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Abstract

Despite the recent advances of the artificial in-
telligence, building social intelligence remains
a challenge. Among social signals, laughter is
one of the distinctive expressions that occurs
during social interactions between humans. In
this work, we tackle a new challenge for ma-
chines to understand the rationale behind laugh-
ter in video, Video Laugh Reasoning. We in-
troduce this new task to explain why people
laugh in a particular video and a dataset for
this task. Our proposed dataset, SMILE,
comprises video clips and language descrip-
tions of why people laugh. We propose a
baseline by leveraging the reasoning capac-
ity of large language models (LLMs) with tex-
tual video representation. Experiments show
that our baseline can generate plausible ex-
planations for laughter. We further investi-
gate the scalability of our baseline by probing
other video understanding tasks and in-the-wild
videos. We release our dataset, code, and model
checkpoints on https://github.com/postech-
ami/SMILE-Dataset.

1 Introduction

“Laughter is the shortest distance between two
people.”

—VICTOR BORGE

We, human beings, are immersed in laughter.
Laughter is a distinctive non-verbal social signal,
associated with bonding, agreement, affection, and
emotional regulation (Scott et al., 2014). It is often
purposedly elicited to establish intimacy (Stauf-
fer, 1999), grab attention (Wanzer et al., 2010), or
build faith (Vartabedian and Vartabedian, 1993);
i.e., serving as a powerful medium to express a
wide range of social and emotional implications
beyond the capacity of mere words. Thus, under-
standing laughter is a crucial problem with huge
∗equally contributed
†work done at POSTECH

potential in artificial social intelligence (Bainbridge
et al., 1994; Williams et al., 2022; Dautenhahn,
2007) to build empathetic machines with human-
machine interaction (Lee et al., 2017; Nijholt et al.,
2017; Inoue et al., 2022). However, understand-
ing and modeling laughter reactions is challenging.
Even a simple joke is associated with language
skills, context knowledge, theory-of-mind, abstract
thinking, and social perception, and complex entan-
glement of these makes laughter reaction arguably
the most complex cognitive attribute humankind
may have (McDonald, 2013).

In this work, we take the first stepping stone to
tackle the challenge of understanding laughter by
introducing a task, Video Laugh Reasoning that
aims to interpret the reasons behind laughter in a
video. For this task, we curate a new dataset,
SMILE, consisting of video clips and correspond-
ing text annotations explaining reasons for laughter.
We probe through the question “Why do people
laugh?” and reason through the answer in a lan-
guage form; thus, we define the task as a free-form
text generation task in which the model generates
an explanation for the laughter with a given video
clip (See Figure 1).

While reasoning laughter by answering the ques-
tion is an effective way of probing the level of un-
derstanding, laughter itself has an inherently com-
plex nature which can be influenced by diverse fac-
tors (Apte, 1985; Provine, 2001; Martin et al., 2003;
Martin and Ford, 2018), e.g., the subjectivity (War-
ren et al., 2021), context knowledge (Nijholt et al.,
2017), and multimodality (Hasan et al., 2019). To
build a clearer resource for understanding laughter
and its social norm behind it, we design the dataset
to focus on audience laughter, a cohesive form
from social influence in distinct contexts (Great-
batch and Clark, 2003), and thereby alleviating
the subjectivity associated with individual laughter.
Also, for our task, we propose a baseline based on
large language models (LLMs) with multimodal
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Why the audience laugh?

The audience laughed because speaker made a
humorous between the serious topic of quantum
mechanics and the ridiculous cartoonish image
displayed, possibly a playful representation of
Schrödinger's cat scenario.

…

“the quantum mechanics 
describes how our 
universe works”

“quantum weirdness 
was first described by 

Erwin and his cat”

“the cat likes this 
version better” 

(audience laughs)

Is it funny? Yes. (binary classification) 

Existing task

Video Laugh Reasoning

How funny is it? 1  2  3  4  5 

Figure 1: Why do people laugh? We present Video Laugh Reasoning, a new task to interpret the reasons behind
laughter in a video.

textual representation by converting multimodal at-
tributes and features on video into a textual format.

Our experimental results show that the proposed
baseline, incorporating LLM’s reasoning capability
with multimodal textual representation, can gener-
ate plausible explanations of the reason for laughter.
Our data analysis and ablation study reveals that
multimodal information plays a role in understand-
ing laughter. We further explore the scalability of
utilizing LLM with textual representation by ap-
plying it to other video understanding tasks and
in-the-wild videos.

Our major contributions are threefold: 1) propos-
ing Video Laugh Reasoning, a new task for under-
standing the reason behind laughter in a video, 2)
building SMILE, a new dataset that comprises
video and explanation for laughter reason, and 3)
presenting a baseline using LLM with multimodal
textual representation for laugh reasoning task and
its scalability.

2 Related Work

Understanding laughter. Laughter plays a key
role in social interactions, such as bonding, agree-
ment, affection, and emotional regulation (Scott
et al., 2014). Given its importance in social in-
teractions, seminar works tackle to detect laugh-
inducing moments, specifically focusing on humor
or sarcasm. Several methods (Annamoradnejad and
Zoghi, 2020; Weller and Seppi, 2020) rely primar-
ily on transcripts for humor detection. As laughter
occurs with multimodal information, such as vari-
ations in tone or facial cues, there are attempts to
incorporate audio and text cues from videos (Bert-
ero and Fung, 2016; Alnajjar et al., 2022), or even
include visual cues (Castro et al., 2019; Hasan et al.,

2019; Ray et al., 2022) to pinpoint the occurrences
of humor. Yet they focus on detecting whether
a certain situation induces laughter or predicting
the intensity of laughter, without providing explana-
tions for the underlying reasons behind the laughter
(See Figure 1). Moreover, despite the availability
of datasets for understanding the types and charac-
teristics of laughing moments (Urbain et al., 2010;
McKeown et al., 2012; Dupont et al., 2016), no ded-
icated dataset is available for comprehending the
context surrounding laughter. Few works (Chowd-
hery et al., 2022; Hessel et al., 2023; Ko et al.,
2023) have attempted to reason about laughter or
jokes. However, their scope differs from ours, as
they focus on providing instant textual descriptions
of humor or cartoon images accompanied by text.
To the best of our knowledge, we are the first to
introduce the task of understanding the reason for
laughter within videos, accompanied by our com-
prehensive dataset.

