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Abstract

Few-shot text classification has seen significant
advancements, particularly with entailment-
based methods, which typically use either class
labels or intensional definitions of class labels
in hypotheses for label semantics expression.
In this paper, we propose EDEntail, a method
that employs extensional definition (EDef) of
class labels in hypotheses, aiming to express
the semantics of class labels more explicitly.
To achieve the above goal, we develop an algo-
rithm to gather and select extensional descrip-
tive words of class labels and then order and
format them into a sequence to form hypothe-
ses. Our method has been evaluated and com-
pared with state-of-the-art models on five clas-
sification datasets. The results demonstrate that
our approach surpasses the supervised-learning
methods and prompt-based methods under the
few-shot setting, which underlines the poten-
tial of using an extensional definition of class
labels for entailment-based few-shot text clas-
sification. Our code is available at https:
//github.com/MidiyaZhu/EDEntail.

1 Introduction

Entailment-based text classification formulates het-
erogeneous classification tasks into a unified tex-
tual entailment problem (Dagan et al., 2005; Zhang
et al., 2023a). Unlike traditional classification mod-
els that often encode class labels into numerical
vectors such as one-hot vectors without considering
label semantics (Zhang et al., 2018), the entailment-
based approaches express the semantics of class
labels in the hypothesis and classify the input texts
through semantic entailment matching between the
input texts (premise) and the hypothesis.

In hypothesis construction, class and subclass
labels are commonly used as descriptive words
for label semantics representation (Schopf et al.,
2020). The intensional definition of a class label
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by WordNet, which specifies the necessary and suf-
ficient conditions of the class label (Cook, 2009),
is also frequently utilized to provide label infor-
mation (Yin et al., 2019). While such use of label
semantic representations in hypothesis might be ef-
fective for some tasks, it may fall short in others be-
cause a single descriptive word or an intensional
definition may not encapsulate all the semantic
meanings within a label’s domain, however, an
effective hypothesis is expected to deduce vari-
ous premises from the label domain. As shown in
rows 1-4 in Figure 1, hypotheses constructed from
the premises’ class label fail to properly entail the
given four premises in both language model and
human cognition. Besides, descriptive words that
exhibit clear semantic entailment relationships
in human cognition may exhibit dissimilarity in
the word embedding space (Zhu and Mao, 2023).
The relationship learned from the same descrip-
tive word might vary much in the word embedding
space with different contexts (see Section 4.7), hin-
dering entailment feature learning. These limita-
tions may weaken the entailment-based text classi-
fication performance, particularly in zero-shot or
few-shot scenarios, when the test set lacks align-
ment with the hypothesis or when test samples fail
to transfer the relation learned from the training
samples.

To address the above limitations in label seman-
tics expression, we propose to construct hypotheses
using extensional definition of class labels. An ex-
tensional definition, which gives the meaning of a
term by listing all descriptive words that fall under
this term 1, provides explicit and diverse informa-
tion of label semantics, facilitating semantic match-
ing between different premises and a hypothesis.

As illustrated in the last row of Figure 1, the
label extensional definition-based hypothesis can

1https://en.wikipedia.org/wiki/Extensional_
and_intensional_definitions
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Figure 1: The entailment probability for four negative premises from SST-2 using four hypotheses: class label,
subclass label, intensional definition, and extensional definition. Red means an entailment probability over 50%
(entailment), while blue is below 50% (contradiction). PLM values are given by ‘roberta-large-mnli’ and Human
values are averaged from 20 questionnaires.

entail all premises in both PLM and human cogni-
tion. This not only broadens the semantics of class
labels but also ensures computational efficiency by
avoiding multi-time subclasses matching. At the
linguistic level, descriptive words in the extensional
definition can collaboratively reduce polysemy is-
sues by refining semantic meanings with each other.
At the machine-learning level, descriptive words
in the extensional definition can boost embedding
consistency among each other through the contex-
tual learning capacity (see Section 4.7).

To implement the extensional definition-based
hypothesis construction, we develop a generation
method to ensure the descriptive words selected are
representative and concise, considering that there
could exist too many example words in the exten-
sional definition of a class label and inclusion of
all of them in hypotheses is impractical while ran-
domly selection may result in insufficient coverage
of the example words.

Our contributions are summarized below:
1. By analyzing current entailment-based meth-

ods, we identify that the semantic expression of
labels within the existing hypothesis construction
tends to be limited. This results in narrow cov-
erage of label information and word embedding
inconsistency in feature learning, hindering the per-
formance of premise-hypothesis entailment.

2. We present EDEntail, an entailment-based
approach to few-shot text classification that utilizes
extensional definitions of class labels. A systematic
method for extensional definition generation is de-
signed to provide diverse informative label signals
in hypothesis construction for premise-hypothesis
entailment relationship enhancement.

3. Extensive experiments across various clas-

sification datasets demonstrate that EDEntail out-
performs other state-of-the-art models in few-shot
settings.

2 Related Work

Meta-task exhibits significant potential in zero-shot
or few-shot text classification tasks. It can be clas-
sified into the generative method and the discrimi-
native method (Zhang et al., 2023a).
Generative methods treat every task as a text-to-
text generation problem. Prompt-based method
as a generation method that treats the meta-task
as a masked language modeling (MLM) problem
(Schick and Schütze, 2021; Gao et al., 2021). The
MLM model predicts the masked token and then
maps the predicted token to the label space through
verbalizers. The prompt-based methods exhibit re-
markable success in few-shot classification tasks
(Zhao et al., 2021; Zhang et al., 2023b). Although
knowledge can be incorporated into prompt verbal-
izer to enhance projection performance (Hu et al.,
2022), the MLM model prediction may fall out
of all possible associated candidates in verbalizer
projection (Zhang et al., 2023a).
Discriminative methods like entailment-based
method formulates meta-task under the framework
of Natural Language Inference, which aims to de-
termine the relationship between the premise and
the hypothesis as ‘entailment’, ‘contradiction’, or
‘neutral’ (Yang et al., 2023). Recent studies in
entailment-based methods include language model
training (Devlin et al., 2018; Liu et al., 2019;
Pàmies et al., 2023), pseudo-label training (Ge
et al., 2023; Gera et al., 2022), classifier training
(Xia et al., 2022; Zhang et al., 2023a; Wang et al.,
2022b), and hypothesis engineering. The latter
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delves into the effective use of class label names
(Plaza-del Arco et al., 2022) or intensional defini-
tions (Lamanov et al., 2022), or strategies for incor-
porating the above label information into ensemble
models (Basile et al., 2021). One challenge here
is the relationship learning between premise and
hypothesis with extremely limited training sources
(Mayer et al., 2023), and another challenge is the
construction of hypotheses suitable for all tasks
(Gera et al., 2022). Enhancing classification perfor-
mance and stability under limited training data is
a focal research point (Ma et al., 2021; Min et al.,
2022). In this paper, we propose a new method
for hypothesis construction, aiming to address the
aforementioned challenges in entailment-based text
classification.

