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Abstract
Large language models (LLMs) have recently
been used as backbones for recommender sys-
tems. However, their performance often lags
behind conventional methods in standard tasks
like retrieval. We attribute this to a mis-
match between LLMs’ knowledge and the
knowledge crucial for effective recommenda-
tions. While LLMs excel at natural language
reasoning, they cannot model complex user-
item interactions inherent in recommendation
tasks. We propose bridging the knowledge gap
and equipping LLMs with recommendation-
specific knowledge to address this. Opera-
tions such as Masked Item Modeling (MIM)
and Bayesian Personalized Ranking (BPR)
have found success in conventional recom-
mender systems. Inspired by this, we sim-
ulate these operations through natural lan-
guage to generate auxiliary-task data samples
that encode item correlations and user prefer-
ences. Fine-tuning LLMs on such auxiliary-
task data samples and incorporating more in-
formative recommendation-task data samples
facilitates the injection of recommendation-
specific knowledge into LLMs. Extensive ex-
periments across retrieval, ranking, and rat-
ing prediction tasks on LLMs such as FLAN-
T5-Base and FLAN-T5-XL show the effective-
ness of our technique in domains such as Ama-
zon Toys & Games, Beauty, and Sports & Out-
doors. Notably, our method outperforms con-
ventional and LLM-based baselines, including
the current SOTA, by significant margins in re-
trieval, showcasing its potential for enhancing
recommendation quality.

1 Introduction

Large language models (LLMs) exhibit strong gen-
eralization abilities through zero-shot learning, in-
context learning (Brown et al., 2020), fine-tuning,
and instruction tuning (Wei et al., 2022). Encour-
aged by this, recent studies explore the use of

*Work done when interning at Google.

LLMs as backbones in recommendation (Kang
et al., 2023; Geng et al., 2022; Zhang et al., 2023;
Bao et al., 2023). Despite their great potential,
LLMs are inferior to supervised recommenders
(He et al., 2017; Rendle et al., 2009) in recom-
mendation tasks such as rating-prediction under
zero-shot and few-shot in-context learning settings
(Kang et al., 2023). We hypothesize that this stems
from a gap between LLMs’ knowledge and rec-
ommendation knowledge: LLMs are proficient at
natural language reasoning, while recommendation
involves modeling complex user-item interactions.
In this work, we propose to mitigate this gap by
fine-tuning LLMs with data samples that encode
recommendation knowledge.

Recent works (Geng et al., 2022; Zhang et al.,
2023; Bao et al., 2023) show that certain recom-
mendation knowledge can be introduced into LLMs
through instruction tuning. As shown in Figure
1(a), their training data samples, which we refer
to as recommendation-task data samples, primar-
ily help LLMs understand the recommendation
tasks by providing instructions on what to do (e.g.,
“Pick an item for the user from the following candi-
dates.”). In terms of modeling the target recommen-
dation domain, however, they present raw user and
item features for personalization (e.g., the user’s
ID or the IDs of the items they recently interacted
with), which are insufficient for LLMs to fully com-
prehend the target domain.

Considering the aforementioned limitations of
using LLMs as recommenders, we propose a novel
approach to generate additional fine-tuning data
samples for LLMs that effectively encode recom-
mendation knowledge, particularly focusing on
item correlations within the target domain. We
refer to these generated data samples as auxiliary-
task data samples, as they are used as auxiliary
tasks in addition to the recommendations tasks.
While developing the auxiliary tasks, our key in-
spiration comes from the classical operations that
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1) P5 Retrieval (Sequential Recommendation)

Input: I find the purchase history list of user_15466: 4110 -> 4467 -> 
4468 -> 4472 I wonder what is the next item to recommend to the 
user. Can you help me decide?
Output: 1581

Input: What star rating do you think user_23 will give item_7391?
Output: 5.0

Input: Pick the most suitable item from the following list and 
recommend to user_250: 4915 , 1823 , 3112 , 3821 , 3773 , 520 , …
Output: 520

a) Recommendation-task data samples of the existing studies b)  Our recommendation-task and auxiliary-task data samples

1) Retrieval

Input: A user has purchased the 
following products: Item ID: I811, Title: 
Women’s Gel-Excite Running Shoes; 
Item ID: I1014, Title: Women’s Dry-fit 
Tempo Shorts; … What would the user 
buy next?
Output: I10145

2) Ranking

Input: A user has purchased the 
following products: Item ID: I811, Title: 
Women’s Gel-Excite Running Shoes; … 
Which of the following candidate items 
would you recommend the user to buy 
next? Candidate items are: I8, I92, 
I10145, …
Output: I10145

3) Rating Prediction
Input: A user likes the following 
products: Item ID: I811, Title: Women’s 
Gel-Excite Running Shoes;… The user 
dislikes the following products: … 
Predict whether the user would like the 
following item. Answer yes or no. Item 
ID: I1014, Title: Women’s Dry-fit Tempo 
Shorts;
Output: Yes

6) Bayesian Personalized Ranking (BPR)

Input: A user has purchased the following 
products: Item ID: I811, Title: Women’s 
Gel-Excite Running Shoes; … Which of the 
following two products would the user buy 
next? Item ID: I123, Title: Golf Club Cleaner 
Brush; or Item ID: I1014, Title: Women’s Dry-fit 
Tempo Shorts? 
Output: Item ID: I1014, Title: Women’s Dry-fit 
Tempo Shorts

4) Masked Item Modeling (MIM)

Input: A user has purchased the following 
products: Item ID: I811, Title: Women’s 
Gel-Excite Running Shoes; [masked item];  … 
[masked item]; … What are the masked 
items, in chronological order? 
Output: Item ID: I1014, Title: Women’s Dry-fit 
Tempo Shorts; Item ID: I10145, …

2) P5 Ranking (Direct Recommendation)

3) P5 Rating Prediction

4) InstructRec Ranking (type <P1, I0, T3>)

Input: The user has purchased these items: <historical interactions>.  
Please respond to this user by selecting items from the candidates: 
<candidate items>.
Output: <target item>

5) TALLRec Rating Prediction

Input: Given the user’s historical interactions, please determine 
whether the user will enjoy the target new movie by answering "Yes" 
or "No". User’s liked items: GodFather. User’s disliked items: Star 
Wars. Target new movie: Iron Man.
Output: No.

5) Masked Language Modeling (MLM)

Input: Item ID: I811, Title: Women’s Gel-Excite 
Running Shoes; Item ID: I1014, Title: Women’s 
Dry-fit Tempo Shorts;

Output:
<S> <E>

<B>  ID: I8 <S> : Women <S>
Shoes; Item ID: I1014, Title Shorts;

Figure 1: Data samples adopted by the existing studies and this work. (a) shows the recommendation-task data
samples of the existing studies. Specifically, (a1)-(a3) demonstrate the retrieval, ranking, and rating prediction data
samples of P5 (Geng et al., 2022); (a4) shows a ranking (type <P1, I0, T3>) data sample of InstructRec (Zhang et al.,
2023); (a5) is a rating prediction data sample of TALLRec (Bao et al., 2023). (b) shows our recommendation-task
(blue boxes) and auxiliary-task (purple boxes) data samples (we present more samples in Appendix C).

are typically used to train conventional recom-
mender systems, namely, masked item modeling
(MIM) (Sun et al., 2019) and Bayesian Personal-
ized Ranking (BPR) (Rendle et al., 2009). Our key
innovation lies in converting the MIM and BPR
tasks into natural language tasks that can be used
to train the LLMs. We also incorporate the masked
language modeling (MLM) (Devlin et al., 2019)
task for the user’s past interactions to supplement
the MIM task with fine-grained item correlations.
Our contributions can be summarized as follows:

• We propose a novel method to align LLMs with
new recommendation domains, i.e., supplement-
ing the fine-tuning of the LLMs with auxiliary-
task data samples that mimic the classical opera-
tions in training conventional recommender sys-
tems with natural language prompts.