Multimodal reasoning. Multimodal reasoning
is a complex task aiming to equip machines with
the capability to parse, analyze, and logically rea-
son about the given multimodal context. A widely
explored reasoning task is a question answering
(QA) on images (Antol et al., 2015; Gao et al.,
2015; Zhu et al., 2016) or video (Lei et al., 2018;
Tapaswi et al., 2016), which requires understand-
ing the question, referencing the appropriate con-
text, and selecting the correct answer. Similarly,
commonsense reasoning (Vedantam et al., 2015;
Yatskar et al., 2016; Wu et al., 2016) is another type
of reasoning, demanding a more profound level of
understanding and the ability to infer unstated infor-
mation. Our task includes commonsense reasoning
in that laughter is often elicited by exploiting ex-
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ternal contexts, rather than merely understanding
underlying phenomena.

Several methods (Zellers et al., 2019; Vicol et al.,
2018; Zadeh et al., 2019) have attempted to learn
and reason about the social interactions in the
video. For instance, Visual Commonsense Reason-
ing (VCR) (Zellers et al., 2019) unifies reasoning
about diverse commonsense phenomena, while So-
cial IQ (Zadeh et al., 2019) aims to teach social
intelligence by providing a broad range of social
and behavioral situations to a machine. However,
these approaches give less attention to a deeper
understanding of laughter itself—a complex non-
verbal signal integral to social interactions. Unlike
the prior arts, we specifically focus on the task
of reasoning human laughter. We posit this as a
significant stride towards understanding important
social signals frequently encountered in daily life,
thus contributing a new perspective to multimodal
reasoning and understanding tasks.

Models for multimodal reasoning. To tackle
multimodal reasoning, one approach is to design
pretraining methods (Lu et al., 2019; Li et al., 2019)
that learn the joint vision and language representa-
tions. More recently, the combination of large-scale
vision and language models (VLM) has demon-
strated remarkable performance in multimodal rea-
sonings (Li et al., 2023; Lu et al., 2022; Zhang
et al., 2023; Wang et al., 2022a; Han et al., 2023).

An alternative approach for multimodal reason-
ing utilizes text as a unified representation and large
language models (LLM) with minimal or without
training. For instance, Socratic Model (Zeng et al.,
2022) employs language to combine complemen-
tary knowledge from various pre-trained models
for tackling a wide range of tasks. Similarly, Wang
et al. (2022c) converts the visual attributes into the
text representation to prompt a frozen LLM for
diverse video-language tasks. In this work, we con-
duct extensive experiments on our proposed laugh
reasoning task and show the effectiveness of using
text as an intermediate representation.

3 Task Definition and Dataset

In this section, we introduce our Video Laugh Rea-
soning task and our dataset for it.

3.1 Task Definition and Baseline

We present Video Laugh Reasoning, a task that chal-
lenges the model to understand reasons for laughter
in a given video. We pose our task as a generation

problem, enabling the model to explain why a par-
ticular situation incited laughter in the video. We
define this task as, ŷ = f(v), where ŷ, f , and v
stand for the generated explanation about laughter
reason, the model, and the given video clip.

For this task, we propose a baseline that utilizes
the reasoning capacity of LLM. To ensure com-
patibility of input v with the language model, we
convert videos into multimodal textual represen-
tation that preserve multimodal information from
video, such as visual, acoustic, and semantic cues.
We compose visual cues with facial expressions1

and scene descriptions2 to perceive human-specific
and scene-wide contextual information. For acous-
tic cues, we extract the mean and the variance of
pitch, intensity, jitter, and shimmer from speech to
capture. We simply use transcripts of the speech
from the videos for semantic cues (See Figure 2).

Using textual representation as input and LLM
as model f , we can rewrite the task formula as,
ŷ = f(P, {t1, t2, ..., tk}), where P stand for the
prompt that describes input representation and in-
structing the laugh reasoning task to language mod-
els and t is multimodal textual representation con-
verted from the given video clip v. See Appendix A
for details about how to convert video into textual
representation.

3.2 Dataset

Data collection. We present SMILE, a curated
dataset encompassing 887 video clips, each paired
with a language description about the reason for
laughter for the corresponding video clip. This
pairing facilitates supervised training for the laugh
reasoning task. The dataset focuses on audience
laughter among many types of laughter since au-
dience laughter usually has a clearer signal than
other laughter and represents a general and cohe-
sive form of laughter. To encompass a wider range
of videos that contain situations where audiences
laugh, we construct our dataset using two different
sources: TED talks and sitcoms.3

We curate video clips that span between 10 and
90 seconds for TED talks and 7 and 60 seconds
for sitcoms. If a video is too short, it might fail to
provide sufficient context for laughter. In contrast,
if a video is too long, it may dilute specific laughter-
inducing contexts with unrelated information. The
1We use facial action units (Ekman and Friesen, 1978).
2We use video captioning model (Wang et al., 2022b).
3We source the video clips from MUStARD (Castro et al.,
2019) and UR-Funny dataset (Hasan et al., 2019).
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The audience laughed because Howard's

comic reaction to Raj's luxurious work

condition (having an assistant) compared

to his own struggles, heightened by his

exaggerated facial expressions and high

pitch and intensity in his voice.

𝑠$%!

𝑠$

Howard, speaking with�tightened�lids,�lowered�brows,�

and� depressed� lower� lip (surprise and frustration),

says, "They� gave� him� an� assistant?� If� I� want� a� new�

pen,�I�have�to�go�to�the�bank�with�wire�cutters,” while�

sitting� at� a� table� in� a� restaurant with acoustic

features�[176,�43,�-13,�3,�4,�13]. (echoing high pitch

and intensity).

:�Visual�cue, FAUs�(V)�

:�Semantic�cue, transcription�(T)�

:�Acoustic�cue�(A)

Model,�𝒇

Raj, speaking with tightened�lids,�raised�cheeks,�and�

pulled� lip� corners (anticipation or excitement),

says, ”Excuse� me.� Oh,� it’s� my� assistant,� Trevor.� Go�

for� Koothrappali,” while� sitting� in� a� restaurant� and�

talking�on�the�phone with acoustic�features�[165,�32,�

-11,�2,�4,�14]. (confident and high pitch)

Generated�laugh�reason�(𝒚%)

𝑡$%!

𝑡$

:�Visual�cue, scene�description�(V)�. . . 