3 Proposed Methods

In this section, we introduce our proposed method,
EDEntail, as depicted in Figure 2. This method
comprises three key modules: extensional defini-
tion (EDef) generation by gathering and selecting
relevant and representative descriptive words; hy-
pothesis construction by ordering and formatting
words of extensional definition; and entailment re-
formulation for few-shot text classification.

3.1 EDef Generation

Vocabulary Construction To establish EDef, we
require a vocabulary for each class label that con-
tains descriptive words to offer additional classifi-
cation prompts.

Our goal for constructing the vocabulary is to
elicit label semantics in an extensional and com-
prehensive manner. We found that the available
open-sourced vocabularies are noisy with overlap-
ping words between different classes. Thus, simply
crawling descriptive words based on the concepts
(like ConceptNet) might cause polysemy concerns
in label names. Additionally, the WordNet synsets
might cause irrelevant words upon extending the
synonym search (e.g., ‘anger’ leading to ‘temper’
and then ‘humour’).

To build a high-quality vocabulary and ensure
generalizability, we employ dictionary resources
and ChatGPT2. We presume the class label names
can describe the classification task and initialize
them as the prompt words for descriptive words
searching. We first extract the definitions of the
class label words specific to our tasks from the

2https://chat.openai.com/(free 3.5 version)

Oxford English Dictionary3. Combining these defi-
nitions, we configure prompts within ChatGPT to
obtain the label vocabulary. The prompts input for
ChatGPT is listed in Appendix A. The vocabulary
of each class label is assembled from words pro-
duced by ChatGPT with its corresponding prompts.
Descriptive Words Clustering To maximize the
effectiveness of EDef in conveying semantics of
label, we employ the K-means algorithm (Hartigan
and Wong, 1979) to cluster descriptive words for
each class label vocabulary in the embedding space.
This reduces the number of descriptive words but
guarantees comprehensive expression of the seman-
tics of class labels.

Firstly, we obtain the [CLS] embedding of each
descriptive word using Roberta-large with single-
word input. Then, all the embeddings are clustered
using the K-means clustering algorithm. For the
i-th cluster Ui, the word that is the closest to the
cluster centre is chosen as the representative word
of the i-th cluster as shown in Eqn 1, where Ri is
the centre of the i-th cluster, w is the word in Ui

and dist is the Euclidean distance.

Oi = argminw∈Uidist(w,Ri) (1)

This procedure is iterated multiple times, say ten
times, and the ultimately selected extensional de-
scriptive words are those representative ones with
the silhouette score S close to 1 as shown in Eqn 2,
where ai is the average distance from Oi to other
words in the same cluster, bi is the minimum aver-
age distance from Oi to other words in the different
clusters, and n is the cluster number.

S = average
n∑

i=1

b(i)− a(i)

max {a(i), b(i)} (2)

The extensional descriptive words results of each
label l are saved in a set (l, n) with each cluster
number n defined in the K-means algorithm.

3.2 Hypothesis Construction
EDef Words Ordering After selecting represen-
tative words for extensional definition, the words
are arranged based on a certain order to build hy-
potheses. The order of words in the sequence
should, to the greatest extent, activate keywords
in the premise. The knowledge used for ordering
can be obtained from either the local dataset and
the language model, or external sources. We next
introduce two ordering methods.

3https://www.oed.com

1126

https://chat.openai.com/
https://www.oed.com


EDef Generation

1. Vocabulary Construction

Task-specific Dictionary Definition 

ChatGPT Generation

2. Descriptive Words Clustering

K-Means Algorithm: 

Cluster centres

Hypothesis Construction
(under Extensional Definition)

1. EDef Words Ordering

Order EDef words based on 

the provided knowledge

2. EDef Formatting

Format the ordered words 

into task-specific hypothesis

Premise

Entailment Classification

Dataset 

Construction
Classification 

dataset to 

entailment 

dataset

Ensemble 

Approach

Classification 

Construction

Loss function

Classification

Prediction
Extensional 

Definition 

Hypothesis

Extensional 

Descriptive 

Words

Figure 2: Overall architecture of EDEntail; it utilizes EDef in the hypothesis for entailment classification learning.

Ordering Based on Entailment Knowledge For
local knowledge, considering that word features
differ across datasets, we utilize the pre-trained lan-
guage model’s entailment knowledge between the
dataset and relevant words to match the extensional
definition with the specific dataset.

For each extensional descriptive word in (l, n),
we first encode the word into the hypothesis, and
then derive the average zero-shot entailment prob-
ability by entailing it with the pruned set Dl ⊂
Dtrain, where Dtrain is the few-shot training set.
Finally, we order the extensional descriptive words
in each (l, n) from the largest probability to the
smallest entailment probability.
Ordering Based on Frequency Knowledge For
external knowledge, we evaluate various sources
like frequency, silhouette scores, and LLM prompt-
ing. Based on robustness and linguistic reliability,
we choose word frequency knowledge for word or-
dering, which is ‘the one common feature of nearly
all measures of lexical prevalence created to date’
(Egbert and Burch, 2023) and is vital in human
word ranking experiments (Battig and Montague,
1969). We chose Google Ngram for its convenience
and superior performance.

For each extensional descriptive word in set
of (l, n), we search its latest usage frequency in
Google Ngram Viewer4 and order extensional de-
scriptive words in each (l, n) from the most fre-
quent to the least frequent one.
EDef Formatting To format the ordered descrip-
tive words into the hypotheses, we connect the
descriptive words in 4 ways as shown below, where
ej indicates the j-th descriptive word:
1. Connect with comma (EDef-CC):‘e1, . . . , en’
2. Connect with space (EDef-CS):‘e1 . . . en’
3. Connect with slash (EDef-CL): ‘e1/ . . . / en’
4. Connect with and (EDef-CA): ‘e1 and . . . and
en’

We use EDef-CC and EDef-CS because comma
4https://books.google.com/ngrams/json

and space are the commonly used connectors in
writing. We use EDef-CL and EDef-CA because
slash / and "and" are often used to denote OR-
relationship and AND-relationship, respectively
(Woo, 2019). We design OR-relationship connec-
tion for tasks that cover coase but encompassing
categorical delineations, like sentiment analysis.
AND-relationship connection is for tasks focusing
on detailed and fine-grained subjects, like emotion
recognition

The extensional descriptive words ordered by
entailment knowledge or frequency knowledge are
encoded into the above formats with the hypothe-
sis defined for each application. For example, for
sentiment analysis, a positive EDef-CC hypothesis
might be ‘a proactive, constructive, relief, encour-
aging one’.

