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Abstract
We explore the use of language as a perceptual
representation for vision-and-language naviga-
tion (VLN), with a focus on low-data settings.
Our approach uses off-the-shelf vision systems
for image captioning and object detection to
convert an agent’s egocentric panoramic view
at each time step into natural language descrip-
tions. We then finetune a pretrained language
model to select an action, based on the current
view and the trajectory history, that would best
fulfill the navigation instructions. In contrast
to the standard setup which adapts a pretrained
language model to work directly with continu-
ous visual features from pretrained vision mod-
els, our approach instead uses (discrete) lan-
guage as the perceptual representation. We ex-
plore several use cases of our language-based
navigation (LangNav) approach on the R2R
VLN benchmark: generating synthetic trajec-
tories from a prompted language model (GPT-
4) with which to finetune a smaller language
model; domain transfer where we transfer a
policy learned on one simulated environment
(ALFRED) to another (more realistic) environ-
ment (R2R); and combining both vision- and
language-based representations for VLN. Our
approach is found to improve upon baselines
that rely on visual features in settings where
only a few expert trajectories (10-100) are avail-
able, demonstrating the potential of language
as a perceptual representation for navigation.

1 Introduction

Applications of large language models (LMs) to
non-linguistic embodied tasks have generally fo-
cused on using the implicit world knowledge within
LMs to predict sub-tasks and actions for planning
(Ahn et al., 2022; Huang et al., 2022b,a; Singh et al.,
2022). For instance, recent work has shown that
LMs can be prompted to create a list of actions (e.g.,
GoToBathroom, LocateToothbrush) given a high-
level goal given in natural language (e.g., “brush
teeth”) (Huang et al., 2022a). These approaches

rely on the LM’s priors on action sequences and
inter-object correlations acquired through large-
scale pretraining (Zhou et al., 2023b; Li et al., 2023;
Zhao et al., 2023), and it has not been clear whether
text-only models can be finetuned for tasks such as
vision-and-language navigation which requires an
egocentric agent follow instructions to navigate a
3D environment using visual input.

To be clear, there is a substantial body of work
on using pretrained LMs for vision-and-language
navigation tasks (Hong et al., 2021; Qi et al., 2021;
Qiao et al., 2022, inter alia). The standard ap-
proach is to use a pretrained LM over the natural
language instructions to extract text features that
are combined with the agent’s perceptual repre-
sentations, which are given by continuous image
features extracted from pretrained vision models
(Wang et al., 2019; Hao et al., 2020). While effec-
tive in data-rich regimes, the direct use of vision
features makes the approach difficult to apply in
cases where only a few labeled trajectories exist
(e.g., 10 trajectories), as these approaches need to
learn a full joint vision-language module that com-
bines a pretrained vision model with a pretrained
text model. A popular strategy in such low data
regimes is to generate synthetic data or transfer
knowledge from other domains. However, generat-
ing realistic perception data is itself a difficult task,
and domain transfer with models that rely purely on
visual features can overfit to the non-transferable
features (Anderson et al., 2021).

This paper explores an alternative approach for
vision-and-language navigation by exploiting lan-
guage itself as the perceptual representation space.
Our approach uses off-the-shelf vision models to
obtain textual descriptions of the agent’s egocen-
tric panoramic view. The text descriptions are then
fed to an LM which must select the next action
given the instruction and (text descriptions of) the
previous actions or observations. See Figure 1 for
an overview. The use of language to represent an
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You are a navigation agent who must navigate according to instructions 
given only descriptions of your current position via natural language. The 
natural language description is sometimes incorrect.

Instruction: "Go down the stairs and straight into the living room. In the 
living room walkout onto the patio. On the patio stop outside the doorway.”

[Trajectory History]

Step 4:
To your straight ahead is, "a living room with a couch a table and chairs”

To your left is, "a modern kitchen with a stainless steel refrigerator”

Behind you is, "a long hallway with wooden steps leading to a black door”

You go towards:

"Go down the stairs and 
straight into the living 
room. In the living room 
walkout onto the patio. 
On the patio stop outside 
the doorway."