• We propose recommendation-task data samples
that are more informative as compared to the ex-
isting work (Geng et al., 2022). Specifically, we
reduce the complexity of the input/output spaces
by eliminating the user IDs. We further enhance
the user sequences by providing item titles.

• We fine-tune the open-source 3B FLAN-T5-
XL and 223M FLAN-T5-Base with our pro-
posed recommendation-task and auxiliary-task

data samples in a simple multi-task learning frame-
work. Experiments on various recommendation
tasks, i.e., retrieval, ranking, and rating-prediction,
across three target domains, i.e., Amazon Toys
& Games, Beauty, and Sports & Outdoors, show
the effectiveness of our proposed method and its
components. For retrieval, our model outperforms
both conventional and LLM-based baselines, in-
cluding the current SOTA, by large margins.

2 Related Work

Recommender Systems. Recommender systems
help users in discovering items of interest. As a
practical approach, Collaborative Filtering (CF)
(Mao et al., 2021) explores historical user-item in-
teractions, assuming that users with similar behav-
iors have similar preferences for items. Among
various CF methods, Matrix Factorization (MF)
methods (Rendle et al., 2009; Mao et al., 2021)
project users and items into a shared vector space
and estimate a user’s preference for an item through
the inner product of their vectors and are widely
adopted. Context-aware approaches (Cheng et al.,
2016) further include additional information, such
as user and contextual features, to improve rec-
ommendation quality. However, CF fails to cap-
ture the sequential patterns in users’ behaviors,
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which leads to the rise of sequential recommenda-
tions. Sequential recommenders based on Convolu-
tional Neural Networks (CNNs) (Tang and Wang,
2018), Gated Recurrent Units (GRUs) (Hidasi et al.,
2016), and self-attention (Sun et al., 2019; Zhang
et al., 2019; Kang and McAuley, 2018; Zhou et al.,
2020; Rajput et al., 2023) have become prevalent
in the era of deep learning. Notably, leveraging
a T5-like backbone, Rajput et al. 2023 formal-
ize recommendation as generative retrieval, i.e.,
autoregressively decode the identifiers of the tar-
get items, and achieve the current SOTA. While
structurally resembling LLMs, it lacks their pre-
training knowledge and the accompanying natural
language reasoning potential. Our proposed ap-
proach adopts self-attention for sequential recom-
mendation, specifically harnessing LLMs as back-
bones. We compare against various baselines from
all the classes discussed above.

LLMs for Recommendation. LLMs have re-
cently been explored for recommendation tasks
due to their ability to understand, generate, and
reason with natural language. Several studies fo-
cus on incorporating LLMs’ natural language capa-
bilities into existing recommendation techniques.
E.g., Hou et al. 2022 and Cao et al. 2023 encode
item contents (title, description, etc.) with BERT
(Devlin et al., 2019), which enables learning se-
mantically informed embeddings even for zero-
shot items. Moreover, pre-trained LLM backbones
have also been used for recommendation through
zero-shot learning (Kang et al., 2023), in-context
learning (Kang et al., 2023), fine tuning (Cui et al.,
2022; Kang et al., 2023), and instruction tuning
(Geng et al., 2022; Zhang et al., 2023; Bao et al.,
2023). Besides helping classic recommendation
tasks, LLMs also enable novel recommendation
use cases. Geng et al. 2022 leverage LLMs to
explain the recommendation results. Gao et al.
2023; Wang and Lim 2023 utilize GPT-3 (Brown
et al., 2020) for conversational recommendation.
Christakopoulou et al. 2023 extract persistent user
interests with LLMs for deeper user understand-
ing. Carranza et al. 2023 generate private synthetic
representations of the original data with LLMs for
privacy-preserving recommendation.

Recommendation as Instruction-following. The
success of instruction tuning, i.e., fine-tune on data
described via instructions (Mishra et al., 2022; Wei
et al., 2022), has inspired attempts that instruction-
tune LLM backbones for recommendation tasks.

Geng et al. 2022 formalize various recommen-
dation tasks as natural language instructions and
fine-tune a unified recommender with T5 (Raffel
et al., 2020) backbone. Zhang et al. 2023 fur-
ther supplement the tuning data with user prefer-
ences/intentions deduced by GPT-3.5 1 to accom-
modate instructions of free forms. Bao et al. 2023
explore instruction tuning LLMs with limited data.

In contrast to the existing studies, our work fo-
cuses on introducing new recommendation knowl-
edge into LLMs, which we believe is the key for im-
proving recommenders with LLM backbones. We
create auxiliary tasks that improve the recommen-
dation tasks, including retrieval, ranking, and rat-
ing prediction. Our proposed recommendation-task
and auxiliary-task data samples include raw user
purchase sequences in addition to natural language
instructions. These data samples supplement each
other in encoding the target recommendation do-
main knowledge. We experiment under restricted
settings. Compared to the previous studies (Zhang
et al., 2023), we consider larger candidate pools
(e.g., our retrieval and ranking experiments con-
sider the entire dataset and 99 hard negatives, re-
spectively). Unlike Bao et al. 2023, we fully train
all models to maximize their performances.

3 Methodology

We propose designing data samples that encode rec-
ommendation knowledge to align LLMs with the
target recommendation domain. Sections 3.1 and
3.2 discuss our auxiliary-task and recommendation-
task data, respectively. Section 3.3 introduces a
simple multi-task learning framework that we use
to fine-tune LLMs.

3.1 Auxiliary-task Data Generation

Conventional recommenders acquire recommen-
dation knowledge via classic operations such as
masked item modeling (Sun et al., 2019) and BPR
loss reduction (Rendle et al., 2009). We mimic
these operations with natural language prompts. In
addition, we sample sub-sequences of the raw user
purchase sequences. The resulting data, which we
refer to as auxiliary-task data samples, encode item
correlations contained in users’ preferences 2.

1https://platform.openai.com/docs/models/
overview

2As a side note, we also explored encoding item correla-
tions contained in item contents (categories, descriptions, etc.).
Observing no noticeable performance increase, we present our
approach and results in Appendix D
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3.1.1 Masked Item Modeling (MIM)
Conventional sequential recommenders (Sun et al.,
2019) learn item correlations from users’ interac-
tion sequences. Specifically, they predict randomly
masked items in the sequences by jointly condition-
ing on the unmasked items. We mimic this process,
which we refer to as masked item modeling (MIM),
with natural language prompts.

MIM applies a Cloze objective (Sun et al., 2019).
At each training step, random items in the input
user sequence are replaced with a special token
"[mask]", and the model learns to recover the
masked items based on its surrounding context. An
example of the masking process:

Input: [i1, i2, i3, i4, i5]
random masking−−−−−−−−−→

[i1, [mask]1, i3, [mask]2, i5]

Label: [mask]1 = i2, [mask]2 = i4

(1)

The MIM loss is computed as follows in conven-
tional sequential recommenders:

LMIM =
1

|Smu |
∑

im∈Smu
−logP (im|S

′
u), (2)

where S ′u is the masked version of user sequence
Su, Smu stands for the masked items in Su. P (·),
the probability of observing im given S ′u, is calcu-
lated from deep bidirectional self-attention (Devlin
et al., 2019).

Our natural language imitation of MIM loss
(Equation 2) is described in Figure 1(b4). Given
purchase sequence: [i1, i2, i3, i4, i5], we generate
prompts, e.g., Input: “A user has purchased the
following products: Item ID: [ID]i1 , Title: [Title]i1 ;
[masked item]; Item ID: [ID]i3 , Title: [Title]i3 ;
[masked item]; Item ID: [ID]i5 , Title: [Title]i5 .
What are the masked items, in chronological or-
der?”, and Output: “Item ID: [ID]i2 , Title: [Title]i2 ;
Item ID: [ID]i4 , Title: [Title]i4 ;”. To accommodate
long sequences, we introduce a sliding window
w and each prompt considers one sub-sequence:
[ik, ik+1..., ik+w−1], where 1 ≤ k ≤ max

(
1,(L-

w+1)
)

andL is the total length of the user sequence.
The resulting MIM data samples encodes the cor-
relations between the masked items and the rest of
the sequences.