3.3 Entailment Classification

Since all classification tasks are viewed as entail-
ment tasks and the labels in the entailment-based
method are ‘entailment’ (E), ‘contradiction’ (C),
and ‘neutral’ (N) instead of classification labels, we
need to adapt the three-class entailment approach
to accommodate multi-class objectives.
Reformulation We reconstruct the training clas-
sification datasets for entailment-based label con-
sistency. A classification dataset by pairing each
text with hypotheses formed from an EDef set. For
each text-hypothesis pair, it assigns a label of ’en-
tailment’ if the EDef’s label entails the text’s label,
and ’contradiction’ otherwise. This results in a new
dataset tailored for entailment approach analysis.

We reformulate the loss function to ensure that
it is applicable in language models pre-trained on
entailment datasets as Eqn 3, where l(N), l(C),
and l(E) represent the loss components (logits) de-
rived from pre-trained language models (PLMs)
after a softmax function. lossBCE is the Binary
Cross Entropy Loss. We regard both ‘neutral’ and
‘contradiction’ as non-entailment labels that is rep-
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resented by the one with the highest logits value
from the PLM, aiming to mitigate any potential
bias caused by the absence of a class in training 5.

loss = lossBCE (max {l(N), l(C)} , l(E)) (3)

The entailment classes map back to classifica-
tion labels depending on the entailment probabil-
ity between the text and the class of EDef in the
hypothesis. The class with maximum entailment
probability is chosen as the prediction of the text.
Ensemble Approach The majority of meta-tasks
use a single type of hypothesis or prompt in both
training and testing scenarios. They ensemble var-
ious models trained under diverse hypotheses or
prompts to improve classification performance (Hu
et al., 2022; Plaza-del Arco et al., 2022). Instead of
ensembling models, we ensemble the hypothesis
used in both training and testing sets. Specifically,
each sample in the training set is connected with
different hypotheses, respectively. Consequently,
the testing set’s sample pool is similarly expanded
through connections with these hypotheses. The
next section shows the performance of EDEntail
with and without ensembling.

4 Experiments

In this section, we examine EDEntail’s capabilities
from the following perspectives: (1) The classifica-
tion performance compared to other advanced clas-
sification models (Section 4.3); (2) The classifica-
tion performance compared with other entailment-
based models (Section 4.4); (3) The efficiency of
utilizing limited training samples (section 4.5); (4)
The performance under zero-shot setting (Section
4.6); (5) The effect of extensional definition on
word embedding consistency (section 4.7); and
(6) The classification performance compared with
large language models (Section 4.8).

4.1 Datasets
We evaluate our method on two sentiment datasets:
SST-2 (Socher et al., 2013) and CR (Ding et al.,
2008), two emotion recognition datasets: MELD
(Poria et al., 2018) (textual data only) and AMAN
(Aman and Szpakowicz, 2008), and one question
classification dataset: TREC-6 (Li and Roth, 2002).

The hypotheses that we use for each dataset are
listed in Table 1. For each task, we provide four
types of commonly used hypothesis structures.

5We exclude ‘neutral’ as there is no clear linguistic basis
for manually identifying this category and the used PLM also
excludes this category in exampled usage in huggingface.

The details of the dataset configuration can be
found in Appendix B.

Task Hypothesis Class

SST2
CR

A <EDef>piece of work .
A <EDef>one.

A <EDef>piece.
All in all <EDef>.

positive, negative

AMAN
MELD

A <EDef>piece of work .
A <EDef>one.

A <EDef>piece.
It was <EDef>!

angry, disgust, happy, neutral,
surprise, sad, and fear

TREC

It is <EDef>.
It was <EDef>news.

Why <EDef>?
Answer: <EDef>.

location, numeric, description,
entity, human, and abbreviation

Table 1: The hypotheses used in each dataset. <EDef>is
where the extensional definition is placed.

4.2 Experiment Settings

We conduct both zero-shot learning and few-shot
learning experiments under each hypothesis. The
experiments are under the N-way-K-shot training
setting (Wang et al., 2022a) while the size of val-
idation is the same as the size of the training set
(Wang et al., 2021). In few-shot experiments, we
designated N=5 and K=[1, 16, 32]. This means
that for both the training and validation datasets,
we randomly selected K samples for each label, re-
peating this process five times within five different
training sets and corresponding validation sets. The
EDef length n, namely the number of extensional
descriptive words in EDef, is grid-searched over
{1, · · · , 10} under few-shot settings. In few-shot
or zero-shot learning experiments, the n for each
label in one dataset is the same. The reported re-
sults are the average of five repeated experiments.
The robustness is evaluated based on the standard
deviation of the five results.

The compared baseline models are two super-
vised models: Finetune (FT) and DualCL (Kumar
and Raman, 2022), three entailment-based models:
EFL (Wang et al., 2021), Label-Entail (Plaza-del
Arco et al., 2022) and IDef-Entail, and four prompt-
based models: PET (Schick and Schütze, 2021),
WARP (Hambardzumyan et al., 2021), LM-BFF
(Gao et al., 2021), and KPT (Hu et al., 2022).

Detailed information on the baseline models and
the EDEntail implementation is provided in Ap-
pendix C.1 and Appendix C.2, respectively.