Figure 2: Video Laugh Reasoning task and multimodal textual representation. Each video clip (v) is trimmed
into list of video segments (si), and each video segment is encoded into textual representation (ti). The textual video
representation consists of visual cues (V ), acoustic cues from speech (A), and semantic cue (transcript, denoted as
T ). Then, we use LLM to generate why the audience laughs at the given video with the prompt. The bold text in
parentheses on the t shows that LLM is semantically aware of the textual video representation.

Number of Video Clips 887
Number of Train/Val/Test 727 / 80 / 80
Number of Video Segments 4,434
Avg. number of Segments per clip (k) 4.4
Avg. duration of Video Clips 27.5 sec.
Avg. duration of Video Segments 6.2 sec.

Table 1: Statistics of our dataset. We split our dataset
into train, validation, and test sets with the ratio of 8:1:1.
Avg. denotes average.

average duration for TED talk clips is longer than
sitcoms, given the protracted nature of talks.

Given that a single video clip often contains mul-
tiple instances of laughter, we focus on the last
laugh in a clip for easier annotation. We only use
video clips that meet the following filtering crite-
ria, using a laugh detector (Gillick et al., 2021)
to identify audience laughter instances. Our filter-
ing criteria are: laughter should last at least 0.5
seconds, and be no more than 1 second interval
between the video clip’s last utterance and the on-
set of laughter. The latter criterion filters out the
laughter events that are not related to the punch-
lines but are induced by something else. After this
pre-processing, our final dataset comprises 484 sit-
com and 403 TED talk video clips. Table 1 shows
the statistics of our dataset.

Annotation for laughter reason. We employ hu-
man annotators from Amazon Mechanical Turk

(AMT) to label videos with reasons for laughter.
Given the inherently subjective nature of humor
and the extensive variability in laughter triggers,
constructing ground truth (GT) by free-form an-
notation is challenging. To mitigate these issues,
we utilize the language model to generate candi-
dates for laughter reasons, these candidates are sub-
sequently presented to annotators with the corre-
sponding video clip to choose the most appropriate
explanation among them and refine it. If none of
the candidates were suitable, we instruct them to
write the reason in a free form.

After annotation, we verify all GT and manu-
ally refine it if it is not plausible for laughter rea-
sons with video. This approach reduces the anno-
tation workload by interacting LLM and humans,
developing a more concise GT for this complex
and subjective task. Finally, our dataset is formed
as D = {v, y}, where y is a GT explanation for
laughter in the video clip v. See Appendix B for
details about the human annotation process and the
post-processing. Also, refer to Appendix F for the
details about the AMT configuration.

3.3 Data Analysis

Which multimodal cue is important to infer the
reason for laughter. We conduct a human evalua-
tion to understand our dataset better. The annota-
tors are requested to rank the multimodal cues in
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Figure 3: Which multimodal cue is important to reason the laughter? While semantic content is the most influ-
ential in causing laughter, the 2nd ranked modality cues are diverse, suggesting that multiple modality information
can simultaneously influence laughter.

”prompt”: {Reasoning task: you are to answer why the audience laughed given the video clip. The video clip from
the {Sitcom}, titled {video title}, with multimodal information (Utterance, Facial Action Units, Video caption,
Acoustic features(6 dimension; 1.mean of F0 contour, 2.var of F0 contour, 3. mean of energy contour, 4. var of
energy contour, 5. jitter, 6. shimmer)) is given. The audience laughing moment is marked as (audience laughing)
in certain utterance Explain why the audience laughed given the video clip, at most {30} words, starting with
'The audience laughed because ‘. Given video clip: {query}.}

“completion”: {answer}

Figure 4: Prompt for laugh reasoning experiments on GPT3. The prompt is fed into GPT3 (Brown et al.,
2020a) for fine-tuning, zero-shot learning, and in-context learning. For in-context learning, three random samples of
prompt-answer pairs from the training set are given to GPT3. We manually change video types (sitcom or TED) and
video title using the meta information of video clips. The query stands for multimodal textual representation m of
the video clip. The length of the generated output is also variable, with a maximum of 30 words for sitcoms and 40
words for TED talks, considering each video type’s characteristics.

perspective of which cues are related to laughter
in the video. The rank annotation provides insight
into which modality information is crucial for the
cause of the laughter for each case.

For each video clip, we present annotators four
choices: 1) visual cues from human; e.g., facial ex-
pression and body gesture, 2) visual cues not from
human; e.g., backgrounds or images and props, 3)
semantic contents; i.e., transcription, and 4) acous-
tic cues; e.g., speech tone or intensity. We ask them
to choose two modality cues that are the most rele-
vant for inducing laughter. The pie chart on the left
in Figure 3 shows the modality importance statis-
tics for our dataset. While the reason for laugh-
ter is primarily driven by semantic contents, the
second most effective cue varies across different
modalities, indicating that the various modalities
in the video contribute to the reason for laughter.
The bar chart on the right in Figure 3 shows the

elements that induce laughter in two video types
of our dataset. Notably, visual cues unrelated to
humans, such as backgrounds or images, signifi-
cantly trigger more laughter in TED than in sitcoms.
TED videos often exhibit the speaker’s presentation
slides, making non-human visual cues more influ-

Model BLEU4 (↑) METEOR (↑) ROUGEL (↑) BERTScore (↑) Win rate

Video model 0.226 0.236 0.398 0.427 24%
LLM + multimodal 0.270 0.256 0.432 0.496 76%

Table 2: Comparison with video model. We compare
the video model trained on raw video and transcripts
with LLM trained on multimodal textual representa-
tion. We use Video-LLaMA (Zhang et al., 2023) and
LLaMA (Touvron et al., 2023) for video model and
LLM, respectively.

ential for eliciting laughter. Conversely, visual cues
such as facial expressions and body gestures have
a higher probability of causing laughter in sitcoms
than in TED. This difference is because sitcoms
mainly center around the characters’ dialogues, so
visual cues from human actors are more crucial.
See Appendix C for additional data analysis.