3.1.2 Masked Language Modeling (MLM)
In addition to MIM that considers a single item for
each mask, we also mask out and recover a con-
secutive span of tokens to encode fine-grained item

correlations contained in the users’ purchase se-
quences. This process resembles masked language
modeling (MLM) (Devlin et al., 2019).

As shown in Figure 1(b5), given a user sequence,
we sample a sub-sequence by randomly decid-
ing a starting item and a sub-sequence length Ls,
where 2 ≤ Ls ≤ w and w is the sliding win-
dow for accommodating long sequences. These
sub-sequences, referred to as MLM data samples,
supplement the MIM data samples: through span
corruption (Raffel et al., 2020), i.e., masking and re-
covering consecutive spans of tokens, LLMs learn
to model more fine-grained correlations across mul-
tiple continuous items from the MLM data samples.

3.1.3 Bayesian Personalized Ranking (BPR)
Besides correlating similar items, we explore con-
trasting dissimilar items. BPR loss (Rendle et al.,
2009) is adopted by conventional recommenders
(Rendle and Freudenthaler, 2014; Koren et al.,
2009; Cheng et al., 2016) for personalized rank-
ing, i.e., learning users’ preferences for some items
over the others. Inspired by this, we imitate BPR
loss reduction with natural language prompts for
training LLMs.

The objective of BPR loss reduction in conven-
tional recommenders is:

LBPR = E
(u,i+)∼ppos

− log σ(s(u, i+)− s(u, i−)),

(3)
where (u, i+) is a pair of a user u and an item
i+ sampled from the distribution of positive pairs
ppos, i.e., u interacted with i+. i− is a randomly
sampled negative item that u has not interacted
with. The similarity between u and i+, denoted by
s(u, i+), is calculated by taking the dot product of
their representations. σ(·) is the Sigmoid function.

Figure 1(b6) shows our natural language imi-
tation. We elicit user preferences by generating
prompts with binary choices that contrast a posi-
tive item and a negative item. Each prompt takes
the form of a binary decision, e.g., Input: “A user
has purchased ... Which of the following two prod-
ucts would the user buy next? Item ID: [ID]i− ,
Title: [Title]i− ; Item ID: [ID]i+ , Title: [Title]i+ .”,
and Output: “Item ID: [ID]i+ , Title: [Title]i+”. Fol-
lowing Section 3.1.1, we adopt a sliding window
w to accommodate long user sequences and the
positive item is always the one next to the sliding
window. These BPR data samples encode dissimi-
larities between the purchased items and the rest of
the items in the dataset.
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Step 3: Prediction

Step 1: Generate Recommendation & Auxiliary Task Data Samples

Step 2: Multi-task 
Fine-tuning

LLM 
Backbone

A user has purchased … What would 
the user buy next?

A user has purchased … Which of the 
following candidate items would you 
recommend the user to buy next? …

A user likes … The user dislikes … 
Predict whether the user would like …

I123

I123

No

Generate recommendation-task & auxiliary-task data samples
Training Testing

Retrieval data 
samples

Rating prediction 
data samples

Retrieval data samples

Rating prediction data samples

Ranking data 
samples

MIM data 
samples

BPR data 
samples

MLM data 
samples

Retrieval data 
samples

Rating prediction 
data samples

Ranking data 
samples

Multi-task 
fine-tuning LLM backbone Evaluation

Figure 2: Fine-tuning and evaluation framework.

3.2 Recommendation-task Data Generation
As shown in Figure 1(a), the existing recom-
menders with LLM backbones adopt prompts that
primarily convey the recommendation tasks by pro-
viding directions on how to perform them. Such
information is essential, yet insufficient for repre-
senting the target recommendation domain.

We propose prompts that help LLMs compre-
hend the target recommendation domain in addi-
tion to the recommendation tasks. Specifically, we
reduce the complexity of the input/output spaces.
In contrast to Geng et al. 2022, we eliminate user
IDs and represent the users by their historical pur-
chases. Consequently, we relieve LLMs from mem-
orizing a substantial volume of user IDs (e.g., Ama-
zon Sports & Outdoors has 35,598 users). More-
over, compared to Geng et al. 2022 that represent
user sequences solely by item IDs, we include
both the IDs and the titles of the items, which
makes it easier for LLMs to recognize the items.
Notably, ranking candidates and items in the out-
put are represented solely by their IDs to reduce
the length of the prompts and maintain a smaller
output space. Figures 1(b1)-(b3) show examples
of our retrieval, ranking, and rating prediction
recommendation-task data samples. The raw item
IDs (e.g., ‘0000031852’) are mapped into shorter
ones (e.g., ‘I123’) 3 to reduce input/output space
complexity. To fully present the users’ historical
purchases to LLMs, we adopt a sliding window w
similar to Section 3.1.1.

3.3 Fine-tuning and Evaluation Framework
As shown in Figure 2, we adopt a simple framework
to fine-tune the LLM backbones and evaluate the re-

3We adopt random mapping, i.e., similar-looking IDs
may not imply any connection or semantic similarity. We
acknowledge that using semantic-rich IDs (Rajput et al., 2023)
could enhance performance and leave the exploration to the
future.

sulting model. We first generate recommendation-
task and auxiliary-task data samples using the train-
ing set. Next, we tune the LLM backbone with
these data samples in a multi-task learning man-
ner. Finally, we evaluate the recommendation tasks
using the recommendation-task data samples gen-
erated from the test set.

4 Experiments

We evaluate the proposed method and compare it
with conventional as well as LLM-based recom-
menders. We aim to answer the following research
questions: RQ1. Can our method introduce knowl-
edge into LLMs from new recommendation do-
mains? RQ2. How does our model perform com-
pared to the conventional as well as LLM-based
recommenders in retrieval, ranking, and rating pre-
diction? RQ3. How beneficial are the individual
proposed tasks? RQ4. What’s the effect of varying
the size of the backbone LLM?

4.1 Experimental Setting
Datasets. We experiment on three real-world
datasets: Amazon Toys & Games, Beauty, and
Sports & Outdoors 4. Following Zhou et al. 2020;
Geng et al. 2022, we keep 5-core data and apply
leave-one-out evaluation, i.e., for each user pur-
chase sequence (where the interactions are sorted
by timestamp in ascending order), the last, the sec-
ond to the last, and the prior interactions are used
for testing, validation, and training, respectively.
We present data statistics in Appendix B.
Recommendation Tasks. We evaluate on three es-
tablished recommendation tasks: retrieval, which
retrieves the ground truth item that a user inter-
acted with from the entire dataset; ranking, which
chooses the ground truth item that a user interacted
with from a candidate pool of size 100 (1 posi-
tive item and 99 negative items sampled based on
popularity); rating prediction, which classifies an
interaction as either "like" or "dislike" (interactions
with ratings > 3 are considered as "like"). We leave
the exploration and evaluation of novel recommen-
dation tasks (e.g., explanation generation) to the
future, due to a lack of ground-truth data.
Evaluation Metrics. For retrieval and ranking, we
report top-k Hit Ratio (HR@k) and Normalized
Discounted Cumulative Gain (NDCG@k), where
k is set to 5/10 and 1/5/10, respectively. For rat-
ing prediction, we report Area Under the Receiver

4https://nijianmo.github.io/amazon/
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Methods
Toys & Games Beauty Sports & Outdoors