4.3 Overall Results

Table 2 summarized the results of the baseline mod-
els and our approach under Frequency knowledge
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Model SST2 CR AMAN MELD TREC

K=1

Finetune 49.7(0.5) 52.6(2.7) 27.5(27.3) 21.1(13.2) 21.6(3.9)
DualCL 53.1(0.7) 51.4(3.2) 23.4(2.3) 19.6(0.9) 19.9(0.8)

EFL 69.3(15.2) 57.5(8.2) 33.8(23.3) 28.2(7.5) 22.2(8.8)
Label-Entail 88.2(2.1) 90.4(0.5) 35.2(9.2) 29.0(4.6) 42.8(11.6)
IDef-Entail 70.9(4.3) 79.7(7.5) 35.7(13.3) 17.5(5.1) 29.0(5.9)

PET 74.2(3.6) 64.7(12.5) 28.6(0.7) 22.1(1.7) 29.4(2.3)
WRAP 85.6(4.6) 68.4(6.5) 24.3(3.6) 21.0(8.2) 36.7(4.8)

LM-BFF 83.8(1.2) 80.3(2.3) 27.3(8.5) 16.8(3.7) 40.2(6.8)
KPT 66.9(13.9) 75.7(17.1) 19.8(2.0) 16.6(2.2) 56.1(6.4)

EDEntail-EK 87.5(2.8) 89.9(2.5) 43.3(9.3) 32.2(4.3) 43.4(7.6)
- Ensemble 89.2(2.5)^ 90.4(2.1)^ 43.6(1.3)^ 33.1(4.1)^ 53.2(9.3)^

EDEntail-FK 87.6(3.1) 88.5(1.5) 38.9(1.9) 25.2(4.2) 46.8(3.8)
- Ensemble 89.0(3.4)^ 89.6(1.9)^ 43.3(1.7)^ 28.1(3.2)^ 51.4(8.6)^

K=16

Finetune 59.2(1.3) 62.9(1.4) 34.1(10.9) 27.0(11.4) 47.4(5.9)
DualCL 65.9(2.7) 76.3(5.3) 25.8(3.2) 21.6(1.3) 20.1(0.9)

EFL 55.0(3.5) 64.9(1.6) 45.0(13.3) 20.8(12.2) 62.2(1.6)
Label-Entail 91.6(1.5) 90.7(0.7) 52.9(14.2) 32.0(8.5) 79.3(2.7)
IDef-Entail 81.2(10.2) 90.1(0.9) 47.3(16.6) 41.1(9.5) 56.4(11.3)

PET 91.9(0.8) 89.5(2.2) 54.2(2.8) 33.5(2.0) 80.3(2.8)
WRAP 83.9(2.7) 88.8(3.2) 62.8(5.3) 35.9(6.5) 87.4(2.2)

LM-BFF 93.0(0.8) 90.6(2.2) 64.0(4.6) 36.9(3.7) 89.0(3.5)
KPT 87.6(6.9) 90.4(1.4) 56.5(4.0) 37.5(5.8) 88.6(2.9)

EDEntail-EK 91.6(1.9) 90.9(0.6) 67.3(4.1) 43.1(2.4) 86.4(2.6)
- Ensemble 92.5(2.0)^ 91.8(0.7)^ 68.5(5.2)^ 44.5(3.5)^ 89.8(2.2)^

EDEntail-FK 92.0(0.9) 91.1(0.5) 60.6(3.7) 40.4(3.8) 89.1(2.1)
- Ensemble 92.1(1.7)^ 91.3(1.1)^ 67.1(6.2)^ 43.0(5.5)^ 89.9(2.5)^

K=32

Finetune 88.0(1.6) 85.8(1.9) 60.0(8.9) 38.1(11.1) 81.0(6.8)
DualCL 80.8(8.6) 88.9(1.1) 24.2(1.6) 20.9(1.8) 20.2(1.0)

EFL 91.1(0.2) 91.7(0.4) 69.4(5.5) 41.3(3.3) 75.0(4.8)
Label-Entail 92.2(0.2) 90.8(0.4) 64.4(3.8) 38.2(3.3) 84.0(5.6)
IDef-Entail 89.7(1.7) 90.1(1.5) 41.2(24.1) 42.0(12.9) 70.5(11.2)

PET 92.7(2.0) 90.7(2.2) 63.0(2.7) 42.2(2.2) 86.5(5.2)
WRAP 92.2(0.9) 90.2(1.7) 66.6(5.0) 37.9(2.2) 86.8(5.3)

LM-BFF 92.9(1.1) 92.0(0.7) 66.8(3.3) 42.3(4.1) 89.1(6.1)
KPT 92.7(1.3) 91.5(1.0) 71.1(3.7) 39.9(2.7) 89.4(4.0)

EDEntail-EK 93.4(0.3) 93.5(0.4) 72.3(1.5) 45.7(1.8) 90.9(1.5)
- Ensemble 94.7(0.6)^ 93.4(0.2) 73.9(4.3)^ 51.7(3.4)^ 93.8(1.1)^

EDEntail-FK 94.2(0.1) 92.8(0.5) 72.3(1.2) 46.0(1.3) 90.7(1.9)
- Ensemble 94.5(0.7)^ 93.1(0.7)^ 75.3(3.8)^ 53.5(3.1)^ 91.2(2.7)^

Table 2: Fewshot experimental results: We report the average accuracy of 5 runs under the best format with standard
deviation in parentheses. EDEntail-EK and EDEntail-FK represent our approach under Entailment knowledge and
Frequency knowledge, respectively. The best results are marked in ‘bold’. Marker ^ signifies ensemble results
enhanced our approach.

and Entailment knowledge, respectively under the
setting of few-shot learning.

Our method outperforms fine-tuning and super-
vised deep learning model (DualCL) by a dramatic
margin under all situations. Surprisingly, the deep
learning network breaks down under the few-shot
setting with multi-class classification. Compared
with other classification methods, EDEntail per-
forms well and achieves further improvement un-
der the ensemble approach. It works well in multi-
class datasets with a maximum of 7.9% (AMAN),
4.1% (MELD) accuracy improvement in 1-shot
settings and 4.5% (AMAN), 3.4% (MELD) im-
provement in 16-shot settings. In 32-shot setting,
EDEntail wins all models with improvements of

1.3%, 1.5%, 1.2%, 3.7% and 1.5% on SST-2, CR,
AMAN, MELD, and TREC respectively. By in-
specting the standard deviation, we can see our
approach achieves improved robustness even in
1-shot settings, which is contrary to other com-
pared entailment-based methods. Under ensemble
settings, our approach achieves a stronger perfor-
mance, especially in 32-shot settings, with 1.8%,
1.4%, 4.2%, 11.2% and 4.4% performance improve-
ment on SST-2, CR, AMAN, MELD, and TREC
respectively while the robustness is sacrificed a bit.
From the table, it is evident that while state-of-
the-art entailment-based models perform less effec-
tive than prompt-based models in most experimen-
tal settings, our novel entailment-based approach
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shows a different story.
Significance Testing Regarding concerns about
high standard deviation in the compared methods,
Table 3 displays the p-values derived from com-
paring five accuracy results from our method and
the SOTA model under the 1-shot, 16-shot, and
32-shot settings. Values highlighted in bold repre-
sent a statistically significant difference between
the outcomes of the two models, with significance
defined by a threshold of 0.1. This demonstrates
the genuine effectiveness of our approach.