4 Experiment

We split our dataset into 5 cross-validation splits
except for the test set. We fine-tune two LLMs,
GPT-3 (Brown et al., 2020a) and LLaMA (Touvron
et al., 2023) with the training set and use the test
set for evaluation.
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Model Num. of parameters Modality BLEU4 (↑) METEOR (↑) ROUGEL (↑) BERTScore (F1) (↑)

LLaMA (FT) 13B
T 0.250 0.245 0.432 0.493

A+V+T 0.270 0.256 0.453 0.496

GPT-3 (zero-shot) 175B
T 0.126 0.155 0.313 0.389

A+V+T 0.157 0.184 0.364 0.454

GPT-3 (3-shot) 175B
T 0.187 0.198 0.368 0.431

A+V+T 0.232 0.230 0.413 0.476

GPT-3 (FT) 175B
T 0.230 0.243 0.429 0.488

A+V+T 0.279 0.267 0.475 0.523

Table 3: Evaluation on laugh reasoning with LLMs. We evaluate whether the model can explain why the audience
laughed. We fine-tune two LLMs, GPT-3 (Brown et al., 2020a) and LLaMA (Touvron et al., 2023) on our dataset,
SMILE. We use GPT-3 for in-context (3 shots) and zero-shot experiments. Each modality cue in our dataset is
denoted as Transcript (T), Audio (A), and Visual (V). FT denotes fine-tuning the model.

Implementation details. We use the official GPT-
3 (Brown et al., 2020a), a non-free commercial
version, as follows. We utilize the davinci-text-
002 model of GPT-3 (Brown et al., 2020a) for the
zero-shot and in-context learning experiments. Ex-
amples of the prompts for both tasks are shown
in Figure 4. The “prompt” provides the context
of the task and the multimodal cues of the video,
and “completion” provides the reason for the laugh-
ter. The zero-shot setup only takes “prompt” and
generates the reason for the laughter, while the in-
context learning setup is given with additional three
randomly labeled samples from the training set as
few-shot examples. More implementation details
including LLaMA are in Appendix D.

Evaluation metrics. We utilize both quantitative
metrics and human evaluation. We use metrics
commonly employed for evaluating language gen-
eration tasks, including BLEU4 (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005),
ROUGEL (Lin, 2004), and BERTscore (Zhang
et al., 2019). For the human evaluation, we gather
assessments from 3 crowd-workers per test sample
by asking them to select their preferred explanation
for laughter from a pair of options and take a ma-
jority vote to determine a winner. We calculate the
average win rate (%) over the test set.

4.1 Comparison with video model

In addressing the laugh reasoning task, a direct
method is to train a video model with raw video in-
put. We compare the video model with our baseline,
which utilizes LLM with multimodal textual repre-
sentation. We fine-tune each model and conduct the
quantitative and human evaluations (win rate), as
shown in Table 2. The LLM-based baseline outper-
forms all metrics, indicating that our multimodal

A B A wins (%) Fleiss’-κ

Q1 GPT-3 (A+V+T) GPT-3 (T) 72.2 0.43
Q2 GPT-3 (FT) GPT-3 (3-shot) 77.8 0.31
Q3 GPT-3 (FT) LLaMA (FT) 56.6 0.49
Q4 Human GPT-3 (FT) 66.2 0.42

Table 4: Pairwise human evaluation. Except for Q1,
we use all modality (A+V+T) for training. We use
Fleiss’-κ (Fleiss et al., 2013) for assessing the reliability
of agreement. Q1-Q4 denote corresponding evaluation
in § 4.2.

textual representation incorporates LLM’s capacity
to understand the reason for laughter in the video.

4.2 Evaluation
We analyze our baseline on laugh reasoning in vari-
ous setups. We utilize both quantitative and human
evaluation. Quantitative results are in Table 3, and
the results of human agreements are in Table 4. Our
evaluations aim to address four key questions.
Q1. Does multimodal information help for laugh
reasoning? Yes, incorporating all modality cues
for training enhances the performance of the laugh-
ter reasoning task compared to using transcripts
alone (Table 3). The model trained with all modali-
ties preferred in 72.2% of the test set compared to
the transcript-only model as shown in Table 4. Fur-
thermore, Fig. 5 (a) supports this, showing that the
model trained with all modalities can effectively
distinguish the reasons for laughter by utilizing
multimodal information, whereas a transcript-only
model only achieves a partial understanding.
Q2. Does the fine-tuning step help for a laugh
reasoning? Yes, fine-tuned models outperform
zero-shot/in-context models in both quantitative
evaluation and human preference. It shows that our
dataset nicely infuses the video laugh reasoning
capacity to LLM.
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Why the audience laugh?
GPT-3 (FT) w/ A+V+T
The audience laughed because Liza Donnelly humorously
described the shadowy roles of girls, which was emphasized
by the cartoon of a boy and girl standing together.

GPT-3 (FT) w/ T
The audience laughed because Liza Donnelly humorously
described how little girls were supposed to be kind and
thoughtful, but their roles were unclear.

…

“back in the and when i
was growing up little girls
were supposed to be kind
and thoughtful”

Liza says “… fit into roles that were
sort of shadowy really not quite clear
what we were supposed to be
(audience laughs)” with cartoon of a
boy and girl standing next to each
other with …

GPT-3 (FT) w/ A+V+T
The audience laughed because Sheldon made a sarcastic
comment about Leonard's coolness, which was highlighted by
his exaggerated facial expressions and the audience's
understanding of the characters' personalities.

GPT-3 (FT) w/ T
The audience laughed because the speaker made a sarcastic
comment about Leonard's coolness, which was stressed by
his failure to wear the lapel pin.

“There's a reciprocity clause.
You get to pull the plug on
him, too”

Sheldon speaking with tightened lids,
pulled lip corner, and raised cheeks
says “… Here's your I.D. card, your
key and your lapel pin. Which Leonard
was too cool to wear (audience
laughs)”, while sitting at a table …

GPT-3 (FT) w/ A+V+T
The audience laughed due to Chandler's surprised reaction
and high-pitched response to a Joey’s sudden appearance.

GT
The audience laughed because Chandler knew Joey was there
and he was just acting surprised to a sudden appearance.“Okay, I am officially

unpacked. Thanks for
helping me. Joey?”

“Oh my god, you almost gave
me a heart attack!” (laughing)

(a)

(b)

…

…

Figure 5: Qualitative results on laugh reasoning. For the examples in (a), GPT-3 (Brown et al., 2020a) fine-tuned
on our dataset (denoted FT w/ A+V+T) understands the reasons for laughter by referencing multimodal cues. In
contrast, the model fine-tuned using the transcript-only (denoted FT w/ T) manages to understand the reasons
partially. The visual cues (scene description) are crucial for capturing “joey’s sudden appearance” which is important
to infer the reason for laughter in (b).