NDCG
@5

NDCG
@10

HR
@5

HR
@10

NDCG
@5

NDCG
@10

HR
@5

HR
@10

NDCG
@5

NDCG
@10

HR
@5

HR
@10

Caser1 0.0107 0.0141 0.0166 0.0270 0.0131 0.0176 0.0205 0.0347 0.0072 0.0097 0.0116 0.0194
HGN1 0.0221 0.0277 0.0321 0.0497 0.0206 0.0266 0.0325 0.0512 0.0120 0.0159 0.0189 0.0313
GRU4Rec1 0.0059 0.0084 0.0097 0.0176 0.0099 0.0137 0.0164 0.0283 0.0086 0.0110 0.0129 0.0204
BERT4Rec1 0.0071 0.0099 0.0116 0.0203 0.0124 0.0170 0.0203 0.0347 0.0075 0.0099 0.0115 0.0191
FDSA1 0.0140 0.0189 0.0228 0.0381 0.0163 0.0208 0.0267 0.0407 0.0122 0.0156 0.0182 0.0288
SASRec1 0.0306 0.0374 0.0463 0.0675 0.0249 0.0318 0.0387 0.0605 0.0154 0.0192 0.0233 0.0350
S3-Rec1 0.0294 0.0376 0.0443 0.0700 0.0244 0.0327 0.0387 0.0647 0.0161 0.0204 0.0251 0.0385
TIGER2 0.0371 0.0432 0.0521 0.0712 0.0321 0.0384 0.0454 0.0648 0.0181 0.0225 0.0264 0.0400

P52 0.0050 0.0066 0.0070 0.0121 0.0107 0.0136 0.0163 0.0254 0.0041 0.0052 0.0061 0.0095
P5-XL 0.0023 0.0031 0.0035 0.0061 0.0036 0.0050 0.0063 0.0104 0.0029 0.0035 0.0040 0.0060
FLAN-T5-Base 0.0000 2e−5 0.0000 5e−5 0.0000 0.0000 0.0000 0.0000 0.0000 9e−6 0.0000 3e−5
FLAN-T5-XL 2e−5 2e−5 5e−5 5e−5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ReAT [Ours] 0.0390 0.0461 0.0558 0.0776 0.0382 0.0442 0.0535 0.0722 0.0188 0.0232 0.0285 0.0422
UT [Ours] 0.0166 0.0202 0.0252 0.0362 0.0188 0.0231 0.0292 0.0425 0.0079 0.0101 0.0118 0.0187
UT+AT [Ours] 0.0392 0.0459 0.0563 0.0772 0.0329 0.0397 0.0482 0.0693 0.0178 0.0219 0.0268 0.0393

∆ (%) +5.66 +6.71 +8.06 +8.99 +19.00 +15.10 +17.84 +11.42 +3.87 +3.11 +7.95 +5.50

Table 1: Retrieval results. 1 marks results from Zhou et al. 2020; 2 marks results from Rajput et al. 2023. ∆
compares the best [Ours] with the best baseline.

Methods
Toys & Games Beauty Sports & Outdoors

NDCG
@5

NDCG
@10

HR
@1

HR
@5

HR
@10

NDCG
@5

NDCG
@10

HR
@1

HR
@5

HR
@10

NDCG
@5

NDCG
@10

HR
@1

HR
@5

HR
@10

BPR-MF1 0.0641 0.0940 0.0233 0.1066 0.2003 0.0857 0.1224 0.0311 0.1426 0.2573 0.0848 0.1220 0.0314 0.1404 0.2563
BPR-MLP1 0.0688 0.0988 0.0252 0.1142 0.2077 0.0848 0.1215 0.0317 0.1392 0.2542 0.0927 0.1296 0.0351 0.1520 0.2671
SimpleX1 0.1244 0.1469 0.0268 0.1958 0.2662 0.1441 0.1711 0.0325 0.2247 0.3090 0.1505 0.1800 0.0331 0.2362 0.3290

P5-XL 0.0290 0.0444 0.0097 0.0494 0.0977 0.0298 0.0456 0.0110 0.0498 0.0992 0.0286 0.0436 0.0097 0.0486 0.0957
FLAN-T5-Base 0.0107 0.0127 0.0057 0.0156 0.0217 0.0097 0.0113 0.0052 0.0137 0.0189 0.0069 0.0082 0.0035 0.0102 0.0144
FLAN-T5-XL 0.0160 0.0312 0.0026 0.0315 0.0793 0.0152 0.0296 0.0022 0.0301 0.0753 0.0097 0.0193 0.0014 0.0192 0.0491

RaAT [Ours] 0.1714 0.2034 0.0956 0.2464 0.3453 0.1376 0.1691 0.0702 0.2036 0.3013 0.0933 0.1199 0.0424 0.1448 0.2272
UT [Ours] 0.1536 0.1867 0.0831 0.2233 0.3259 0.1236 0.1537 0.0609 0.1863 0.2798 0.0867 0.1137 0.0381 0.1362 0.2202
UT+AT [Ours] 0.1703 0.2064 0.0938 0.2443 0.3562 0.1441 0.1758 0.0742 0.2126 0.3112 0.0997 0.1281 0.0468 0.1526 0.2404

∆ (%) +37.78 +40.50 +256.72 +25.84 +33.81 0.00 +2.75 +128.31 -5.38 +0.71 -33.75 -28.83 +33.33 -35.39 -26.93

Table 2: Ranking results. 1 marks results from Geng et al. 2022. ∆ compares the best [Ours] with the best baseline.

Methods Toys & Games Beauty Sports & Outdoors

History 66.59 64.80 62.78
DMF 51.82 51.23 51.38
Wide&Deep 70.93 67.10 67.60
P5-XL 51.04 50.63 50.36
FLAN-T5-Base 57.85 56.04 55.00
FLAN-T5-XL 55.23 53.77 52.01

RpAT [Ours] 71.16 68.27 65.87
UT [Ours] 70.79 67.45 65.35
UT+AT [Ours] 71.08 67.55 65.18

∆ (%) +0.32 +1.74 -2.56

Table 3: Rating prediction AUC-ROC. ∆ compares the
best [Ours] with the best baseline.

Operating Characteristic Curve (AUC-ROC).
Models. We compare to non LLM-based recom-
menders. For retrieval, we consider sequential
recommenders including Caser (Tang and Wang,
2018), which leverages CNNs, HGN (Ma et al.,
2019), which adopts hierarchical gating networks,
GRU4Rec (Hidasi et al., 2016), which leverages
GRUs (Cho et al., 2014), BERT4Rec (Sun et al.,
2019), FDSA (Zhang et al., 2019), SASRec (Kang

and McAuley, 2018), S3-Rec (Zhou et al., 2020),
and TIGER (Rajput et al., 2023), which lever-
age self-attention, with TIGER being the current
SOTA. For ranking, we consider BPR-MF (Ren-
dle et al., 2009), BPR-MLP (Cheng et al., 2016),
and SimpleX (Mao et al., 2021), which are col-
laborative filtering-based method. For rating pre-
diction, we consider History, a naive method that
always predicts based on how likely a user likes
the training items they purchased, DMF (Xue
et al., 2017), a neural matrix factorization model,
and Wide&Deep (Cheng et al., 2016), a context-
aware method. Beside, we also consider LLM-
based methods including P5 (Geng et al., 2022),
which fine-tunes T5 (Raffel et al., 2020) with multi-
task recommendation prompts, P5-XL, which fine-
tunes FLAN-T5-XL with P5 prompts, FLAN-T5-
Base/XL (Wei et al., 2022), which make zero-shot
predictions with FLAN-T5-Base or FLAN-T5-XL.
We query them with our proposed recommendation-
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task data samples generated from the test set 5.
ReAT/ RaAT/ RpAT, which fine-tune FLAN-T5-
XL with our proposed retrieval (Re), ranking (Ra),
or rating prediction (Rp) task data samples along
with the auxiliary-task (AT) data samples 6, uni-
fied training (UT), which fine-tunes FLAN-T5-
XL with a combination of our proposed Re, Ra, Rp
data samples, unified training w/ auxiliary tasks
(UT+AT), which fine-tunes FLAN-T5-XL with a
combination of our proposed Re, Ra, Rp, MIM,
MLM data samples.