Language Instructions and Visual Images

LangNav Agent

I should go towards:
"a living room with a 
couch a table and chairs"

Converting Observations into Language PromptsObservations at Time Step 4

A

B C

Figure 1: Overview of language-based navigation (LangNav). We describe the task instructions and visual
observations (from off-the-shelf vision systems) through text. A language model is then finetuned to predict which
direction to move towards based on the language descriptions. Here, views A, B, and C correspond to the front, left,
and rear views of the agent.

agent’s perceptual field makes it possible to readily
utilize the myriad capabilities of language models,
especially when the training data is limited. In our
first case study, we show how we can use a small
amount of seed training data (10-100 trajectories)
to cheaply obtain synthetic “trajectories” from a
powerful but closed-source LM (GPT-4; OpenAI,
2023). We find that finetuning a smaller language
model (LLaMA/LLaMA2; Touvron et al., 2023a,b)
on the generated trajectories mixed with the orig-
inal seed data results in a langauge-based naviga-
tion agent that outperforms a vision-based agent
that is finetuned on the same seed data. In our
second study, we explore the use of language as
a domain-invariant representation to perform do-
main transfer, where we transfer an agent trained
on a computer-generated environment (ALFRED;
Shridhar et al., 2020) to the real-world R2R (Ander-
son et al., 2018b) environment. Insofar as language
is hypothesized to have co-evolved with the human
brain to enable efficient communication (Deacon,
1997), it naturally abstracts away low-level per-
ceptual details, and we indeed find that LangNav
exhibits improved transfer compared to the vision-
based agent. We further show that language can
provide further benefits even in the presence of
vision-based features. Our results collectively sug-
gest that language as a perceptual representation
can be helpful in the low-data navigation settings.

2 Background: Room-to-Room
Vision-language Navigation

A popular testbed for vision-and-language navi-
gation (VLN) is the room-to-room dataset (R2R;
Anderson et al., 2018b), in which an agent must
perceive and navigate a real-world 3D environ-
ment based on a language instruction U and an

initial state S0. At each time step t, the agent
uses the current observation Ot, the original lan-
guage instructions U , and the trajectory history
Ht, to predict the panoramic action at. The cur-
rent observation is given by a set of panoramic
images that describe the agent’s egocentric view,
i.e., Ot = {It,0, ..., It,V } where V corresponds
to the number of discretized view angles.1 The
panoramic action at corresponds to which naviga-
ble view in Ot to go towards, i.e., at ∈ Ot. After
selecting an action, the state transitions from St to
St+1. The aim is to output the command STOP after
reaching the goal G specified by U in state S0.

The standard approach in R2R is to process
the panoramic images {It,0, ..., It,V } with a pre-
trained visual encoder Ev to extract continuous vi-
sual features Ft,v = {Ev(It,0), ..., E(It,V )}. The
language instruction is typically processed by a
pretrained language encoder El (e.g., BERT (De-
vlin et al., 2019)) to extract the language features
Fl = El(U). These features, along with a hidden
state representation of the trajectory history ht−1,
are fed to a joint vision-language module (e.g., an-
other Transformer) that attends over {It,0, ..., It,V }
to select the action at.

3 Language as a Perceptual
Representation for Navigation

We begin by describing the perception-to-text mod-
els employed for converting visual observations
into text (§ 3.1). We then discuss the prompt tem-
plates for converting the text into natural language
(§ 3.2), followed by a description of the offline
imitation learning algorithm for learning (§ 3.3).

1In R2R this can be as many as 36 (12 headings and 3
elevations). However we follow previous works only consider
the navigable views, which is often many fewer than 36.
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3.1 Vision-to-text System
We use off-the-shelf vision models to convert visual
observations into language descriptions. Specifi-
cally, we use an image captioning model (BLIP; Li
et al., 2022a) and an object detection model (De-
formable DETR; Zhu et al., 2020) over each view
angle It,j to obtain the text descriptions,

Ct,j = IMAGECAPTIONER(It,j),

xt,j,0, . . . , xt,j,M = OBJECTDETECTOR(It,j),

where M is the number of detected objects.2

3.2 Prompt Templates
Figure 1 illustrates how the image caption and
the detected objects are combined via templates
to construct pieces of text on which to condition
the language model. Based on the prompt tem-
plate, the language model will be finetuned on
the (language representations of) output actions
{a1, . . . , aT }. We briefly describe the prompt tem-
plate (see appendix G for a full example).

Task description D. The task description is
given by:

You are a navigation agent who must
navigate according to instructions given
only descriptions of your current [...].

