantly outperforms existing
methods in terms of both quantitative and qual-
itative evaluations.

2 Related Work

2.1 Motion Generation from Speech
In recent years, there has been a growing interest in
generating human-like motion from speech. One
area of research is centered around facial recon-
struction, with various studies exploring 2D talking
head generation (Mittal and Wang, 2020). These in-
vestigations employ image-driven or speech-driven
techniques to produce realistic videos of people
speaking.

Extensive research has been conducted in the
field of 3D talking heads generation. To make
the reconstruction more precise, FaceFormer (Fan
et al., 2022) uses a Transformer-based model
to obtain contextually relevant audio informa-
tion and generates continuous facial movements
in an autoregressive manner. VOCA (Cudeiro
et al., 2019) uses time convolutions and control pa-
rameters to generate realistic character animation
from the speech signal and static character mesh.
MeshTalk (Richard et al., 2021) places its empha-
sis on the upper facial generation, an aspect where
VOCA falls short. It establishes a categorical latent
space for facial animation and effectively separates
audio-correlated and audio-uncorrelated motions
using cross-modality loss, enabling the generation
of audio-uncorrelated actions like blinking and eye-
brow movements. Another line of research centers
on body and hand motion reconstruction. These ap-
proaches can be categorized into two groups: rule-
based and learning-based methods. Rule-based
methods, such as (Kopp and Wachsmuth, 2004),
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involve the mapping of input speech to pre-defined
body motion units through manually crafted rules.

The development of learning-based methods for
generating body motion, as demonstrated in re-
search like (Ahuja et al., 2020), has made substan-
tial progress, largely attributed to the availability
of openly accessible synchronous speech and body
motion datasets (Habibie et al., 2021). Very re-
cently, TalkSHOW (Yi et al., 2023) has introduced
a simple encoder-decoder architecture capable of
producing holistic 3D mesh motion.

However, it is important to highlight that despite
these advancements, these methods still encounter
difficulties in achieving a balance between diverse
and controllable motion. Consequently, when ap-
plied in real-time scenarios, the generated actions
often display repetitiveness and limited adaptability
in response to changes in the external condition.

2.2 Video-text Pre-training
The aim of video-text pre-training is to utilize the
complementary information found in both videos
and textual inputs to improve the performance
of subsequent tasks. VideoBERT, as introduced
in (Sun et al., 2019), pioneered the exploration of
pre-training methods for video-text data pairs. Its
primary focus lies in acquiring a unified visual-
linguistic representation, and it demonstrates versa-
tility in adapting to a range of tasks, such as action
classification and video captioning.

VideoCLIP (Xu et al., 2021b) employs a con-
trastive learning approach to pre-train a unified
model for zero-shot understanding of both video
and textual inputs, without relying on any labels
in downstream tasks. VLM (Xu et al., 2021a) in-
troduces a simplified, task-agnostic multi-modal
pre-training method. This method is capable of
handling inputs in the form of either video, text,
or a combination of both, and it can be applied to
a diverse range of end tasks. Recently, there has
been a surge in research focused on large language
models (LLMs), and some researchers have started
incorporating LLMs into this field, yielding promis-
ing results. Video-LLaMA (Zhang et al., 2023)
bootstraps cross-modal training from the frozen
pre-trained visual, audio encoders and the frozen
LLMs. This approach utilizes the robust under-
standing capabilities of large models for tasks such
as video understanding and video question answer-
ing. In our research, we make use of VideoCLIP to
process both video and textual inputs. In particu-
lar, during the training phase, we utilize the video

encoder of VideoCLIP to convert the video input
into latent vector for multimodal learning. During
the testing phase, we leverage its text encoder com-
ponent to enable text-based control over body and
hand motion generation.

3 Method

In this section, we describe the detailed design of
T3M, which can generate holistic body motion,
including body poses, hand gestures, and facial
expressions, based on provided text descriptions.