SST2 CR AMAN MELD TREC
1-shot 0.01 0.13 3.66e-08 9.42e-05 0.44
16-shot 0.22 0.06 6.52e-03 0.067 0.51
32-shot 0.02 0.02 0.03 0.03 0.06

Table 3: Significance testing between our method
(EDEntail-EK-Ensemble) and the KPT model.

4.4 Few-shot Entailment Learning

The first task in our model is to entail each text
with the hypothesis encoded with EDef. The per-
formance at this level significantly influences the
final classification results. Table 4 summarizes the
performance of our model and the other three meth-
ods, EFL, Label-Entail and IDef-Entail. The results
are obtained from the 32-shot experiments with the
same experimental settings.

Model SST2 CR AMAN MELD TREC
EFL 92.2* 92.1* 80.4 51.4 80.8

IDef-Entail 89.0* 89.6* 69.0 66.0 87.1
Label-Entail 91.5* 90.3* 85.3 69.4 86.0
EDEntail-EK 93.1* 92.3* 86.2 69.6 91.3
EDEntail-FK 92.9* 91.2* 87.8 69.1 90.8

Table 4: Entailment experimental results: The marker *
indicates the classification is a binary-class task as the
entailment task.

When comparing the results in Table 2 and Table
4, we observe that for binary classification like SST-
2 and CR, the results are closely aligned between
the two tables. The classification performance
is even better than the entailment performance,
demonstrating that our classification loss function
(see Eqn 3) effectively addresses the limitations
with one entailment-based label removed. How-
ever, in multi-class classifications such as AMAN,
MELD and TREC, the entailment performance
significantly outperforms the classification perfor-
mance due to the contradiction bias in the entail-
ment task, wherein the number of contradiction

samples in the text sets is (|Label|−1) times higher
than the number of entailment samples. While
the bias is eliminated in binary-entailment tasks, it
poses challenges in fine-grained tasks. Our method
enhances feature learning by incorporating more
label information into hypothesis. Compared with
other entailment-based methods, it improves the
alignment between entailment performance and
classification performance.

4.5 Efficiency of Utilizing Limited Training
Data

In few-shot learning, the model is expected to pro-
duce the best performance under limited training
data. We conducted a comparison between the
standard fine-tuning and our entailment-based ap-
proach under different numbers of samples selected
as training data, ranging from 1 to the maximum
number of samples that can be obtained for all
classes in the available training set. The experi-
mental setting aligns with the few-shot setting ex-
periments. As shown in Figure 3, EDEntail con-
sistently maintains a performance advantage over
standard fine-tuning, particularly when the number
of training samples is very small. In simple tasks
like SST2 and CR, the performance saturates only
with 32 examples, indicating the high efficiency of
our proposed EDEntail in utilizing limited training
data to achieve good performance.

4.6 Zero-shot Learning
The zero-shot setting experiments are conducted
on the same test datasets as in experiments of the
few-shot setting. We compare our method with
fine-tuning, Label-Entail and IDef-Entail. We drop
the Entailment knowledge since it originates from
training sets, utilizing of which is unfair for zero-
shot learning. Table 5 summarizes the experimental
results. Obviously, zero-shot learning produces in-
ferior performance to few-shot learning. Under the
zero-shot setting, however, our method still sur-
passes the best performing label entailment method
by 2.4%, 0.8%, 9.8%, 7.2%, and 10.9% in clas-
sification accuracy on the 5 datasets, respectively.

Model SST2 CR AMAN MELD TREC
Finetune 49.9 36.2 13.7 14.1 18.8

IDef-Entail 64.3 67.8 10.4 15.4 11.6
Label-Entail 86.3 89.2 33.0 28.3 24.3
EDEntail-FK 88.7 90.0 42.8 35.5 35.2

Table 5: Zeroshot experimental results.
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Figure 3: The efficiency of training sample scale comparison between standard fine-tuning and EDEntail in five
evaluated datasets.

4.7 Analysis on Word Embedding Consistency

In the entailment-based model, learning a direc-
tional relation between premise and hypothesis is
important (Mayer et al., 2023; Yang et al., 2023).
When the training and testing samples exhibit
higher feature similarity in keywords, there is a
greater likelihood that the model will grasp a con-
sistent relation during few-shot learning. Therefore,
for the same label premises, high consistency of the
embedding of keywords across different samples is
beneficial for entailment-based feature learning.

To explore the effect of a single word versus
extensional descriptive words used in the hypoth-
esis on word embedding consistency, we conduct
experiments on Bert6 and Roberta7. The experi-
ments evaluate 8 emotional classes that are usually
studied in emotion recognition tasks. For each
emotional class, we use ChatGPT to generate 30
sentences consisting of the class label itself and
3 non-emotional words (‘I’, ‘the’, and ‘of’). The
experiment of using a sequence of emotional words
comprises two parts: 1). 6 synonyms, and 2). 6
antonyms.

We define inter-sentence same-word cosine sim-
ilarity as the cosine similarity of the same word’s
embedding vector in different contexts. Our inves-
tigation focused on comparing inter-sentence same-
word cosine similarity when a single extensional
descriptive word is used in a hypothesis versus
when a sequence of extensional descriptive words
is used in constructing a hypothesis.

The results in Table 6 reveal that, in both lan-
guage models, a higher inter-sentence same-word
cosine similarity is achieved when a sequence
of emotional words is used than when a single
word or a sequence of opposite emotional words
is used. Beyond the tabulated outcomes, added
with a sequence of emotional words, the three
non-emotional words in the same 30 sentences are

6https://huggingface.co/bert-base-uncased
7https://huggingface.co/roberta-large

found to have their inter-sentence same-word co-
sine similarity decrease or a comparatively lesser
increase compared to the emotional words.