Implementation Details. We adopt the 3B FLAN-
T5-XL (Wei et al., 2022) as the backbone. We
also use the 223M FLAN-T5-Base for the ablation
studies in Section 4.3. Meanwhile, it’s crucial to
emphasize that the proposed method is not tied
to a specific backbone architecture and is easily
adaptable to other LLMs, such as LLaMA (Tou-
vron et al., 2023). We set the sliding window size
w to 20. For the BPR data samples, we sample the
negative items based on popularity. For the ranking
and BPR data samples, the position of the positive
item in the candidate pool is always determined
randomly. For the MIM and MLM data samples,
we adopt a masking ratio of 20%. To fully fine-
tune the LLM backbone, we apply dynamic sam-
pling for the BPR and MIM/MLM data samples
(we present details about the dynamic sampling
and the statistics of our data samples in Appendix
C). To reduce cost, we validate on 3,000 users.
Meanwhile, testing is performed on all users. We
fine-tune FLAN-T5-XL and FLAN-T5-Base for
70, 000 and 10, 000 steps, with batch sizes 16 and
64, respectively. We set the learning rate to 0.001
and warm-up steps to 1,000. During prediction, we
set the width of the beam search for retrieval and
ranking to 20. For unified models, i.e., UT and
UT+AT, model selections are based on retrieval
validation performance. We present the detailed
settings of P5-XL experiments in Appendix A. We
cite the results of some baseline models from Zhou

5We acknowledge that our retrieval and ranking data sam-
ples (examples are shown in Figure 1 and Appendix C) utilize
item IDs for matching prediction results, whereas the FLAN-
T5-Base/XL models, when queried in the zero-shot setting,
do not inherently predict item IDs. Addressing this discrep-
ancy, text-based methods could be employed to extract item
titles, descriptions, etc., from the FLAN-T5-Base/XL predic-
tions to enhance their performance. However, employing such
approaches requires an additional model for text matching,
which falls beyond the scope of this work

6BPR data samples are used only by RaAT as we observe
that they help ranking but not retrieval and rating prediction.
MIM/ MLM data samples are used by ReAT, RaAT, and RpAT.

et al. 2020; Geng et al. 2022; Rajput et al. 2023. We
implement DMF and Wide&Deep with RecBole 7.
We adopt the default configurations, except the
data split, mapping (ratings to "like"s or "dislike"s),
and metric are adjusted to follow our experiment
settings as reported earlier. The pseudo code for
generating our proposed data samples can be found
in Appendix C.

4.2 Overall Performance (RQ1 & RQ2)

Tables 1, 2, and 3 show the results of retrieval,
ranking, and rating prediction, respectively. FLAN-
T5-Base/XL exhibit suboptimal performance on
retrieval and ranking. For retrieval, they show near
zero NDCGs and HRs. For ranking, they are signif-
icantly inferior to the conventional baselines. For
rating prediction, they perform much higher than
random guessing (50.00), outperforming DMF, but
still fall behind History and Wide&Deep. This
shows that FLAN-T5 models lack recommenda-
tion knowledge, which is unsurprising considering
they were not trained on recommendation tasks dur-
ing pre-training or instruction-tuning and are evalu-
ated in a zero-shot setting. Moreover, we find that
our proposed method effectively aligns LLMs with
new recommendation domains (RQ1). In particu-
lar, by fine-tuning FLAN-T5-XL with our proposed
data samples, our models significantly outperform
FLAN-T5-XL on all three tasks across the datasets.

When compared to the baselines, our models
show remarkable performance, especially on re-
trieval (RQ2). For retrieval, our ReAT outperforms
TIGER, the current SOTA, by large margins across
datasets and metrics. Additionally, it is essential
to highlight that our method possesses natural lan-
guage reasoning potentials of LLMs, which are
absent in TIGER. For ranking, our RaAT greatly
outperforms SimpleX, the best baseline, on Toys
& Games. On Beauty, RaAT performs on par with
SimpleX. On Sports & Outdoors, RaAT is infe-
rior to the conventional recommenders on metrics
such as NDCG/HR@10, yet still greatly outper-
forms the LLM-based baselines. Notably, the @1
performance of RaAT is always much higher than
the conventional recommenders. For rating predic-
tion, our RpAT outperforms Wide&Deep, the best
baseline, on Toys & Games and Beauty while lags
slightly behind it on Sports & Outdoors. These re-
sults verify that our method introduces substantial
recommendation domain knowledge into LLMs

7https://recbole.io
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for outperforming strong baselines. The relative
ineffectiveness of our method on Sports & Out-
doors for the ranking and rating prediction tasks
could be due to the nature of the data. Specifically,
our model, as a sequential recommender, relies on
the sequential item correlations conveyed by the
user sequences. Such signals may be relatively
weak in Sports & Outdoors (e.g., the average se-
quence length of Sports & Outdoors is 8.32± 6.07,
whereas that of Beauty and Toys & Games are
8.88± 8.16 and 8.63± 8.51, respectively, suggest-
ing that Sports & Outdoors sequences are shorter
and less diverse), causing our method to perform
suboptimally. The best baselines, on the other hand,
do not rely on such information. E.g., SimpleX is
based on collaborative filtering and Wide&Deep
is a context-based model. Therefore, their perfor-
mances are not impacted.

Moreover, our UT greatly outperforms P5 and
P5-XL across datasets and metrics. This shows
that our proposed recommendation task prompts
better preserve item correlations as compared to the
P5 ones. Specifically, we enhance user sequence
modeling by introducing helpful details such as
item titles while excluding less informative details
such as user IDs and explanation data. Additional
results of P5-XL as well as a comparison between
P5-XL and P5 can be found in Appendix A.

We also compare our UT+AT model with our
task-specific models, i.e., ReAT/ RaAT/ RpAT.
We show that our method allows fine-tuning a
unified model that addresses all recommendation
tasks without sacrificing per-task performance by
much. For retrieval, UT+AT is slightly worse than
ReAT but still outperforms all baselines, except
that UT+AT performs comparably with TIGER on
Sports & Outdoors. For ranking, UT+AT performs
on par with or slightly better than our task-specific
RaAT model. For rating prediction, UT+AT is
slightly worse than RpAT.

4.3 Ablation Studies (RQ3 & RQ4)
Tables 4, 5, and 6 show ablation studies on Toys
& Games for retrieval, ranking, and rating predic-
tion, respectively. We observe that all the proposed
tasks are beneficial (RQ3). In Table 4 rows 2-5,
successively adding our proposed retrieval, MLM,
and MIM data samples into the fine-tuning data
increases the retrieval performance. All three tasks
are essential. E.g., row 4, which fine-tunes FLAN-
T5-XL using retrieval and MLM data samples per-
forms on par with S3-Rec and worse than TIGER

# Methods
NDCG

@5
NDCG
@10

HR
@5

HR
@10

1 TIGER 0.0371 0.0432 0.0521 0.0712

2 FLAN-T5-XL 2e−5 2e−5 5e−5 5e−5
3 2+retrieval 0.0182 0.0219 0.0273 0.0388
4 3+MLM 0.0306 0.0369 0.0443 0.0641
5 4+MIM 0.0390 0.0461 0.0558 0.0776

6 FLAN-T5-Base 0.0000 2e−5 0.0000 5e−5
7 6+retrieval 0.0149 0.0183 0.0219 0.0325
8 7+MLM 0.0219 0.0271 0.0334 0.0495
9 8+MIM 0.0242 0.0304 0.0376 0.0566

Table 4: Retrieval ablation study on Toys & Games.
Rows 1, 2, 5 (equivalent to ReAT), and 6 are copied
from Table 1.