3.1 Preliminary
We begin by establishing a mathematical formula-
tion for the problem. Specifically, we define a tem-
poral sequence of motion from time t = 1 to t = T
as A1:T further contains three primary components:
facial expressions along with the jaw poses denoted
as Af

1:T , body motions as Ab
1:T , and hand motions

as Ah
1:T . Each element aft of Af

1:T is defined as
aft = (θjawt , ζt), where θjawt is the jaw pose and
ζt is the facial expression parameter. In the case
of Ab

1:T and Ah
1:T , each element is defined as fol-

lows: aht = (θbt ), a
b
t = (θht ), where θbt and θht are

the body poses and hand poses, respectively. Prior
methods (Yi et al., 2023) primarily produces the
holistic motion solely based on the speech input.
In contrast, our objective, when provided with a
speech input sequence S1:T , is to produce compre-
hensive motion sequences Ab

1:T , and Ah
1:T by incor-

porating additional textual context. This context
describes the situation and background associated
with the speech input, allowing the resultant holis-
tic motions to vary according to both speech and
textual inputs. Formally, we express this as:

Â1:T = FT3M (S1:T , B) (1)

where B is the textual input and Â1:T is the output
holistic motion generated by T3M and FT3M rep-
resents the T3M function. Figure 2(a) depicts the
overview of T3M framework, and we will provide
a detailed description of each component of T3M
in the following sections.

3.2 Face Generation
We adopt the approach outlined in TalkSHOW to
generate facial expressions and other body parts
separately. Given that human facial expressions
primarily stem from speech content, we leverage
the pre-trained wav2vec 2.0 model (Baevski et al.,
2020) as a semantic encoder to extract semantic
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Figure 2: Overview of the proposed T3M. We employ a novel framework for body and hand motion generation.
Specifically, T3M first learns a quantized body-hand codebook through a VQ-VAE model. In the training phase, we
the pre-trained EnCodec model to extract the speech embedding of the given speech. We employ the pre-trained
video encoder from VideoCLIP to obtain the video embedding that corresponds to the provided speech. To facilitate
interaction between these two modalities, we utilize a multimodal fusion block. This fusion block is built upon a
BERT-based framework, enhanced with a cross-attention layer for effective fusion.

representations from the provided speech. These
extracted features are then fed into a decoder to
reconstruct facial motion.

The wav2vec 2.0 model consists of three main
components: firstly, a stack of convolutional lay-
ers that process the raw audio waveform to derive
a latent representation; secondly, a group of trans-
former layers that generate contextualized represen-
tations based on the derived latent representation;
and finally, a linear projection head that produces
the output.

The decoder consists of a Temporal Convolu-
tional Networks (TCNs) with six layers, followed
by a fully-connected layer. We employ a similar
approach as described in (Yi et al., 2023) to recon-
struct facial motion. However, it is worth noting
that within our framework, we can replace the face
reconstruction method with other SOTA methods,
such as (Peng et al., 2023).

3.3 Context Features Generation
As depicted in Figure 2(a), the generation of con-
text feature is a necessary step in T3M training.
To create the context embedding, we employ a
video-text fusion model designed to generate di-
verse context features. To achieve this, an intuitive
approach involves sending the text description di-
rectly to a text encoder, and forward the output
context features to the video-text fusion module for
further processing. However, this is not feasible
for two key reasons. Firstly, it is noteworthy that
in many cases, several audio waveform segments
within a single video clip exhibit significant textual

similarities. This resemblance in textual content
results in highly resemble output features across
these various audio segments, ultimately leading
to a suboptimal overall motion synthesis perfor-
mance due to lack of training data diversity. In
contrast, our approach employs a video encoder
to process the video frames corresponding to the
audio waveforms, which will capture intricate con-
text features corresponding to each speech segment.
These context features are subsequently passed on
to the multimodal fusion block for additional pro-
cessing, as shown in the left part in Figure 2(b).
Secondly, even though it is feasible to manually
design distinct text descriptions with intentional
variations for each audio segment, this manual la-
beling process would be labor-intensive.