Navigation instruction U . The navigation in-
struction, which provides instructions to the agent
on how to reach the goal, can be from R2R (our
main dataset), synthesized by GPT-4 (for data aug-
mentation), or ALFRED (for domain transfer). An
example instruction from R2R is:

Travel forward past the wall with all
the light switches and into the first
room on your right.

Current observation Ot. We use templates to con-
vert the image caption Ct,j and objects obtained
xt,j,0, · · · , xt,j,M from It,j (§ 3.1). For instance,
if the agent is facing a heading of 90 degrees and
an elevation of 0 degrees and there is a candidate
navigable direction It,j located at a heading of 120
degrees and an elevation of 0 degrees, the text de-
scription for this view angle would be:

2We did not experiment much with different off-the-shelf
vision systems and quickly converged on these two models
which seemed to produce reasonable results. Since LangNav
separates perception from navigation, we expect that advances
made in perception (e.g., through better captioning systems)
will automatically result in improvements to our system, which
is a nontrivial advantage of our approach compared to systems
that entangle perception and navigation into a single model.

To your 30 degree right is “{Ct,j}”.
Details: {xt,j,0}, . . . , {xt,j,M}.

We create such templates for all the navigable view
angles {It,0, . . . , It,V }.

Action at. Selecting an action involves choosing
a navigable view out of Ot to move towards, i.e.,
at ∈ Ot. For example, suppose at = It,j , i.e., the
agent decided to go to the j-th view angle. Then
this is recorded as:

You go towards: “{Ct,j}”

To actually have the agent generate at we
simply decode from an LM’s distribution,
pLM(· |D,U,Ht, Ot), via greedy decoding. Here
Ht = {Oi, ai}t−1

i=0 encodes the observation and ac-
tion trajectory.3

Updating trajectory history Ht. We update the
observation and action trajectory history via ap-
pending the text representations of Ot and at to Ht:

Step {t}: To your {direction_1} is
{caption_1}; To your {direction_2}
is {caption_2}; [...]; You chose:
{caption_of_selected_direction}.

This history serves to inform the model about its
current position within the high-level instruction,
enabling it to make more informed decisions when
selecting actions.

3.3 Imitation Learning on Demonstrations
We create an instruction-following dataset
by transforming the expert trajectory from
the original dataset into instruction-following
demonstrations. Formally, let D = {W (i)}Ni=1

be the set of training trajectories, where each
W (i) can be represented as a natural lan-
guage sequence from the above template, W (i) =

(D(i), U (i), H
(i)
1 , O

(i)
1 , a

(i)
1 , . . . ,H

(i)

T (i) , O
(i)

T (i) , a
(i)

T (i)).
Here T (i) is the number of actions in the example
W (i), which is typically between 5 to 7. Given
the above, we optimize the log likelihood of
the (language descriptions of) actions, i.e.,
the objective for trajectory W (i) is given by,∑T (i)

t=1 log pLM(a
(i)
t |D(i), U (i), H

(i)
t , O

(i)
t ).

While behavior cloning on gold trajectories is
simple, it is prone to error propagation. In particu-
lar, the history trajectory is obtained by a shortest-
path algorithm (which has knowledge of the goal)

3In general we found the finetuned LM to have no is-
sue generating from the set of navigable directions (i.e.,
{Ct,0, . . . , Ct,V }) without constrained decoding.
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I am going to give you example instructions [……]. 
- {real_instruction_1}
- {real_instruction_2}
- {real_instruction_3}
Your goal is to write 10 more instructions like the 
above [……] make sure that the instruction can be 
completed by an agent in 5 to 7 steps.

Phase I: Prompting GPT-4 to generate instructions

1. {synthetic_instruction_1}
[……]
9. {synthetic_instruction_9} 
10. Enter the living room through [……] locate the 
large bookshelf.

GPT-4 API

random
sampling

Phase II: Prompting GPT-4 to generate the trajectory

Here is an example of [……] following template: To your [VIEW] is [CAPTION], where [……]
#Example 1
### Instruction: Go to the right of the entrance, [……]
### Trajectory: Step 1: To your [……]
Now I will give you another instruction. Please generate a trajectory [……]
#Example 2
### Instruction: Enter the living room through [……] locate the large bookshelf.