Q3. Do bigger models generate better rea-
sons for laughter? Yes, GPT-3 (175B) surpasses
LLaMA (13B) in both quantitative evaluation and
human preference, as shown in Table 3 and 4.

Q4. Does the model explain the reason for laugh-
ter as well as humans? No, the human-annotated
laughter reasons are preferred by 66.2% than those
generated by fine-tuned GPT-3 (our best model)
as shown in Q4 of Table 4. Figure 5 (b) provides
an example illustrating the comparison between
human-annotated reasons (GT) and generated rea-
son for laughter. In this sample, all crowd workers
prefer GT because the model struggles to distin-
guish the subtle difference between surprise and
posed surprise, while the human-annotated reason
successfully captures it.

In summary, for the laugh reasoning task, mul-
timodal information, a large model, and infusing

Model
MUStARD UR-FUNNY

Acc. (%) (↑) Acc. (%) (↑)

TFN (Zadeh et al., 2017) 68.6 64.7
CMFN (Hasan et al., 2019) 70.0 65.2
MISA (Hazarika et al., 2020) 66.1 70.6
BBFN (Han et al., 2021) 71.4 71.7
MUStARD++ (Ray et al., 2022) 74.2 -
MAG-XLNet (Rahman et al., 2020) 74.7 72.4
MuLoT (Pramanick et al., 2022) 76.8 73.9

Ours (w/ LLaMA) 77.5 75.1
Ours (w/ GPT-3) 79.0 77.9

Table 5: Evaluation results of the humor & sarcasm
detection task. All models use text, visual, and acoustic
information from videos for training.

reasoning capacity with our dataset are important.
While the trained model does not surpass human ca-
pabilities, the use of LLM with multimodal textual
representation enables us to generate plausible ex-
planations about the reason for laughter in videos.
See Appendix E for additional experiments.
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Why is the audience laughing?
The audience laughed because the comedian flipped
expectations, comically suggesting he's usually the one
pressuring others to drink, not the reverse, which was
emphasized by his exaggerated facial expression and high
speech tone

…

“One of the things in Korean
culture that I hate the most
is the forcing alcohol.”

“You can just drink it, why
make me force you to drink?”
(laughing)

Why is the woman laughing?
The woman laughed because the question from man evoked
nervous laughter as it’s considered emotional moment in a
relationship. This laughter could be a way to ease the
tension of recalling such an intimate memory. Her facial
expression denote smile, but it might indicated posed smile
resulting from the situation.

…

“Describe the moment you
realized you cloud trust me.” “Umm..” (laughing) 

Figure 6: Examples of in-the-wild videos. We try to generate explanations for the laughter in the videos from
standup comedy and intimate conversation. The results show that we can generate valid explanations for laughter in
other videos.

5 Discussion

In this section, we discuss the scalability of uti-
lizing large language models with textual video
representation by conducting evaluations on other
tasks and on in-the-wild videos.

5.1 Evaluation on other tasks
Apart from laugh reasoning, we conduct humor de-
tection and sarcasm detection tasks, which classify
given video contains humor (sarcasm) or not (i.e.,
binary classification). We use UR-FUNNY (Hasan
et al., 2019) and MUStARD (Castro et al., 2019),
which are representative benchmarks for these
tasks. We cast the original binary classification
problem as a text generation problem to integrate
into our system. Formally, we can define the task
as, b̂ = f(P, {t1, t2, ..., tk}), where b̂ denote pre-
dicted binary class in text format ("Yes" or "No"),
and P is prompt for instructing LLMs about the
task and input representation.

We follow the same train/test split, and evalu-
ation procedure as in the benchmark for measur-
ing the accuracy of each detection task. We use
LLaMA and GPT-3 for training with textual repre-
sentation converted from the video in the training
set of each benchmark dataset. Table 5 shows that
our method achieves strong performance4 on both
tasks. This experiment highlights the scalability
of utilizing LLMs with textual representation in
various video understanding tasks.
4We do not compare with FunnyNet (Liu et al., 2022) as they
use an additional large-scale dataset for training.

5.2 Evaluation on the in-the-wild videos
We extend our laughter reasoning to in-the-wild
videos, encompassing different video types and
laughter contexts compared to our dataset. First, we
evaluate our approach on a video clip from a stand-
up comedy, which has similar audience laughter
patterns to those in our dataset. We convert the
video into a textual representation and infer the
reason for the audience laughing. Figure 6 shows
that the model can generate a plausible explanation
for the reason for laughter in stand-up comedy.

Next, we test on a video clip featuring an inti-
mate conversation between a married couple. In
this case, the laughter originates from the speakers
themselves rather than from the audience. As this
does not belong to the comedic genre but rather a
sincere conversation between two people, it is more
likely that non humor-based laughter, such as ner-
vous or social laughter, may occur. Figure 6 shows
that the model can also understand the nervous
laughter used to alleviate tension or awkwardness
in the situation.

6 Conclusion

In this paper, we aim to understand the reason
behind laughter by introducing Laugh Reasoning
task, accompanied with SMILE dataset. While the
model did not surpass human capabilities, we show
that the model can generate plausible explanations
about laughter reason, underlining that multimodal
cues in our dataset nicely infuse the laugh reason-
ing capacity to the model. We also show the results
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applied to other tasks and other types of video,
hinting at the scalability of utilizing LLM with
multimodal textual representation.
Limitation & future direction. Our LLM-based
baseline serves as the initial method for laugh rea-
soning task and has a margin to improve. For the
multimodal textual representation, as it is a primi-
tive form for capturing human social interaction in
the video, we can enhance it with diverse attributes
such as gesture, eye gaze, and relationship or use
other representations such as scene graph. Our
work mainly focuses on audience laughter as the
first stepping stone toward understanding laughter
due to its distinct and cohesive signal, while there
are diverse mechanisms behind laughter. Recog-
nizing this, enriching our work with diverse video
types like vlogs, movies, and talk shows is a promis-
ing direction to capture a broader range of laughter,
as we show the possibility in § 5.2.
Potential application & broader impact. Our
work can be regarded as a stepping stone toward de-
veloping socially intelligent agents that understand
and appropriately create non-verbal cues, such as
laughter, playing a crucial role in building rapport,
expressing emotions, and creating deep emotional
exchanges (Tickle-Degnen and Rosenthal, 1990;
Argyle, 1972). Such advancement moves us be-
yond the capabilities of current dialogue agents,
e.g., ChatGPT or Alexa, which mostly focus on
verbal signals. Incorporating 3D talking head meth-
ods (Sung-Bin et al., 2024; Zhao et al., 2024) could
offer the way agents are visualized, enabling more
expressive and multimodal interactions with users.
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A Multimodal Textaul Representation

In this section, we explain how to convert video
into multimodal textual representation. Videos are
multimodal, which include visual, acoustic, and se-
mantic cues (i.e., transcription). We encode video
clips into textual representation, embracing their
multimodal information, so that we can leverage
the pre-trained knowledge of LLMs while exploit-
ing multimodal inputs in our baselines. First, start-
ing with a video clip, we build a list of video seg-
ments by trimming the clip based on the utterances.
The definition of the utterance varies upon to the
source of the video: for TED talks, each sentence
is defined as an utterance, since TED talk usually
has a single speaker. If the utterance is too short
(2 seconds or less), we concatenate adjacent utter-
ances into one. For sitcoms, we define consecutive
sentences from the same speaker as an utterance.