As a result, during training stage of T3M, we
choose to utilize the video frames corresponding
to the speech input to generate the context fea-
ture. During the inference, the text description will
be sent to the text encoder for better guiding the
holistic motion synthesis (right part of Figure 2(b)).
To enable the precise text-guided motion genera-
tion, we adopt the video and text encoders from the
VideoCLIP model, which establishes a detailed cor-
relation between video and text through contrastive
learning. By mapping video and text embeddings
into a common latent feature space, we facilitate
seamless modality substitution for text-guided mo-
tion synthesis during inference. This approach sim-
plifies the process by eliminating the need for ex-
tensive manual labeling of textual descriptions and
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leveraging existing joint video-text representation
models. It builds upon the concept of modality sub-
stitution, which has been successfully employed
in other contexts, such as MusicLM (Agostinelli
et al., 2023) with audio and text.

3.4 Body and hand Motion Generation

Audio Feature Encoder We obtain the speech
embedding using EnCodec (Défossez et al., 2022),
a state-of-the-art neural audio codec pre-trained
model capable of extracting audio features from
the provided speech. It contains a total of eight lay-
ers of codebooks, each layer stores different audio
information. Given that the audio token sequence
stored in the 8-layer codebook is overly lengthy,
we opt not to employ these audio tokens as the
initial input. Instead, we employ the decoder of
the codebook to generate the audio features, which
serve as our speech embeddings. Next, we employ
a compression model based on a convolutional neu-
ral network architecture to transform these features,
aligning them with the sequence length of the mo-
tion embeddings. Finally, we further insert an MLP
at the end of the compression model to map the di-
mensions to 768, where 768 is the dimension dim
of the context feature. Using our audio feature en-
coder, for a speech segment lasting k seconds, we
obtain an speech embedding with a dimension of
ea ∈ RLseq×768, where Lseq = k× fps represents
the sequence length, where fps is the frames per
second rate of the motion data. This rate determines
the number of motion frames that correspond to
each second of speech, thereby aligning the tempo-
ral resolution of the audio and motion data.

Latent Codebook Design It is challenging to
directly produce the body-hand motion sequence
for a given speech sequence because the input and
output belong to two distinct modalities. To mit-
igate this problem, we utilize the VQ-VAE (Van
Den Oord et al., 2017) model to create a latent
codebook for both body motion and hand motion.

Consequently, we obtain two distinct finite code-
books: Zb = {zbi}

|Zb|
i=1 for body motions and Zh =

{zhj
}|Zh|
j=1 for hand motions, where zbi , zhj

∈ Rdz

and dz denotes the length of each codebook ele-
ment. This approach yields |Zb| × |Zh| different
body-hand pose code pairs (zbi , zhj

), significantly
expanding the range of motion diversity.

Multimodal Fusion Block Design The Multi-
modal Fusion Block is a transformer-decoder based

model that incorporates an cross-attention layer be-
tween the feedforward layer and the self-attention
layer, as depicted in Figure 2(b). Its purpose is to
produce latent codebook tokens from the provided
speech features and context features, which serve
as input for the VQ-VAE decoder.

As described in Section 3.3, during the training
phase, we substitute the text input with the video
frames corresponding to the speech. We encode
these video frames by ViCLIP video encoder into
the context feature space, which is shared with the
text captions. Thus, for the video x, its correspond-
ing feature can be derived as follows:

ev = Fv(x) (2)

where ev ∈ R1×512 is the feature vector for the
video x and Fv is the video encoder function. ev

will be used as the context features during the in-
ference operation for conditional body and hand
motion generation.

For the speech embedding ea and the context
features ev, the multimodal fusion block layer then
combines them through standard cross-attention.
It is important to highlight that the cross-attention
layer between the speech features and the context
features offers two significant advantages. Firstly,
our model integrates context features during train-
ing, enabling the generation of distinct body-hand
motions based on varying input text during the in-
ference stage. Secondly, as this context feature is
incorporated during training, the reconstructed mo-
tion exhibits higher quality and a greater level of
alignment.

3.5 Loss Function
As illustrated in Figure 2(a), the training process
of T3M involves three main stages. First, the facial
image generator is trained to convert audio signals
into facial expressions. Semantic features are ex-
tracted using a pre-trained wave2vec encoder, and
the decoder is trained to minimize the Mean Square
Error (MSE) loss between the ground truth facial
output and the decoder output.