Addition Method sadness joy anger disgust fear surprised shame guilt
Bert

Without 0.8829 0.8286 0.8127 0.7169 0.8507 0.8045 0.7873 0.8459
Single 0.8857 0.8407 0.8322 0.7966 0.8676 0.8169 0.7876 0.8449

Seqence
(same emotion)

0.9079 0.8752 0.8800 0.8376 0.8969 0.8526 0.8149 0.8554

Seqence
(opposite emotion)

0.8887 0.8640 0.8434 0.8191 0.8795 0.8392 0.8004 0.8471

Roberta
Without 0.9933 0.9933 0.9876 0.9886 0.9924 0.9847 0.9858 0.9899
Single 0.9933 0.9933 0.9860 0.9887 0.9896 0.9855 0.9879 0.9918

Seqence
(same emotion)

0.9942 0.9941 0.9881 0.9922 0.9934 0.9912 0.9914 0.9954

Seqence
(oppsite emotion)

0.9919 0.9923 0.9869 0.9871 0.9822 0.9858 0.9835 0.9883

Table 6: Descriptive words addition experiments. The
results are the cosine similarity between the same eval-
uated emotional words in 30 sentences under different
addition methods.

From the above results, we draw the following
conclusions:
1. The use of a sequence of extensional descrip-
tive words results in improved inter-sentence same-
word cosine similarity compared with the use of a
single word such as a class label or its synonyms.
2. The use of a sequence of relevant descriptive
words can generate higher inter-sentence same-
word cosine similarity among other extensional
descriptive words than when a sequence of irrele-
vant descriptive words.

Consequently, our suggested approach EDEntail,
by incorporating an extensional definition, which
comprises a sequence of extensional descriptive
words, into the hypothesis, holds the potential to
enhance the performance of few-shot text classifi-
cation by improving keyword embedding consis-
tency.

4.8 Comparison with Large Language Models
In light of the impressive performance and effi-
ciency exhibited by large language models (LLMs),
we conduct a comparative analysis of our method
against three LLMs: GPT-3.5 (175B parameters)
(Ouyang et al., 2022), Llama2 (Touvron et al.,
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2023) 7B and 13B, within a few-shot learning
framework. Listed in Table 7, our model, EDEn-
tail, with only 335 million parameters, outperforms
larger models GPT-3.5, Llama2-13b, Llama2-7b.
The results are the average of five tests using the
same dataset as Table 2 but without entailment re-
formulations. The detailed model settings and used
prompts for task classification are summarized in
Appendix C.1.

SST2 CR AMAN MELD TREC
GPT-3.5 94.3 88.3 62.4 53.0 55.8
Llama2-13b 87.7 84.3 38.1 46.1 48.2
Llama2-7b 82.2 77.4 34.2 41.8 45.2
EDEntail 94.7 93.5 75.3 53.5 93.8

Table 7: Fewshot experimental results comparison with
large language models. Our results are the best results
reported from Table 2.

5 Conclusion

In this paper, we propose EDEntail, a novel
entailment-based method with an extensional defi-
nition (EDef) for few-shot text classification. We
leverage a number of extensional descriptive words
encoded in the hypothesis to offer diverse label def-
initions, enhancing the feature similarity between
train and test samples in few-shot entailment re-
lation learning. A structured method is provided
for the instruction of EDef generation and hypoth-
esis construction. As a new method in providing
label semantic information in hypothesis, extensive
experiments show that EDEntail can achieve com-
petitive classification performance with stronger
robustness and sample efficiency.

6 Limitations

As discussed in Section 4.4, an entailment-based
approach is not immune to potential biases arising
from the uneven distribution of entailment and con-
tradiction samples in multi-class test sets. To ad-
dress this issue, we have implemented careful mea-
sures in our few-shot training method to achieve
a balanced representation of both entailment and
contradiction samples by ensuring that each label’s
extensional definition is represented as a contra-
diction sample at least once in train and valid set.
However, further research is required to address the
issue of sample number bias between entailment
and contradiction in multi-class tasks.
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A Appendix A

The general prompts input for ChatGPT for vocab-
ulary construction.

`Please generate <M> single words according to:
Express <`Label_1’> meanings, like <some related
words of `Label_1’>
do not have the meanings of <`Label_2’>, like <some
related words of `Label_2’>
. . .
do not have the meanings of <`Label_|Label|’>, like
<some related words of `Label_|Label|’>
<`Label_1’ definition 1> given from Oxford English
dictionary
<`Label_1’ definition 2> given from Oxford English
dictionary
. . .
<`Label_1’ definition D> given from Oxford English
dictionary’

B Appendix B

Dataset Settings All datasets are split based on
the N-way-K-shot training setting. Especially, as
AMAN has no provided testing set, its testing sets
are randomly selected with the size of 20% of
the whole dataset and no overlapping of the corre-
sponding training and validation sets five times for
repeated experiments. The zero-shot learning ex-
periments are implemented under the same dataset
settings as the few-shot learning experiments.

In the construction of the training and valida-
tion sets, we maintain an equal balance between
entailment and contradiction samples, ensuring
|E| : |C| = 1 : 1. This approach aims for eq-
uitable representation in both categories. Further-
more, during the development of these sets, each
label’s extensional definition is represented at least
once as a contradiction sample. This strategy is de-
signed to enhance the learning process, facilitating
a comprehensive understanding of every feature
associated with the extensional definitions.

C Appendix C

C.1 Baseline Model Experimental Settings
Detailed information on baseline models and the
corresponding re-run experimental settings for few-
shot (1, 16, and 32) and zero-shot learning experi-
ments.

Fine-tuning (FT) The traditional fine-tuning
method inputs the hidden embedding of [CLS] into
a pre-trained language model (PLM) to make pre-
dictions. In our re-run experiments, the PLM is
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‘Roberta-large’. The learning rate for all datasets is
1e-5.

DualCL A traditional supervised deep-learning
model under BiLSTM-CNN dual-channel structure
for text classification. In our re-run experiments,
the PLM model is ‘Roberta-large’ with a learning
rate of 1e-5. The other setting defaulted in 8.

EFL A few-shot learning method by reformulat-
ing all classification tasks as an entailment task. In
the re-run experiment, the hypotheses for datasets
“It was <LabelDef>" as mentioned in its paper. The
extensional descriptive words in the hypothesis for
SST-2 and CR are ‘positive’ and ‘negative’, for
AMAN and MELD are ‘joy’, ‘anger’, ‘sadness’,
‘surprise’, ‘disgust’, ‘others’, and ‘fear’ and for
TREC are ‘expression’, ‘entity’, ‘description’, ‘hu-
man’, ‘location’ and ‘number’. The PLM model
is ‘Roberta-large’. To fair comparison, there is no
data augmentation in EFL implementation.