# Methods
NDCG

@5
NDCG
@10

HR
@1

HR
@5

HR
@10

1 SimpleX 0.1244 0.1469 0.0268 0.1958 0.2662

2 FLAN-T5-XL 0.0160 0.0312 0.0026 0.0315 0.0793
3 2+ranking 0.1520 0.1864 0.0807 0.2218 0.3284
4 3+MLM 0.1580 0.1912 0.0854 0.2303 0.3333
5 4+MIM 0.1677 0.1976 0.0938 0.2391 0.3317
6 5+BPR 0.1714 0.2034 0.0956 0.2464 0.3453

7 FLAN-T5-Base 0.0107 0.0127 0.0057 0.0156 0.0217
8 7+ranking 0.1349 0.1654 0.0720 0.1957 0.2901
9 8+MLM 0.1481 0.1782 0.0820 0.2119 0.3051
10 9+MIM 0.1489 0.1811 0.0817 0.2141 0.3136
11 10+BPR 0.1534 0.1844 0.0844 0.2196 0.3153

Table 5: Ranking ablation study on Toys & Games.
Rows 1, 2, 6 (equivalent to RaAT), and 7 are copied
from Table 2.

(row 1, the current SOTA). Further adding MIM
data samples (row 5) surpasses TIGER. This shows
that the item-level and token-level item correlations
introduced by MIM and MLM are essential and
complement each other. Similarly, in Table 5 rows
2-6, the ranking performance improves as we in-
corporate our proposed ranking, MLM, MIM, and
BPR data samples into fine tuning. Among these
data samples, ranking task data samples are the
most helpful. BPR data samples, which contrast the
positive items with the negative ones, provide the
least assistance. For rating predictions, as shown
in Table 6 rows 2-5, our proposed rating predic-
tion data samples greatly increase the performance.
MLM and MIM do help, but only marginally.

We also find that our proposed method is effec-
tive regardless of the size of the backbone model

# Methods AUC-ROC
1 Wide&Deep 70.93
2 FLAN-T5-XL 55.23
3 2+rating-prediction 70.38
4 3+MLM 71.08
5 4+MIM 71.16

# Methods AUC-ROC

6 FLAN-T5-Base 57.85
7 6+rating-prediction 69.17
8 7+MLM 67.31
9 8+MIM 68.24

Table 6: Rating-prediction ablation study on Toys &
Games. Rows 1, 2, 5 (equivalent to RpAT), and 6 are
copied from Table 3.
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(RQ4). In Tables 4, 5, and 6, we apply our method
on FLAN-T5-Base and observe significant perfor-
mance increases on all three recommendation tasks.
In terms of overall performance, our best retrieval
model with FLAN-T5-Base (Table 4 row 9) falls
behind TIGER but still outperforms all baselines
except TIGER, S3-Rec, and SASRec. In Table 5,
our best ranking model with FLAN-T5-Base (row
11) outperforms SimpleX by large margins, though
falls behind our best ranking model with FLAN-T5-
XL (row 6). In Table 6, our best rating prediction
model with FLAN-T5-Base (row 7) is slightly in-
ferior to the best model with FLAN-T5-XL (row
5) and Wide&Deep. The effectiveness of the indi-
vidual tasks remains roughly consistent with the
previous results with FLAN-T5-XL (except that
MLM does not help rating prediction). E.g., in Ta-
ble 5 rows 7-11, our ranking task, MLM, MIM, and
BPR data samples all contribute to the ranking per-
formance, with the ranking task data samples being
the most beneficial and BPR the least beneficial.

5 Conclusion

We propose to align LLMs with the recommen-
dation domain by fine-tuning with data samples
that encode recommendation knowledge. We pro-
pose auxiliary-task data samples that encode item
correlations contained in users’ preferences. We
further design recommendation-task data samples
that are more informative than ones in existing stud-
ies. Experiments on retrieval, ranking, and rating
prediction show that our method effectively intro-
duces recommendation knowledge into FLAN-T5-
Base/XL from three domains. Our method greatly
outperforms both conventional and LLM-based
baselines in retrieval, achieving the new SOTA.

6 Limitations

Our proposed method utilizes LLMs as the back-
bones. The substantial parameter size of the LLMs
results in increased computational resource con-
sumption and extended training and inference times
compared to conventional recommenders. Never-
theless, adopting LLM backbones is beneficial due
to their significant potential. In addition to the ex-
ceptional performance demonstrated in this study,
we anticipate that future research will continue to
augment existing recommendation tasks and ad-
dress novel recommendation scenarios by leverag-
ing the diverse capabilities of LLM backbones.
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Dataset # Users # Items # Interactions Sparsity (%)
Toys & Games 19,412 11,924 167,597 99.93
Beauty 22,363 12,101 198,502 99.93
Sports & Outdoors 35,598 18,357 296,337 99.95

Table 7: Statistics of the datasets.

A P5-XL Experimental Setting and
Additional Results

A.1 Experimental Setting

We generate P5 prompts using the source code pro-
vided by the P5 authors 8. However, for a fair com-
parison, we update the data pre-processing to be
consistent with our method and the other baselines.
Specifically, we apply random instead of sequential
indexing when mapping the item IDs. As pointed
out by Rajput et al. 2023, the sequential indexing of
items (e.g., the purchase sequence of the first user
in Toys & Games is mapped into ‘1, 2, 3, 4, 5, 6, 7’)
in the original P5 pre-processing leads to data leak-
age (e.g., given the train items, i.e., ‘1, 2, 3, 4, 5,
6’, the LLM can easily infer the test item, i.e., ‘7’).
Therefore, we adopt random mapping (i.e., con-
secutive or similar-looking IDs may not imply any
connection), which is consistent with our method.
In addition, the original P5 pre-processing adopts
leave-one-out split for retrieval and ranking, while
splitting the dataset by 0.8:0.1:0.1 for the training,
validation, and testing of rating prediction. This
could result in data leakage, as the test interactions
of one task might be included in the training set of
another task. We instead adopt leave-one-out data
split for all three recommendation tasks, which is
consistent with our proposed method as well as the
other baselines.

For a fair comparison, We apply the same back-
bone (FLAN-T5-XL), fine-tuning steps (70,000),
batch size (16), and learning rate (0.001) as adopted
by our proposed method. Following the original P5
code, we fine-tune a unified model with prompts of
their proposed five task families (rating, sequential
recommendation, explanation, review, and direct
recommendation. The sequential recommendation
and direct recommendation families are weighted 5
times higher than the rest families). In Tables 1, 2,
and 3, we adopt prompt templates 2-1, 2-7, and 1-4
for evaluating the retrieval, ranking, and rating pre-
diction performance of the P5-XL model, as these
templates better suit the forms of the recommenda-
tion tasks (introduced in the second subsection of
Section 4.1) than the other templates.

8https://github.com/jeykigung/P5

A.2 P5-XL vs. P5

Please note that the retrieval results of P5 in Ta-
ble 1 are cited from Rajput et al. 2023 rather than
the original P5 paper (Geng et al., 2022). This
is because the original P5 experiments cannot be
reproduced upon fixing the information leakage
issues as discussed in the previous section. Mean-
while, Rajput et al. 2023 does not report the ranking
and rating prediction performances of P5. To fully
evaluate P5, we train a P5-XL model following the
experimental setting as detailed in the previous sec-
tion, and report its performance on all three tasks
in Tables 1 to 3.

P5-XL performs worse than P5 in Table 1, which
is likely owing to the differences in their training
data. Specifically, P5 was only trained on retrieval
prompts (as indicated in Appendix D of Rajput
et al. 2023). While following the original P5 pa-
per, P5-XL is trained on all five task families of
P5 prompts, including explanation generation and
review summarization tasks. We hypothesize that
these additional data samples are very different
from the evaluated tasks (retrieval, ranking and
rating prediction), causing negative transfer to the
evaluated tasks.