Second, the VQ-VAE model is trained to map
body and hand motions into a latent space, resulting
in a codebook C ∈ Rdz×2. Formally, we have

LV Q = Lrec(A, Â) + α ∥sg[ze(A)]− ZQ(A)∥
+ λ ∥ze(A)− sg[zq(A)]∥

where Lrec is the mean squared error reconstruction
loss, sg[.] is the stop gradient operation, ze is the
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output of the VQ-VAE encoder and zq is the quanti-
zation function. α and λ are two weight coefficients
to reflect the importance of each component.

Lastly, we train our multimodal fusion block to
generate the discrete token of the codebook from
the speech and video through cross-entropy loss.

4 Experiment

We first describe experiment setup in Section 4.1,
and provide quantitative and qualitative evaluate in
Section 4.2 and Section 4.3. We then evaluate T3M
over more data examples in Section 4.4, and present
the ablation study in Section 4.5. We include a
video demo in the supplementary materials (data).

4.1 Experiment Setup

Dataset In our research, we use the SHOW
dataset (Yi et al., 2023), a high-quality audiovi-
sual dataset which consists of expressive 3D body
meshes at 30fps, with a synchronized audio at a
22K sample rate. The 3D body meshes are recon-
structed from in-the-wild monocular videos and are
used as our pseudo ground truth (p-GT) in speech-
to-motion generation. For a given video clip of T
frames, the p-GT comprises parameters of a shared
body shape β ∈ R300, poses θt ∈ R156T

t=1 , a shared
camera pose θc ∈ R3, a translation ϵ ∈ R3 and
facial expressions ψt ∈ R100T

t=1 . Here, the pose θt
includes the jaw pose θjawt

∈ R3, the body pose
θbt ∈ R63, and the hand pose θht ∈ R90.

Compared Baseline We compare T3M with
TalkSHOW, the first research work on holistic 3D
human motion generation using speech. We also
evaluate the authenticity and diversity of the resul-
tant motion synthesis by comparing various base-
lines, including Audio Encoder-Decoder (Ginosar
et al., 2019), Audio VAE (Yi et al., 2023), and
Audio+Motion VAE (Yi et al., 2023).

Metrics We used the following methods to mea-
sure the quality of the generated holistic motion.
Firstly, we calculate the Reality Score (RS) of the
generated body and hand motions by employing
a binary classifier, as per the methodology out-
lined in (Aliakbarian et al., 2020). The classi-
fier is trained to distinguish between authentic and
synthetic samples, and RS is computed from its
predictions, serving as a metric for assessing the
realism of the generated motions. Secondly, we
compute the Beat Consistency Score (BCS) (Zhao
et al., 2023) of the resultant motions to evaluate the

Method RS BCS
Habbie et al. 0.146 -
Audio Encoder-Decoder 0.214 -
Audio VAE 0.182 -
Audio+Motion VAE 0.240 -
TalkSHOW 0.414 0.8130
T3M(video prompt) 0.483 0.8586
T3M(random prompt) 0.364 0.8398

Table 1: Evaluation results on several methods. For
convenience, we use video prompt and random prompt
to test our T3M. - means the results are not available.
We focus on the comparison with TalkSHOW.

motion-speech beat correlation (i.e., time consis-
tency).

4.2 Quantitative Evaluation

Our experiment results are presented in Table 1.
When using T3M, we utilize two distinct prompt
types for generating the context features. The ini-
tial type replicates the training stage, utilizing a
video prompt. In contrast, the second type entails
the generation of a random vector with a mean of
−0.04 and a variance of 0.12, which is utilized as
the context features. In this setup, T3M generates
synthetic motions solely based on the speech input.