Label-Entail The entailment-based method with
label word in the hypothesis. Based on the sug-
gested methodology, we refine the model using
our few-shot training datasets and evaluate our test
sets. In the re-run experiment, the hypotheses for
datasets are the same as ours. The label words are
the same as EFL. The PLM model is ‘roberta-large-
mnli’.

IDef-Entail The entailment-based method with
intensional definition sourced from WordNet
(Miller, 1995) in the hypothesis. Same as Label-
Entail, we refine the model using our few-shot train-
ing datasets and evaluate our test sets. In the re-
run experiment, the intensional definition is label
WordNet definition. The PLM model is ‘roberta-
large-mnli’.

PET The basic prompt-tuning method uses the
class name as the prompt word for each class. The
prompt words in our re-run for SST-2 and CR are
‘great’ and ‘terrible’, for AMAN and MELD are
‘joy’, ‘anger’, ‘sadness’, ‘surprise’, ‘disgust’, ‘oth-
ers’, and ‘fear’ and for TREC are ‘ Expression’, ‘
Entity’, ‘ Description’, ‘ Human’, ‘ Location’ and
‘ Number’. In re-run experiments, the results are
obtained from the prompts reported in the paper
and other experiment settings are defaulted in 9.

WARP A prompt-based method by selecting the
best prompt with training data in the continuous
embedding space. The prompt tokens are trainable
by the classification result. For re-run experiments,

8https://github.com/hiyouga/
Dual-Contrastive-Learning

9https://github.com/timoschick/pet

the manual verbalizer for SST-2 and CR is the same
as IMDB given in 10. The manual verbalizers for
AMAN, MELD, and TREC are the same as ours.
The initialization is the word embedding of the
name of the class. The other experimental settings
default in 10.

LM-BFF A prompt-based fine-tuning method
with automatically generated prompts. This
method follows in-context learning with training
examples as demonstrations in the input context.
For re-run experiments, the number of demon-
stration samples is one. The prompt is “It was
[MASK]." The mask token mapping is the same
setting as PET. Other experiment settings are de-
faulted in 11.

KPT A knowledgeable prompt-tuning method.
KPT expands the label verbalizer with external
knowledge bases to make the prediction mapping
covers various perspectives of the label words. For
re-run experiments, the prompts used in KPT are
the same as our experiments. The knowledge ver-
balizer and prompts for SST-2 and CR are the same
as IMDB given in 10. The knowledge verbalizer
and prompts for AMAN, MELD, and TREC are
the same as our verbalizer and prompts. The other
experimental settings default in 10.

GPT-3.5 We use ’gpt-3.5-turbo-16k’ with
16,385 tokens available. Temperature sets to 0. The
prompt for SST-2 and CR is ‘Review:<example>’,
‘Sentiment Type:<label>’, AMAN and MELD
is ‘Review:<example>’, ‘Emotion Type:<label>’,
and TREC is ‘Question:<example>’, ‘Answer
Type:<label>’. In 32-shot settings, all samples can
be inputted in the prompt as <example> and <la-
bel> is the task-specific classification label.

Llama2 We use Llama2 7b12 and 13b13 with
4096 tokens available. In 32-shot settings, prompts
exceeding model token limits were truncated. The
prompt for task classification is the same as GPT-
3.5.

C.2 EDEntail Experimental Settings

The reported results are the average five times ran-
domly repeated performance. The non-ensembled
result is the optimal accuracy among the evaluated

10https://github.com/thunlp/
KnowledgeablePromptTuning

11https://github.com/princeton-nlp/LM-BFF
12https://huggingface.co/meta-llama/

Llama-2-7b-chat-hf
13https://huggingface.co/meta-llama/

Llama-2-13b-chat-hf

1135

https://github.com/hiyouga/Dual-Contrastive-Learning
https://github.com/hiyouga/Dual-Contrastive-Learning
https://github.com/timoschick/pet
https://github.com/thunlp/KnowledgeablePromptTuning
https://github.com/thunlp/KnowledgeablePromptTuning
https://github.com/princeton-nlp/LM-BFF
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
https://huggingface.co/meta-llama/Llama-2-13b-chat-hf


hypotheses. The ensembled result uses all hypothe-
ses in both training and testing as we introduced in
section 3.3.

For baseline models’ settings, all the compared
models are under the same training and testing
datasets as our model and reported the average ac-
curacy under five repeated. For models with more
than one prompt or hypothesis, the compared re-
sults are reported under the average accuracy across
all prompts or hypotheses for a fair comparison.

For EDef length n (extensional definition bound-
ary), if the size of the vocabulary for one label is
smaller than 10, n is grid-searched from 2 to the
largest number of the smallest vocabulary size. The
experiments are run under a learning rate of 1e-5
with a batch size equal to 10 under the 1-shot set-
ting, which appears to be effectively transferable
to other few-shot scenarios, albeit with a minor
decrease in performance. Regarding the time effi-
ciency, the processing times for SST2, CR, AMAN,
MELD, and TREC datasets were 44, 29, 46.5, 56.7,
and 13.7 minutes respectively, which we believe is
within an acceptable range.

The detailed information for the length and for-
mat of the EDef that we used in the few-shot (1, 16,
and 32) learning experiment, few-shot learning (en-
semble) experiment, and zero-shot learning exper-
iment are summarized in Table 8 with descriptive
words usage in Table 9. The pre-trained language
model is ‘roberta-large-mnli’14. All experiments
are implemented under Python 3.7 environment
and PyTorch 1.12.1. with Cuda version 11.3, GPU
NVIDIA RTX A5000.

Fewshot
Few-shot

(ensemble)
Zeroshot

Entailment
Knoledge

Frequency
Knowledge

Entailment
Knoledge

Frequency
Knowledge

Frequency
Knowledge

SST-2 n=9,EDef-CL n=8,EDef-CL n=4,EDef-CA n=7,EDef-CC n=2,EDef-CC
CR n=10,EDef-CL n=9,EDef-CL n=6,EDef-CA n=7,EDef-CA n=4,EDef-CC

AMAN n=9,EDef-CC n=7,EDef-CL n=6,EDef-CC n=6,EDef-CC n=2,EDef-CA
MELD n=3,EDef-CS n=3,EDef-CC n=5,EDef-CS n=6,EDef-CC n=2,EDef-CA
TREC n=3,EDef-CA n=4,EDef-CS n=3,EDef-CC n=5,EDef-CA n=4,EDef-CS

Table 8: Experimental setting information on EDEntail,
where n is the length of the EDef, and CC, CS, CL,
and CA are the EDef formats we designed in the EDef
Generation section.