CLIP feature
matching

### Trajectory:
Step 1:
To your straight ahead is, a living room with a sofa, coffee table, and a television
To your 30 degree left is, [……]
You chose: [a living room with a sofa, coffee table, and a television]
[… More Steps …]

GPT-4 API
GPT-4 response

GPT-4 prompt GPT-4 prompt
GPT-4 response

Figure 2: Pipeline for generating synthetic navigation trajectories from GPT-4. We first prompt GPT-4 with 3
randomly sampled navigation instructions U to generate 10 more synthetic navigation instructions (Phase 1). Then
for each generated navigation instruction, we prompt GPT-4 to generate the trajectory that fulfills the generated
instruction (Phase 2). See appendix H for details.

and thus adheres closely to an optimal policy π∗.
However, during prediction, trajectories can devi-
ate significantly from the optimal policy, leading
to a distribution shift that can adversely affect per-
formance. To allow for the policy to recover from
deviations from the optimal path, we adopt the
following strategy to create our imitation learning
dataset: (1) at each time step, we sample a random
action with probability ρ; (2) once a random action
is selected, we use the shortest-path algorithm to
obtain the ground truth next action; (3) we repeat
this process until the goal is reached; (4) once the
goal is reached, this becomes part of the training
demonstration data. (See appendix F for details.)

4 Empirical Study

Our primary experiments with LangNav target the
low-data setting, motivated by the observation that
obtaining annotated data for embodied tasks such
as vision-language navigation can be very costly
(often more so than is the case for text-only or
vision-only tasks). Specifically, we are interested
in learning the most performant system based on a
small number (10 or 100) of in-domain seed navi-
gation trajectories. We sample our seed trajectories
from the Room-to-Room (R2R) dataset (Ander-
son et al., 2018b), a popular vision-and-language
navigation dataset consisting of 21,567 navigation
instructions in the Matterport3D environment. The
dataset includes 90 scenes, with 61 scenes in the
train and validation “seen” sets, and 11 scenes in
the validation “unseen” set. Our 10-shot dataset
is randomly sampled the train set within 1 scene,
while our 100-shot dataset spans 2 scenes.

Evaluation. To contextualize our approach
against prior work, we evaluate LangNav on both
“seen” and “unseen” sets from R2R. The “seen” set
contains scenes identical to the training set (but
the instructions and trajectories differ). However,
this distinction is less important for our low-data
regime, since we only make use of 1 scene (for the
10-shot case) or 2 scenes (for the 100-shot case).
I.e., the majority of scenes in the “seen” validation
subset are actually never seen by the agent.

We use the standard R2R task performance met-
rics (Anderson et al., 2018a): Navigation Error
(NE), the average distance between the agent’s final
position and the goal in meters; Success Rate (SR),
the ratio of trajectories in which the agent stopped
within 3 meters of the goal; Oracle Success Rate
(OSR), the ratio of trajectories in which the agent
stopped within 3 meters to the goal with a view of
the goal; and Success weighted by the normalized
inverse of the Path Length (SPL).

4.1 Case Study 1: Language Enables Efficient
Synthetic Data Generation

In NLP, obtaining synthetic data from an appro-
priately prompted large LM with which to learn
a smaller model has been shown to be an effec-
tive approach in data-scarce settings (Wang et al.,
2021; Lang et al., 2022; Taori et al., 2023; Dai et al.,
2023; Gunasekar et al., 2023, inter alia).4 However,
this approach is difficult to extend to non-linguistic
perceptual tasks such as VLN since generating re-
alistic perception data is itself difficult. In our first
case study, we show that working in pure language
space makes it possible to easily generate synthetic

4However see Gudibande et al. (2023) for a critical discus-
sion of this approach.
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Step 1:
To your straight ahead is, 
a bright living room with a comfortable sofa and a 
coffee table
To your 60 degree right is,
a kitchen with modern appliances and a countertop
To your back is, 
a dining area with a large table and chairs
To your 90 degree left is, 
a hallway with framed pictures on the wall
You chose:
[a hallway with framed pictures on the wall]

Instruction:
Enter the hallway and follow it 
until you see a door with a 
potted plant nearby. Enter the 
room and locate the bookshelf. 
Stop next to the bookshelf.