Based on the data presented in Table 1, it is
evident that our T3M, when using a video prompt,
demonstrates superior performance in terms of both
RS and BCS indicators. Furthermore, we note
that employing a random prompt yields a slightly
lower RS score compared to TalkSHOW; however,
it outperforms TalkSHOW in terms of BCS, which
demonstrate that the generated motions by our T3M
are more consistent with the audio,

4.3 Qualitative Evaluation

Visualization Results To demonstrate the impact
of textual input over the resultant motion synthesis,
we utilized two text prompts with opposing seman-
tic meanings, along with a randomly generated
embedding as our prompt input. Specifically, for
the text prompts, we use “A man is giving a speech,
he is very excited” and “I am giving a speech, I
feel really nervous”, which has totally opposite se-
mantic meanings. Additionally, we also compare
the resultant holistic motions with TalkSHOW, the
visualization examples are depicted in Figure 3.

As depicted in Figure 3, it is evident that the
motions generated by TalkSHOW appear to lack
diversity. The motions of both hands change inde-
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Figure 3: Visualization of 3D holistic motions generated by TalkSHOW and T3M. For T3M, three different text
prompts are provided and the positions of the hand are highlighted with black boxes. We notice that the hand
motions are closely aligned with the input text desription in T3M.

pendently and do not correspond to the speaker’s
emotions and intonation, resulting in a unnatural
and unrealistic appearance. For T3M, When using
the random prompt, we notice that the hand mo-
tions closely resemble those of the original video.
Additionally, the motions of both hands exhibit cor-
responding interactions and a higher coordination.

When using the prompt input, “A man is giving
a speech, he is very excited.”, we observe a notable
increase in the range of hand motion changes. Ad-
ditionally, there are noticeable upward and down-
ward movements of the hands. These motions align
closely with our textual description, reflecting the
speaker’s highly excited state during the speech.
By comparison, for text description “I am giving
a speech, I feel really nervous”. We notice that
the generated motions distinctly portray signs of
nervousness. The hand movements are very re-
stricted, and there are noticeable trembling or jit-
tery motions, effectively capturing the heightened
nervous state of the speaker. Overall, the experi-
mental results show that with the introduction of
textual input, T3M can achieve controllable motion
generation with much higher degree of diversity.

User Study To offer a more comprehensive eval-
uation of T3M, we have devised a thorough user
study questionnaire. Following the methodology
employed in TalkSHOW, we randomly selected 40
videos from four different speakers in the SHOW
dataset, with each video having a duration of 10

Method hands and body holistic
TalkSHOW 3.43 3.36
T3M (random) 3.25 3.08
T3M (video) 3.86 3.95

Table 2: User study results (higher scores indicating
better quality). We use the video prompt and the random
prompt to evaluate the quality of our generated motions.

seconds. We have invited 12 participants to partici-
pate in the evaluation process. Each participant will
give a score ranging from 1 to 5 to rate the video
in terms of the generated motions. We use ran-
dom prompt and video prompt for our T3M model.
Subsequently, we compute the average scores and
document the results in Table 2.

Table 2 reveals that our T3M, when using the
video prompt, attains the highest scores. Further-
more, it is evident from the table that utilizing a
random prompt yields only slightly lower scores
compared to the TalkSHOW method.

4.4 Other Examples

In order to better verify the effect of T3M, we eval-
uate samples that are not contained in the SHOW
dataset. We employ an audio clip of French as our
speech input, utilizing two textual descriptions as
prompts to enhance our evaluation. One text ex-
presses strong negative emotions: “I am very upset,
I do not want to continue the speech”, while the
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“I am very upset, I 
do not want to 
continue the speech”

“He is very happy, he 
always raises his 
hands unconsciously 
when he speaks”

Figure 4: Experiments on unseen speech. We use two
different text input to control the motion generation.

Method BCS Motion Score
T3M (MFCC) 0.8050 3.54
T3M (EnCodec) 0.8586 3.82

Table 3: Ablation results between Mel Frequency Cep-
stral Coefficients(MFCC) and EnCodec. For the BCS
indicator, using EnCodec acheive +0.0536 test scores.
For the use study score of motion score indicator, we
random select a total number of 20 generated videos
and invite 5 people to rate them.

other conveys positive emotions: “He is very happy,
he always raises his hands unconsciously when he
speaks”. The results are shown in Figure 4.