Visual cues. We compose visual cues with fa-
cial expressions and scene descriptions to perceive
human-specific and scene-wide contextual informa-
tion. Specifically, to process human-specific infor-
mation, we utilize the active speaker detection al-
gorithm (Tao et al., 2021) and face detector (Zhang
et al., 2017) to crop the face of the speaking person
in each video segment. This process effectively
identifies the active speaker, especially for sitcoms
where many people appear in a single scene, al-
lowing to align visual features with utterances.5

For facial expression description, we extract 14 fa-
cial action units (FAUs) (Yao et al., 2021)6 from
each frame in the video segment with 10 frames
per second (FPS).

Then, we accumulate them and take the three
most dominant units. For scene-wide contextual
cues, we use the video captioning (Wang et al.,
2022b) to extract scene description. The scene de-
scription provides high-level context for the visual
cues including the surrounding objects and back-
ground that interact with the speaker.

Acoustic cues. We extract the mean and the
variance of pitch, intensity, jitter and shimmer as
acoustic features from speech utterance using off-
the-shelf speech processing models (Arias-Vergara
et al., 2017; Dehak et al., 2007). Since the extracted
values are real numbers, we initially try to convert
them to a linguistic format with certain criteria
(e.g., map to "high pitch" if the mean pitch value
5We provide these face-cropped video segments in our dataset.
6We use https://github.com/CVI-SZU/ME-GraphAU to extract
FAUs.

LLM

GT�candidates�for
laughter�reason

Ground-Truth�(𝒚 )

Human�consensus�&
Post-processing

Figure 7: Annotation pipeline for laughter reason.

is greater than 200). However, it is challenging to
set an objective criterion that considers various fac-
tors, including the speaker’s gender, context, and
identity. Instead of putting real numbers into text,
we use themselves as acoustic features by giving
a description of them as a prompt to LLMs, lever-
aging their knowledge on understanding numerical
number (Brown et al., 2020b; Liu et al., 2023; Jiang
et al., 2020; Wallace et al., 2019) (See bold text in
parentheses on the t in Figure 2).

B Annotation for Laughter Reason

We elaborate the procedure for obtaining laugh-
ter reason consensus (ground-truth; GT) by uti-
lizing large language models’ general knowledge
and incorporating it into human consensus. This
procedure consists of three steps: (1) build GT
candidates, (2) human annotation, and (3) post-
processing (See Figure 7).

For (1) building GT consensuses, we utilize the
large language model (GPT-3.5 (Ouyang et al.,
2022)) with multimodal textual representation t
to generate two candidates for the laughter reason.
We manually pre-process these candidates if they
are invalid or have incorrect sentence structure (See
Figure 8).

For (2) human annotation, the processed GT can-
didates are subsequently presented to annotators
from Amazon mechanical turk (AMT) with the cor-
responding video clip. The annotators are asked
to choose the most appropriate explanation among
them. If the annotators judge that no candidates
are appropriate, we instruct the annotators to write
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Initial GT candidate (can not find the laughter reason)
There is no clear indication of audience laughter in the given context.
Pre-processed GT candidate
The audience laughed because Sophie Scott is playing on the screen where they see a man in his underwear
trying to endure the coldness of the ice and ended up giving up after a short period of time.

Initial GT candidate (incorrect instructed sentence structure)
There is one instance where speaker joked about diagnosing genetic conditions in their kitchen sinks or
doing at-home paternity testing. The audience laughed because it was perceived as a humorous remark.
Pre-processed GT candidate
The audience laughed because the speaker mentioned doing at-home paternity testing and diagnosing genetic
conditions in the kitchen sink, which is a humorous and absurd concept

Figure 8: Examples of the pre-processing of GT candidates. In the example above, GPT3.5 fails to infer the
reason for the laughter given a multimodal textual representation of the video clip. We handle this by utilizing
GPT4 to generate reasons for laughter from the same input. In the example below, the sentence structure does not
start with “The audience laughed because”, which is the structure we want. In this case, we manually revise it for
consistent sentence structure.

Given GT candidates
1. The audience laughed because Sophie’s statement “he’s not laughing yet” was followed by the video

showing a man holding a frisbee, creating a humorous contrast between statement and visual context.
2. The audience laughed because the speaker made an ironic remark about a man not yet laughing, as he held

a frisbee, creating humorous contrast.
Refined GT written by annotators in free-form
The audience laughed because Sophie is playing on the screen where they see a man in his underwear trying
to endure the coldness of the ice and ended up giving up after a short period of time, creating a humorous
contrast between the statement and the visual context.

Given GT candidates
1. The audience laughed because Chandler made a joke about his testicles possibly being in the box, which 

was unexpected and inappropriate, causing amusement.
2. The audience laughed because Chandler made a suggestive joke about his "testicles" being in a gift box, 

which was a humorous and unexpected innuendo.
Refined GT written by annotators in free-form 
The audience laughed because Chandler's joke about his testicles being in the box is because he knows so
much about ribbon types which makes him seem feminine.

Figure 9: Examples of the correction of laughter reason by annotators. All given GT candidates are passed to
the annotators after pre-processing. The free-form responses capture additional visual details (above) and provide a
context of why saying “testicles” evokes laughter (below).

or refine the reason in free form. After annotation,
the candidate with the most votes is selected as the
GT. If at least one annotator provided the reason
for laughter in free-form, we manually checked
their validity and reflected them into GT. Figure 9
shows that free-form responses capture additional
visual details and provide an understanding of why
certain words elicit laughter. See Appendix F for
details about AMT.