A.3 Additional Results

In Table 8, we report the ranking results of P5-XL
evaluated with prompt template 5-5. We can tell
that P5-XL (5-5) slightly fall behind P5-XL. Our
proposed UT greatly outperforms both P5-XL and
P5-XL (5-5), which again verifies that our proposed
recommendation task prompts are more informa-
tive than the P5 ones.

B Dataset Statistics

Table 7 presents the statistics of the Amazon
datasets, i.e., Toys & Games, Beauty, and Sports
& Outdoors, that we used to evaluate our proposed
method as well as all the baselines.

C Pseudo Code, Statistics, and Examples
of the Proposed Data Samples

C.1 Pseudo Code for Data Sample
Generation

Algorithm 1 presents the pseudo code for gen-
erating our proposed recommendation-task and
auxiliary-task data samples.
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Methods
Toys & Games Beauty Sports & Outdoors

NDCG
@5

NDCG
@10

HR
@1

HR
@5

HR
@10

NDCG
@5

NDCG
@10

HR
@1

HR
@5

HR
@10

NDCG
@5

NDCG
@10

HR
@1

HR
@5

HR
@10

P5-XL 0.0290 0.0444 0.0097 0.0494 0.0977 0.0298 0.0456 0.0110 0.0498 0.0992 0.0286 0.0436 0.0097 0.0486 0.0957
P5-XL (5-5) 0.0274 0.0428 0.0089 0.0467 0.0948 0.0289 0.0443 0.0093 0.0497 0.0982 0.0275 0.0426 0.0091 0.0470 0.0943

UT [Ours] 0.1536 0.1867 0.0831 0.2233 0.3259 0.1236 0.1537 0.0609 0.1863 0.2798 0.0867 0.1137 0.0381 0.1362 0.2202

Table 8: Additional P5-XL Ranking results. Rows 1 and 3 are copied from Table 2.

Methods
NDCG

@5
NDCG
@10

HR
@5

HR
@10

UT [Ours] 0.0079 0.0101 0.0118 0.0187
UT+IE [Ours] 0.0076 0.0097 0.0121 0.0185

Table 9: Retrieval results on Sports & Outdoors with
(UT+IE) or without (UT) IE data samples. Row 1 is
copied from Table 1.

C.2 Statistics of the Data Samples
Table 10 presents the statistics of our proposed
recommendation-task and auxiliary-task data sam-
ples. Consider the recommendation-task data sam-
ples, the training data samples are generated by
swiping a sliding window of size w = 20 over
the training split of the user sequence. The vali-
dation data samples consider only 3,000 users for
each dataset for cost-efficient validation. We test
on all users, therefore the counts of the testing data
samples equal to the total number of users in the
datasets. The auxiliary-task data samples, on the
other hand, are generated using only the training
splits. Notably, during training, we apply dynamic
sampling that decide the negative items in the BPR
data samples as well as the masked items/tokens
in the MIM/MLM data samples on the fly. Such
dynamic sampling helps to fully fine-tune the LLM
backbones.

C.3 Examples of the Data Samples
In Table 11, we present examples of our proposed
data samples. These data samples are generated
with the training data split of an Amazon - Toys
& Games user whose ID is ‘A12HF3UBDV34RR’.
Note that to fully fine-tune the LLM backbone,
we apply dynamic sampling for the BPR and
MIM/MLM data samples and decide the negative
items and masked items/tokens on the fly. Here,
we only present the BPR, MIM, and MLM data
samples resulted from a single sampling.

D Mimicking Item Embedding

Our proposed data samples introduced in the main
paper encode item correlations encompassed in

Input: What’s the title of I1014?  Output: Women’s Dry-fit Tempo Shorts
Input: What’s the brand of I1014?  Output: Nike
Input: What’s the price of I1014?   Output: $31.8
…

Step 3: Prediction

Step 1: Generate Recommendation & Auxiliary Task Data Samples

Step 2: Multi-task 
Fine-tuning

LLM 
Backbone

A user has purchased … What would 
the user buy next?

A user has purchased … Which of the 
following candidate items would you 
recommend the user to buy next? …

A user likes … The user dislikes … 
Predict whether the user would like …

I123

I123

No

Figure 3: Item embedding (IE) data samples.

users’ preferences. We also explore encoding item
correlations encompassed in item contents, i.e., cat-
egories, descriptions, etc.

We observe that the conventional context-aware
recommenders commonly integrate item contents
to help the model better understand the items and
achieve enhanced performance. E.g., Hou et al.
2022 embed the concatenations of item content
fields with BERT (Devlin et al., 2019). The learned
item embeddings, X ∈ RN×d, where N is the
number of the items and d is the dimension of the
vector space, serve as initial representations of the
items.

We mimic this item embedding (IE) process with
natural language prompts. As shown in Figure 3,
by asking questions about the properties of an item
in the input and answering them in the output, we
can generate item embedding data samples such as
‘Input: What’s the brand of I1014? Output: Nike’.
We repeat such question answering process for var-
ious available item content fields, including title,
categories, brand, price, attributes, and descriptions.
These data samples represent knowledge about the
items, but with natural language rather than nu-
merical vectors. We expect that tuning LLMs with
IE data samples can help them to comprehend the
items in the target recommendation domain and
enhance their performance.

To evaluate the IE data samples, we tune a
UT+IE model, which augments the fine-tuning
data of our UT model with IE data samples (the
rest experimental settings of UT+IE and UT remain
the same). We present its retrieval performance on
Sports & Outdoors in Table 9. We observe no no-
ticeable performance increase when incorporate
IE data samples. The reason might be, the raw
item content fields are noisy. E.g., the description
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Task
Toys & Games Beauty Sports & Outdoors

# Train # Valid # Test # Train # Valid # Test # Train # Valid # Test

Retrieval 30,761 3,000 19,412 36,582 3,000 22,363 47,320 3,000 35,598
Ranking 30,761 3,000 19,412 36,582 3,000 22,363 47,320 3,000 35,598
Rating prediction 30,761 3,000 19,412 36,582 3,000 22,363 47,320 3,000 35,598

MIM DS 0 0 DS 0 0 DS 0 0
MLM DS 0 0 DS 0 0 DS 0 0
BPR DS 0 0 DS 0 0 DS 0 0

Table 10: Statistics of our proposed data samples. DS stands for dynamic sampling.

field is long and can contain noise such as hash-
tags and URLs. It has been shown (Cao et al.,
2023) pre-processing the raw fields to extract fine-
grained features helps to enhance context-aware
recommenders. Inspired by this, in the future, we
plan to improve the IE data samples by refining the
item content fields.
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Task Data sample

Retrieval Input: A user has purchased the following Amazon products (arranged in chronological order, from earliest to most recent): Item ID: I9762, Title:
Winstonia’s 8 Wheels Combo Set Nail Art Polymer Slices Fimo Decal Pieces Accessories - Butterflies, Bows, Animals, Fruit, Flowers, Dragonflies,
Cupcakes, Hearts; Item ID: I8123, Title: MASH Rhinestones 2400 Piece 12 Color Nail Art Nailart Manicure Wheels; Item ID: I158, Title: Aveeno Clear
Complexion Daily Moisturizer, 4 Ounce; Item ID: I5324, Title: Bdellium Tools Professional Antibacterial Makeup Brush Studio Line - Precision Kabuki
Airbrushed Effect 957; Item ID: I7522, Title: Bdellium Tools Professional Makeup Brush Green Bambu Series Smoky Eyes 5pc. Brush Set; Item ID:
I7647, Title: real Techniques Stippling Brush; Item ID: I7811, Title: Maybelline New York Color Sensational High Shine Lipcolor, Coral Lustre 840,
0.12 Ounce; Item ID: I9440, Title: Bed Head BH313 Orange Crush 1-inch Styler; Item ID: I5046, Title: Herstyler Baby Curl Curling Iron, Purple; What
would the user buy next?
Output: I3977