We have noticed that when dealing with speech
not present in the SHOW dataset, T3M is still capa-
ble of producing distinct actions in response to the
input text. Specifically, when using “ I am very up-
set, I do not want to continue the speech”, there is a
lack of noticeable alterations in the accompanying
hand movements to convey the speaker’s upsetness.
When using “He is very happy, he always raises his
hands unconsciously when he speaks”, the range
of hand movements of the speaker increased signif-
icantly, including a conspicuous pattern of raising
the hands. These findings demonstrate that our
approach successfully accomplishes motion gener-
ation even in zero-shot scenarios.

4.5 Ablation Study

We conduct an ablation study to examine the con-
tribution of each component in T3M model.

Effect of EnCodec We replace the EnCodec
with Mel Frequency Cepstral Coefficients
(MFCC) (Zheng et al., 2001) and use the BCS and
user study score (USS) to measure the effectiveness
of generated motions. We report the results in
Table 3. Comparing MFCC with EnCodec, we
observe a noticeable performance improvement
when utilizing EnCodec. Specifically, an increase

Method Motion Score
T3M (random) 3.12
T3M (zero) 2.52
T3M (text) 3.69
T3M (video) 3.85

Table 4: Ablation results to evaluate different context
embeddings. Zero means using an all-0 vector to be
the context. We use the usr study results to evaluate the
generated motions.

of 0.0536 in BCS is observed with the usage of
EnCodec. A user study was conducted to evaluate
the motion score. A total of 20 samples are
randomly selected for evaluation. Five individuals
were invited to rate the generated videos, and a
higher score indicates better performance. From
Table 3, we also observe T3M with EnCodec
achieves a better performance over MFCC.

Impact of Context Features We aim to investi-
gate the impact of context feature over the synthesis
effect. Particularly, we use four different types of
embeddings to encode context: random prompt,
text prompt, video prompt, zero prompt. For the
text prompt, we use “I am giving a speech, I feel
really excite”. In contrast, for the zero prompt,
we employ a context feature vector consisting en-
tirely of zeros. We invite five individuals to rate
ten videos which are generated from ten randomly
selected speech samples. We present the USS in
Table 4. We observe that text prompt and the video
prompt both achieve better performance over ran-
dom prompt and zero prompt.

5 Conclusion

In this paper, we proposed T3M, a novel text-
guided 3D human motion synthesis method from
speech. T3M can generate realistic and expressive
holistic motions by leveraging both speech and tex-
tual inputs. We use a pre-trained EnCodec model
to extract audio features from speech and a multi-
modal fusion model to fuse the audio and text fea-
tures. To enhance the text diversity during training,
we employed VideoCLIP, a video-language con-
trastive learning framework, to process the video
frames and use the output video features to replace
the textual features. By training on the SHOW
dataset, a 3D holistic dataset, T3M enables users
to precisely control the holistic motion generated
from speech by utilizing textual inputs.
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6 Limitation

When considering future enhancements, it is possi-
ble to achieve even better performance with T3M
by incorporating more advanced text and video en-
coders from a pretrained multimodal model that sur-
passes the capabilities of VideoCLIP. To the best of
our knowledge, the SHOW dataset currently stands
as the sole dataset in the field of speech-driven 3D
motion synthesis, albeit it covers a relatively lim-
ited range of scenes. We believe that enhancing the
performance of T3M could be achieved by training
it on more extensive datasets that involves a wider
variety of scenarios and contexts.

References
Andrea Agostinelli, Timo I. Denk, Zalán Borsos,

Jesse Engel, Mauro Verzetti, Antoine Caillon,
Qingqing Huang, Aren Jansen, Adam Roberts, Marco
Tagliasacchi, Matt Sharifi, Neil Zeghidour, and Chris-
tian Frank. 2023. Musiclm: Generating music from
text.

Chaitanya Ahuja, Dong Won Lee, Ryo Ishii, and Louis-
Philippe Morency. 2020. No gestures left behind:
Learning relationships between spoken language and
freeform gestures. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1884–1895.