For (3) post-processing, we additionally verify
all GTs for laughter reasons and manually refine
it if it is not plausible for laughter reasons with
video or has repetitive phrases that might induce
spurious correlation. To mitigate this, we replace
repeated phrases with synonyms, which are ran-
domized among multiple synonyms. For example,
one of the repetitive phrases “unexpected and hu-
morous”, is randomly replaced with synonyms such

as “astonishing and laughable”, or “hilarious”. As
another correction, even with the best efforts of
human annotators, some reasons are not perfectly
matched with the video. Figure 10 shows the post-
processing that corrects these kinds of errors.

Annotation quality control. We use qualification
criteria to ensure the annotation quality. We allow
annotators from (AU, CA, NZ, GB, US), which rep-
resent the English-speaking countries.7 Addition-
ally, we only allow experienced annotators who are
with 10K approved previous HITs and a minimum
acceptance rate of 97% on their previous HITs. We
pay each annotator 0.3 USD($) per accepted HIT.

C Data Analysis

We further conduct a human evaluation to under-
stand our dataset better. Given the video clip, the
7This is because all the video clips in our dataset are in English.
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GT (repetitive phrase)
The audience laughed because the doctor's diagnosis of Sheldon's inflamed larynx was exaggerated, and the
use of the phrase "I've never seen anything like it" was unexpected and humorous.
Post-processed GT
The audience laughed because the doctor's diagnosis of Sheldon's inflamed larynx was exaggerated, and the
use of the phrase "I've never seen anything like it" was astonishing and laughable.

GT (not plausible for laughter reason within video)
The audience laughed due to Chandler make noise with high-pitched tone and exaggerated facial expression
to Rachel.
Post-processed GT
The audience laughed because Chandler make fun of Rachel with her appearance with high-pitched tone and 
exaggerated facial expression 

Figure 10: Examples of the post-processing on GT. The example above shows replacing a repetitive phrase with a
synonym. The example below shows how we rectify GT when the reason for laughter does not align with the video
context.

annotators are requested to determine the laugh.
The laugh type annotation explains the distinct char-
acteristics of laughter in TED and sitcoms.

We consider two laugh types: 1) Release-
Triggered Laughter (Freud, 1960; Fry, 2011; Min-
dess, 2017) that results from the alleviating tension
amidst constraints such as awkward or complex sit-
uation and 2) Hostility-Triggered Laughter (Gruner,
1978; Billig, 2005) that arises from claiming supe-
riority over someone or something, based on “great
families” of theories of humor (Attardo, 2008), and
ask annotator to determine which one is more ap-
propriate for laughter in video.8

Statistics in Figure 11 suggest that sitcoms and
TED talks are dominated by different types of
laughter, suggesting that the nature of laughter
varies by video type. Specifically, the major laugh
type in sitcoms is closer to the hostility-induced
laughter, and we postulate that sitcoms are typically
designed to be entertaining, focusing on humor-
ous situations, witty dialogue, and comedic con-
flicts among characters. On the other hand, TED
talks are dominated by release-triggered laugh-
ter. We hypothesize that the talks aim to capti-
vate and engage the audience by releasing con-
straints and unexpected revelations, creating a dy-
namic and thought-provoking experience. This
type of humor helps maintain interest, and breaks
the monotony (Wanzer et al., 2010). By merging
these two heterogeneous video types, we can cover
a wider range of reasons behind the audience’s
laughter.
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Figure 11: Laughter types in our dataset. Sitcoms
tend to have more hostility-triggered laughter, while
TED talks have more released-triggered laughter.

D Implementation details

GPT3 fine-tuning. We utilize the OpenAI fine-
tuning API and fine-tune davinci. The prompt for
fine-tuning is the same as the aforementioned exper-
iments. We follow the fine-tuning scheme provided
on the OpenAI webpage.9

LLaMA fine-tuning. LLaMA is LLM, an open-
source model for research. We fine-tune the full
parameters of LLaMA for 5 epochs. We utilize 4
A100 (80GB) for distributed fine-tuning with batch
size 4 per device and a learning rate 1e-4. We also
leverage fp16 mixed precision.

Video-LLaMA fine-tuning. We use Video-
LLaMA which consists of pre-trained Blip2,
Vicuna-13B, and Imagebind-huge. We train audio,
video Q-former, and projection layers while other
parameters are frozen. We utilize 8 A100 (80GB)
for distributed fine-tuning with batch size 1 per de-
vice and an initial learning rate (3e-5), and weight
decay (0.05) for 10 epochs. We also leverage mixed

8During annotation, we provided full descriptions of the con-
cepts of the laughter types, rather than using the terms.

9https://platform.openai.com/docs/guides/fine-tuning; Ope-
nAI has not opened the details of the API’s fine-tuning mech-
anisms, which is currently hidden.
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”prompt”: {Humor detection task: given video clip from the {TED}, titled {video title}, with multimodal
information (Utterance, Facial Action Units, Video caption, Acoustic features(6 dimension; 1.mean of F0 contour,
2.var of F0 contour, 3. mean of energy contour, 4. var of energy contour, 5. jitter, 6. shimmer)) is given. The
audience laughing moment is marked as (audience laughing) in certain utterance. Given video clip: {query}, Is
the video contain humor?, answer in yes or no (binary classification)
“completion”: {answer}

”prompt”: {Sarcasm detection task: given video clip from the {sitcom}, titled {video title}, with multimodal
information (Utterance, Facial Action Units, Video caption, Acoustic features(6 dimension; 1.mean of F0 contour,
2.var of F0 contour, 3. mean of energy contour, 4. var of energy contour, 5. jitter, 6. shimmer)) is given. The
audience laughing moment is marked as (audience laughing) in certain utterance. Given video clip: {query}, Is
the video contain sarcasm?, answer in yes or no (binary classification)}
“completion”: {answer}

Figure 12: Prompt for humor and sarcasm detection. We manually change video types (sitcom or TED) and
video title (such as Patrick Chappatte (2010 Global) or BBT) using the meta information of video clips. The
query stands for multimodal textual representation m of the video clip. Answer denote label (yes or no) from
UR-FUNNY (Hasan et al., 2019) and MUStARD dataset (Castro et al., 2019).