Ranking Input: A user has purchased the following Amazon products (arranged in chronological order, from earliest to most recent): Item ID: I9762, Title:
Winstonia’s 8 Wheels Combo Set Nail Art Polymer Slices Fimo Decal Pieces Accessories - Butterflies, Bows, Animals, Fruit, Flowers, Dragonflies,
Cupcakes, Hearts; Item ID: I8123, Title: MASH Rhinestones 2400 Piece 12 Color Nail Art Nailart Manicure Wheels; Item ID: I158, Title: Aveeno Clear
Complexion Daily Moisturizer, 4 Ounce; Item ID: I5324, Title: Bdellium Tools Professional Antibacterial Makeup Brush Studio Line - Precision Kabuki
Airbrushed Effect 957; Item ID: I7522, Title: Bdellium Tools Professional Makeup Brush Green Bambu Series Smoky Eyes 5pc. Brush Set; Item ID:
I7647, Title: real Techniques Stippling Brush; Item ID: I7811, Title: Maybelline New York Color Sensational High Shine Lipcolor, Coral Lustre 840,
0.12 Ounce; Item ID: I9440, Title: Bed Head BH313 Orange Crush 1-inch Styler; Item ID: I5046, Title: Herstyler Baby Curl Curling Iron, Purple; Which
of the following candidate items would you recommend the user to buy next? Candidate items are: I10537, I11849, I2647, I10506, I377, I8136, I3598,
I2316, I114, I10379, I6767, I2801, I4687, I3446, I7222, I5925, I4608, I2226, I2279, I11708, I4376, I8771, I6502, I8650, I7006, I11350, I6716, I4690,
I11303, I3446, I8704, I4001, I9816, I1498, I6896, I1598, I7653, I2086, I12019, I3235, I12052, I27, I5786, I9936, I697, I10050, I447, I10898, I2093,
I2618, I2044, I2618, I6924, I2769, I8117, I10772, I9252, I4668, I6982, I2234, I9894, I9441, I6514, I5519, I8620, I710, I10212, I8654, I7648, I11054,
I1419, I10958, I334, I576, I1537, I8278, I3181, I189, I3510, I7974, I6010, I11187, I6465, I9596, I9356, I311, I2313, I7117, I9249, I643, I6732, I8803,
I5499, I2434, I3977, I10691, I10707, I5553, I7999, I8672.
Output: I3977

Rating prediction Input: A user likes the following Amazon products: Item ID: I7522, Title: Bdellium Tools Professional Makeup Brush Green Bambu Series Smoky Eyes
5pc. Brush Set; Item ID: I7811, Title: Maybelline New York Color Sensational High Shine Lipcolor, Coral Lustre 840, 0.12 Ounce; The user dislikes
the following Amazon products: Item ID: I7647, Title: real Techniques Stippling Brush; Item ID: I9440, Title: Bed Head BH313 Orange Crush 1-inch
Styler; Item ID: I5046, Title: Herstyler Baby Curl Curling Iron, Purple; Predict whether the user would like the following item. Answer yes or no. Item
ID: I3977, Title: L’Oreal Paris HiP Studio Secrets Professional Color Truth Cream Eyeliner, Brown, 0.159 Ounce
Output: no

MIM Input: A user has purchased the following Amazon products (arranged in chronological order, from earliest to most recent): Item ID: I9762, Title:
Winstonia’s 8 Wheels Combo Set Nail Art Polymer Slices Fimo Decal Pieces Accessories - Butterflies, Bows, Animals, Fruit, Flowers, Dragonflies,
Cupcakes, Hearts; [masked item]; Item ID: I158, Title: Aveeno Clear Complexion Daily Moisturizer, 4 Ounce; Item ID: I5324, Title: Bdellium Tools
Professional Antibacterial Makeup Brush Studio Line - Precision Kabuki Airbrushed Effect 957; Item ID: I7522, Title: Bdellium Tools Professional
Makeup Brush Green Bambu Series Smoky Eyes 5pc. Brush Set; [masked item]; Item ID: I7811, Title: Maybelline New York Color Sensational High
Shine Lipcolor, Coral Lustre 840, 0.12 Ounce; Item ID: I9440, Title: Bed Head BH313 Orange Crush 1-inch Styler; Item ID: I5046, Title: Herstyler
Baby Curl Curling Iron, Purple; Item ID: I3977, Title: L’Oreal Paris HiP Studio Secrets Professional Color Truth Cream Eyeliner, Brown, 0.159 Ounce;
What are the masked items, in chronological order?
Output: Item ID: I8123, Title: MASH Rhinestones 2400 Piece 12 Color Nail Art Nailart Manicure Wheels; Item ID: I7647, Title: real Techniques
Stippling Brush;

MLM Input: Item ID: I7811, Title: Maybelline New York Color Sensational High Shine Lipcolor, Coral Lustre 840, 0.12 Ounce; Item ID: I9440, Title: Bed
Head BH313 Orange Crush 1-inch Styler;

BPR Input: A user has purchased the following Amazon products (arranged in chronological order, from earliest to most recent): Item ID: I9762, Title:
Winstonia’s 8 Wheels Combo Set Nail Art Polymer Slices Fimo Decal Pieces Accessories - Butterflies, Bows, Animals, Fruit, Flowers, Dragonflies,
Cupcakes, Hearts; Item ID: I8123, Title: MASH Rhinestones 2400 Piece 12 Color Nail Art Nailart Manicure Wheels; Item ID: I158, Title: Aveeno Clear
Complexion Daily Moisturizer, 4 Ounce; Item ID: I5324, Title: Bdellium Tools Professional Antibacterial Makeup Brush Studio Line - Precision Kabuki
Airbrushed Effect 957; Item ID: I7522, Title: Bdellium Tools Professional Makeup Brush Green Bambu Series Smoky Eyes 5pc. Brush Set; Item ID:
I7647, Title: real Techniques Stippling Brush; Item ID: I7811, Title: Maybelline New York Color Sensational High Shine Lipcolor, Coral Lustre 840,
0.12 Ounce; Item ID: I9440, Title: Bed Head BH313 Orange Crush 1-inch Styler; Item ID: I5046, Title: Herstyler Baby Curl Curling Iron, Purple; Which
of the following two items would the user buy next? Item ID: I4168, Title: Sulfur Soap with Lanolin; Item ID: I3977, Title: L’Oreal Paris HiP Studio
Secrets Professional Color Truth Cream Eyeliner, Brown, 0.159 Ounce;
Output: Item ID: I3977, Title: L’Oreal Paris HiP Studio Secrets Professional Color Truth Cream Eyeliner, Brown, 0.159 Ounce;

Table 11: Examples of our proposed data samples.
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Algorithm 1: Generate Data Samples
Input: Raw interactions, data sample

templates for recommendation and
auxiliary tasks, data_split ∈ {Train,
Valid, Test}, window size w,
candidate pool size c

Output: Data samples D
1 I ← a set of unique items (shuffled and

mapped to short IDs)
2 S ← a list of chronologically ordered user

purchase sequences
3 D ← {}
4 for s ∈ S do
5 if data_split = Train then
6 ssub ← all subsequences of the

training split of s, each is of length
up to w

7 if data_split = Valid then
8 ssub ← a subsequence of s that ends

with the validation item,
proceeding items beyond w are
truncated

9 if data_split = Test then
10 ssub ← a subsequence of s that ends

with the test item, proceeding items
beyond w are truncated

11 for ss ∈ ssub do
12 for task ∈ {Retrieval, Ranking,

Rating prediction} do
13 if task = Ranking then
14 neg ← sample c− 1

negative items from I\s
15 Generate a data sample d with

ss, task template, and neg (for
Ranking only)

16 Add d to D
17 if data_split = Train then
18 for task ∈ {MIM, MLM, BPR}

do
19 if task = BPR then
20 neg ← sample 1

negative item from I\s
21 Generate a data sample d

with ss, task template, and
neg (for BPR only)

22 Add d to D

23 return D
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