Sadegh Aliakbarian, Fatemeh Sadat Saleh, Mathieu
Salzmann, Lars Petersson, and Stephen Gould. 2020.
A stochastic conditioning scheme for diverse human
motion prediction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 5223–5232.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
Advances in neural information processing systems,
33:12449–12460.

Daniel Cudeiro, Timo Bolkart, Cassidy Laidlaw, Anurag
Ranjan, and Michael J Black. 2019. Capture, learn-
ing, and synthesis of 3d speaking styles. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10101–10111.

Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and
Yossi Adi. 2022. High fidelity neural audio compres-
sion. arXiv preprint arXiv:2210.13438.

Yingruo Fan, Zhaojiang Lin, Jun Saito, Wenping Wang,
and Taku Komura. 2022. Faceformer: Speech-driven
3d facial animation with transformers. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 18770–18780.

Shiry Ginosar, Amir Bar, Gefen Kohavi, Caroline Chan,
Andrew Owens, and Jitendra Malik. 2019. Learning

individual styles of conversational gesture. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3497–3506.

Ikhsanul Habibie, Weipeng Xu, Dushyant Mehta,
Lingjie Liu, Hans-Peter Seidel, Gerard Pons-Moll,
Mohamed Elgharib, and Christian Theobalt. 2021.
Learning speech-driven 3d conversational gestures
from video. In Proceedings of the 21st ACM Inter-
national Conference on Intelligent Virtual Agents,
pages 101–108.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by re-
ducing internal covariate shift. In International con-
ference on machine learning, pages 448–456. pmlr.

Stefan Kopp and Ipke Wachsmuth. 2004. Synthesiz-
ing multimodal utterances for conversational agents.
Computer animation and virtual worlds, 15(1):39–
52.

Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al.
2013. Rectifier nonlinearities improve neural net-
work acoustic models. In Proc. icml, volume 30,
page 3. Atlanta, GA.

Gaurav Mittal and Baoyuan Wang. 2020. Animating
face using disentangled audio representations. In
Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 3290–3298.

Ziqiao Peng, Haoyu Wu, Zhenbo Song, Hao Xu, Xi-
angyu Zhu, Jun He, Hongyan Liu, and Zhaoxin Fan.
2023. Emotalk: Speech-driven emotional disentan-
glement for 3d face animation. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision (ICCV), pages 20687–20697.

Heng Yu Ping, Lili Nurliyana Abdullah, Puteri Suhaiza
Sulaiman, and Alfian Abdul Halin. 2013. Computer
facial animation: A review. International Journal of
Computer Theory and Engineering, 5(4):658.

Alexander Richard, Michael Zollhöfer, Yandong Wen,
Fernando De la Torre, and Yaser Sheikh. 2021.
Meshtalk: 3d face animation from speech using cross-
modality disentanglement. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 1173–1182.

Chen Sun, Austin Myers, Carl Vondrick, Kevin Mur-
phy, and Cordelia Schmid. 2019. Videobert: A joint
model for video and language representation learn-
ing. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 7464–7473.

Aaron Van Den Oord, Oriol Vinyals, et al. 2017. Neural
discrete representation learning. Advances in neural
information processing systems, 30.

1176

http://arxiv.org/abs/2301.11325
http://arxiv.org/abs/2301.11325


Isabell Wohlgenannt, Alexander Simons, and Stefan
Stieglitz. 2020. Virtual reality. Business & Informa-
tion Systems Engineering, 62:455–461.

Hu Xu, Gargi Ghosh, Po-Yao Huang, Prahal Arora,
Masoumeh Aminzadeh, Christoph Feichtenhofer,
Florian Metze, and Luke Zettlemoyer. 2021a.
Vlm: Task-agnostic video-language model pre-
training for video understanding. arXiv preprint
arXiv:2105.09996.

Hu Xu, Gargi Ghosh, Po-Yao Huang, Dmytro Okhonko,
Armen Aghajanyan, Florian Metze, Luke Zettle-
moyer, and Christoph Feichtenhofer. 2021b. Video-
clip: Contrastive pre-training for zero-shot video-text
understanding. arXiv preprint arXiv:2109.14084.