Test dataset Train dataset Modality BLEU4 (↑) METEOR (↑) ROUGEL (↑) BERTScore (F1) (↑)

SMILESitcom

SMILESitcom
T 0.214 0.248 0.429 0.489

A+V+T 0.290 0.288 0.485 0.548

SMILE
T 0.241 0.252 0.446 0.510

A+V+T 0.298 0.289 0.499 0.555

SMILETED

SMILETED
T 0.260 0.241 0.432 0.459

A+V+T 0.279 0.260 0.454 0.457

SMILE
T 0.249 0.245 0.423 0.454

A+V+T 0.273 0.247 0.438 0.468

(a) Video type-wise evaluation

Test dataset Train dataset Modality BLEU4 (↑) METEOR (↑) ROUGEL (↑) BERTScore (F1) (↑)

SMILESitcom
SMILETED A+V+T 0.161 0.254 0.390 0.407
SMILESitcom A+V+T 0.290 0.288 0.485 0.548

SMILETED
SMILESitcom A+V+T 0.153 0.193 0.369 0.449
SMILETED A+V+T 0.279 0.260 0.454 0.457

(B) Cross-dataset evaluation

Table 6: Analysis on video types. In (a), we conduct the video type-wise evaluation as the dominant laughter type
differs along the video type. In (b), we evaluate the model by testing on the different video types, i.e., cross-dataset.

Test A B A wins (%) Fleiss’-κ

TED GPT-3 (SMILE) GPT-3 (TED) 66.2 0.40
Sitcom GPT-3 (SMILE) GPT-3 (sitcom) 61.4 0.63

Table 7: Pairwise human evaluation. We compare the
model trained with the whole dataset (SMILE) with a
subset (TED, sitcom) and evaluate them with the test
set of each subset.

precision that uses fp16 for multiplication and fp32
for addition.

Detection. For the sarcasm (Castro et al., 2019)
and humor detection (Hasan et al., 2019) tasks,
we finetune LLaMA-13B (Touvron et al., 2023)
and GPT-3 (Brown et al., 2020a) with our multi-
modal textual representation. GPT-3 finetuning is
as same as described for the laugh reasoning task.
For LLaMA-13B, we follow the fine-tuning script

on Vicuna (Chiang et al., 2023)10. Examples of the
prompts for both tasks that cast classification task
to generation task are shown in Figure 12. We use
four A100 (80GB) for each training. We follow
Vicuna’s default LLaMA fine-tuning hyperparame-
ters except for setting the per-device batch size to
3 and the number of training epochs to 20.

E Additional Experiments

Evaluation by video types. The type of laugh-
ter varies depending on the source of the video, as
shown in Figure 11. To explore this further, we
evaluate each video type independently. Instead
of fine-tuning GPT3 on the entire SMILE dataset,
we separately fine-tune the models on subsets of
10https://github.com/lm-sys/FastChat
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Why the audience laugh?
VideoLaMMA
The audience laughed because the speaker made a humorous
remark about women and power.

VideoChat
The audience laughed because the cartoon is funny.

Ours
The audience laughed because Liza Donnelly humorously
described the shadowy roles of girls, which was emphasized
by the cartoon of a boy and girl standing together.

…

“back in the and when i
was growing up little girls
were supposed to be kind
and thoughtful”

Liza says “… fit into roles that were
sort of shadowy really not quite clear
what we were supposed to be
(audience laughs)” with cartoon of a
boy and girl standing next to each
other with …

Time

What is the background color of the cartoon?
VideoLaMMA
The background color of the cartoon is white.

VideoChat
I think it is white.

Figure 13: Examples of laugh reasoning on recent video language models. While recent video language models,
such as Video-LLaMA (Zhang et al., 2023) and VideoChat (Li et al., 2023), can respond to the general question in
the video, they struggle to plausibly explain the reason for the laughter in the video.

the dataset, namely SMILESitcom and SMILETED.
As summarized in Table 6 (a), even when mod-
els are independently fine-tuned to different video
types, their performance is comparable to that of
the model trained on the SMILE dataset. Interest-
ingly, in the human evaluation, the model trained
on whole data (SMILE) is preferred over the model
trained on each video type. This suggests that our
dataset, SMILE, covers the diverse laughing charac-
teristics to lead GPT3 to learn generalized laughter
reasons across different types of videos.

However, we observe that testing the model
across different video types, e.g., training on
SMILESitcom and testing on SMILETED, results in
a significant performance drop, as shown in Ta-
ble 6 (b). We speculate that this is due to differ-
ences in laughter types presented in each source
video. This supports the idea that combining
these two heterogeneous video types could help
the model learn to understand a broader range of
reasons behind audience laughter.

Video language model. While the previous meth-
ods (Zellers et al., 2019; Zadeh et al., 2019) have
aimed to learn and reason about social interac-
tions from visual data, they formulate the task in
multiple-choice setups. By virtue of the advance of
large language models, recent work has suggested
multimodal models capable of generating natural
language responses to questions about a video,
rather than outputting a multiple-choice answer.
In this context, we examine if these models can
exhibit the capability to reason behind laughter in a
given video. We feed the same video from Figure 5

into recent video-language (VL) models, Video-
LLaMA (Zhang et al., 2023)11 and VideoChat (Li
et al., 2023)12, and showcase their generated rea-
soning in Figure 13. While these models can re-
spond to general questions about the video, they
struggle to reason about moments of laughter. Un-
like existing multimodal reasoning work, we con-
tribute a new perspective to multimodal reasoning,
aiming to understand and reason about an impor-
tant social signal, laughter.

F Human annotation from Amazon
Mechanical Turk

Figure 14 shows our interface and instructions for
the annotators working on Amazon Mechanical
Turk (AMT). We define a questionnaire per video
clip as a Human Intelligence Task (HIT). We ask
AMT annotators three questions in a HIT, 1) laugh-
ter reason, 2) laugh type, and 3) the multimodal
cues in perspective of which cues are related to
laughter in the video. The first question is for ob-
taining GT annotations for laughter reasons and
pairwise human evaluation in § 4. The second and
third questions are for the data analysis purpose,
which provides further understanding of our dataset
(See § 3.3 in the main paper and Appendix C).

11https://github.com/DAMO-NLP-SG/Video-LLaMA
12https://github.com/OpenGVLab/Ask-Anything
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Figure 14: Examples of the AMT interface (left) and instructions (right) that the annotators worked on. The
annotators are asked to watch the video clip and answer the three questions. The third question is split into two parts.
We put the instructions at the top of the interface to emphasize how the annotators should answer each question.
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