14https://huggingface.co/roberta-large-mnli
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Entailment Knoledge Frequency Knowledge

SST2
positive

n=4:proactive, constructive, relief, encouraging
n=9: skilled, renaissance, gold, ecstatic, grateful, protection, freedom, pride, defeat

positive
n=2: encouraging, redemption
n=7: gold, relief, pride, defeat, paradise, personalized, truthful
n=8: gold, relief, pride, grateful, defeat, skilled, ecstatic, renaissance

negative
n=4:attack, disappointed, needy, sneaky
n=9: complain, impose, damage, opponent, attack, naughty, devastated, haunting, rage

negative
n=2: worst, sneaky
n=7: attack, damage, racism, fearful, lied, sneaky, bashing
n=8: attack, damage, racism, impose, opponent, fearful, lied, bashing

CR
positive

n=6:truthful, personalized, relief, pride, paradise, defeat
n=10: clearly, vigilance, dazzling, protection, personalized, freedom, ecstatic, gold, pride, defeat

positive
n=4: relief, encouraging, constructive, proactive
n=7: gold, relief, pride, defeat, paradise, personalized, truthful
n=9: freedom, protection, gold, pride, grateful, defeat, skilled, ecstatic, renaissance

negative
n=6:damage, broken, waning, attack, divisive, sneaky
n=10: complain, impose, opponent, damage, fuck, disappointed, waning, attack, rage, hateful

negative
n=4: attack, disappointed, needy, sneaky
n=7: attack, damage, racism, fearful, lied, sneaky, bashing
n=9: attack, damage, rage, impose, opponent, complain, devastated, naughty, haunting

AMAN

joy
n=6:pleasure, cheer, triumphant, gratitude, enchantment, blessed
n=9:pleasure, cheer, triumphant, joy, achievement, bliss, enchantment, ecstasy, blessed

joy
n=2:gratitude, triumphant
n=6:pleasure, blessed, gratitude, cheer, triumphant, enchantment
n=7:pleasure, achievement, blessed, gratitude, cheer, triumphant, enchantment

anger
n=6:indignation, hostility, fury, outrage, aversion, provocation
n=9:indignation, hostility, fury, animosity, outrage, provocation, resentment, hatred, malice

anger
n=2:hostility, ire
n=6:fury, hostility, indignation, outrage, aversion, provocation
n=7:hatred, hostility, indignation, annoyance, aversion, provocation, ire

sadness
n=6:sadness, sadly, melancholy, dismal, grief, pathetic
n=9:sadness, sadly, melancholy, dismal, grief, despair, pathetic, blues, depression

sadness
n=2:sadness, dismal
n=6:grief, sadness, melancholy, sadly, pathetic, dismal
n=7:grief, sadness, melancholy, sadly, pathetic, blues, dismal

surprise
n=6:shocked, shock, awe, unbelievable, amazing, sudden
n=9:astonishing, shock, curious, awe, unexpected, amazing, sudden, abrupt, breathtaking

surprise
n=2:unforeseen, breathtaking
n=6:sudden, shock, amazing, shocked, awe, unbelievable
n=7:sudden, shock, amazing, shocked, awe, abrupt, startling

disgust
n=6:dislike, aversion, contempt, ugly, hateful, nausea
n=9:dislike, disdain, aversion, contempt, ugly, hateful, disgusting, offensive, vomiting

disgust
n=2:offensive, intolerable
n=6:ugly, contempt, dislike, nausea, aversion, hateful
n=7:ugly, contempt, dislike, nausea, vomiting, aversion, hateful

fear
n=6:fright, worry, panic, insecurity, terrifying, horror
n=9:apprehension, scare, fright, worry, panic, anxiety, insecurity, terrifying, horror

fear
n=2:horror, shudder
n=6:worry, horror, panic, terrifying, insecurity, fright
n=7:worry, anxiety, horror, panic, terrifying, insecurity, fright

neutral others, no emotion neutral others, no emotion

MELD

joy
n=3:cheer, triumphant, bliss
n=5:cheer, triumphant, achievement, pleasure, gratitude

joy
n=2:gratitude, triumphant
n=3:cheer, bliss, triumphant
n=6:pleasure, blessed, gratitude, cheer, triumphant, enchantment

anger
n=3:discontent, outrage, hostility
n=5:indignation, aversion, hostility, provocation, anger

anger
n=2:hostility, ire
n=3:hostility, outrage, discontent
n=6:fury, hostility, indignation, outrage, aversion, provocation

sadness
n=3:grief, dismal, depression
n=5:sadness, grief, blues, tragic, depression

sadness
n=2:sadness, dismal
n=3:depression, grief, dismal
n=6:grief, sadness, melancholy, sadly, pathetic, dismal

surprise
n=3:shocked, unbelievable, unforeseen
n=5:shocked, shock, awe, unbelievable, amazing

surprise
n=2:unforeseen, breathtaking
n=3:shocked, unbelievable, unforeseen
n=6:sudden, shock, amazing, shocked, awe, unbelievable

disgust
n=3:displeasure, ugly, offensive
n=5:aversion, ugly, bitter, nausea, hateful

disgust
n=2:offensive, intolerable
n=3:ugly, offensive, displeasure
n=6:ugly, contempt, dislike, nausea, aversion, hateful

fear
n=3:suspense, horror, terrifying
n=5:fright, panic, insecurity, horror, chilling

fear
n=2:horror, shudder
n=3:horror, terrifying, suspense
n=6:worry, horror, panic, terrifying, insecurity, fright

neutral others, no emotion neutral others, no emotion

TREC

entity n=3:substance, event, body entity
n=4:body, event, color, substance
n=5:body, method, event, color, substance

number n=3:number, date, distance number
n=4:number, percent, distance, date
n=5:number, percent, distance, date, code

description n=3:reason, manner, description description
n=4:reason, manner, definition, description
n=5:reason, action, manner, definition, description

human n=3:title, group, organization human
n=4:group, organization, persons, title
n=5:individual, organization, persons, description, title

location n=3:location, city, state location
n=4:state, country, location, mountain
n=5:state, country, city, location, mountain

abbreviation abbreviation, expression abbreviated abbreviation abbreviation, expression abbreviated

Table 9: The extensional descriptive words in EDef that are used in the reported experimental results.
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