Tian Ye, Yunchen Zhang, Mingchao Jiang, Liang Chen,
Yun Liu, Sixiang Chen, and Erkang Chen. 2022. Per-
ceiving and modeling density for image dehazing.
In European Conference on Computer Vision, pages
130–145. Springer.

Hongwei Yi, Hualin Liang, Yifei Liu, Qiong Cao,
Yandong Wen, Timo Bolkart, Dacheng Tao, and
Michael J Black. 2023. Generating holistic 3d hu-
man motion from speech. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 469–480.

Hang Zhang, Xin Li, and Lidong Bing. 2023. Video-
llama: An instruction-tuned audio-visual language
model for video understanding. arXiv preprint
arXiv:2306.02858.

Zhuoran Zhao, Jinbin Bai, Delong Chen, Debang Wang,
and Yubo Pan. 2023. Taming diffusion models for
music-driven conducting motion generation. arXiv
preprint arXiv:2306.10065.

Fang Zheng, Guoliang Zhang, and Zhanjiang Song.
2001. Comparison of different implementations of
mfcc. Journal of Computer science and Technology,
16:582–589.

A Implementation Details

A.1 Quantization Function of VQ-VAE
Given the input body motions A1:T

b ∈ R63×T and
hand motions A1:T

h ∈ R90×T , the encoding pro-
cess begins by mapping them to feature sequences.
Specifically, we obtain Eb1:τ = (eb1, . . . , ebτ ) ∈
R64×τ and Eh1:τ = (eh1, . . . , ehτ ) ∈ R64×τ ,
where τ = T · C and C represents the temporal
window size. In our experiment, we set C = 4 to
strike a balance between the speed of inference and
the quality of the feature embeddings.

For the quantization, we have

zbt = arg min
zbk∈Zb

∥ebt − zbk∥ ∈ R64,

zht = arg min
zhk∈Zh

∥eht − zhk
∥ ∈ R64.

Here, zbt and zht represent the quantized embed-
dings for body and hand motions at time t, and Zb

and Zh denote the codebooks associated with body
and hand motions, respectively.

A.2 Training Details
Face Generator For the head reconstruction, We
adopt SGD with momentum and a learning rate of
0.001 as the optimizer. The face generator is trained
with batchsize of 1 for 100 epochs, in which each
batch contains a full-length audio and correspond-
ing facial motions.

VQ-VAE For the VQ-VAE training, the VQ-VAE
processes input consisting of either body or hand
motions. Each VQ-VAE encoder is constructed
with three residual layers, incorporating temporal
convolution layers with a kernel size, stride, and
padding of 3, 1, and 1, respectively. Batch nor-
malization (Ioffe and Szegedy, 2015) and a Leaky
ReLU activation function(Maas et al., 2013) follow
each convolution layer. An additional temporal
convolution layer with a kernel size, stride, and
padding of 4, 2, and 1, respectively, is interleaved
after every residual layer, except the last, to main-
tain a temporal window size (C) equal to 4. A fully
connected layer is added atop the encoder to reduce
dimensions before quantization. The decoder mir-
rors the structure of the encoder. For optimization,
Adam is employed with β1 = 0.9, β2 = 0.999,
and a learning rate of 0.0001. The weight (β) for
the commitment loss is set to 0.25. Training of the
VQ-VAEs is conducted with a batch size of 128
and a sequence length of 88 frames for 100 epochs.

Multimodal Fusion For the given speech embed-
ding from EnCodec and context embedding from
VideoCLIP, we first use a compression model to
downsample the speech embedding. The compres-
sion model is a superposition of 3 one-dimensional
convolutions and residual layer (He et al., 2016)
and use ReLU activation function. For the multi-
modal fusion block, we set the number of attention
heads to be 8. We set the total number of hidden
layer to be 6, respectively. For optimization, we use
Adam with a learning rate of 0.0001 and we use the
cosin warmup schedule. We train the hole model
for 100 epochs using a single RTX4090 GPU.
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