Step 3:
To your 30 degree left is, 
a door with a potted plant beside it
To your 90 degree left is, 
a small office with a desk and a computer
To your straight ahead is, 
the end of the hallway with a window
To your back is, 
a hallway with picture frames on the wall
You chose:
[a door with a potted plant beside it]

Step 2:
To your 90 degree left is, 
a cozy bedroom with a neatly made bed
To your 60 degree right is, 
a bathroom with a sink, mirror, and a bathtub
To your straight ahead is, 
a long hallway with doors on both sides
To your back is,
a living room with a sofa and a coffee table
You chose:
[a long hallway with doors on both sides]

Step 4:
To your 60 degree right is, 
a large bookshelf filled with books and decorations
To your back is, 
a hallway with a potted plant by the door
To your 30 degree left is, 
a cozy lounge area with a sofa and a coffee table
To your 90 degree left is, 
a home office with a desk, chair, and a computer
You chose:
[a large bookshelf filled with books and decorations]

Step 5:
To your 90 degree right is, 
a window with a view of the backyard
To your straight ahead is, 
a bookshelf with various items and books
To your back is, 
an entrance with a potted plant and a door 
leading to the hallway
To your 150 degree left is, 
a comfortable lounge area with a sofa and a 
coffee table
You chose: [Stop]

Figure 3: An example of a generated trajectory from GPT-4. The example demonstrates a generated trajectory by
following the pipeline in Figure 2. See more examples in appendix K.

data from a large LM based on a few seed trajec-
tories. We further show that finetuning a smaller
LM on a mixture of synthetic and R2R trajectories
improves upon vision-based models.

Synthetic trajectory generation. We generate
synthetic trajectories by using only the 10 R2R
trajectories from a single scene. In R2R each tra-
jectory has 3 navigation instructions given by 3
different annotators. Thus we have 30 navigation
instructions {U (i)}30i=1 in total. Our data genera-
tion pipeline can be divided into two phases. In
phase 1, we randomly choose 3 R2R instructions as
prompt examples and ask GPT-4 to create 10 more
instructions similar to the examples, as shown in
Figure 2. In phase 2, for each generated instruction,
we prompt GPT-4 to generate a trajectory to fulfill
the instruction, conditioned on a real demonstra-
tion instruction and trajectory. The real trajectory is
obtained by selecting the trajectory whose instruc-
tion is closest to the synthetic instruction based on
the CLIP (Radford et al., 2021) text features. See
Figure 2 for an overview and appendix H for the
prompts.5

We present an illustrative example in Figure 3 to
demonstrate some qualitative characteristics of gen-
erated trajectories. We find that the generated tra-
jectories have: strong real-world priors, i.e., they

5We cannot entirely rule out the possibility that the GPT-4
training set included the text instructions seen in R2R. How-
ever, while the text instructions may have been encountered,
the trajectories were unlikely to have been encountered during
pretraining since we used vision systems to obtain the caption-
s/objects. Out of the 10,000 generated instructions, we did not
find any instructions that were in the actual R2R dataset.

exhibit adherence to real-world room-object and
object-object correlations, as evident from descrip-
tions like “a bathroom with a sink, mirror,
[...]”; spatial consistency, where the examples
maintain spatial consistency within the generated
trajectories—for instance, in Step 4, the gener-
ated position identifies the door with a potted plant,
consistent with its position in Step 3; and rich
descriptions—the generated trajectories have de-
scriptive captions and objects that do not only relate
to the given instruction, which makes it possible to
successfully navigate through language only.

Experimental setup. We compare LangNav,
which is a LLaMA2-7b model finetuned on a mix-
ture of the 10,000 synthetic trajectories and 10/100
real trajectories, against the following baselines:
1. Random walk, which selects a random action at
each time step; 2. GPT-4 (Zero-shot / Few-shot),
where we prompt GPT-4 to complete the trajectory
by changing the task description of the template in
§ 3.2 (see appendix I for the full prompt). For the
few-shot baseline, due to the context length we use
one full navigation trajectory as a demonstration
example; 3. NavGPT, a recent work that also uses
language as a perceptual representation (via image
captioning and object detection) to perform naviga-
tion, but purely with GPT-4 (Zhou et al., 2023a);
4. RecBert, a vision-based method that adopts a re-
current architecture proposed by Hong et al. (2021)
to keep track of the trajectory history; 5. DuET,
another vision-based method which additionally
builds representations of the global map during
learning (Chen et al., 2022); and 6. LLaMA2-7B, a
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Methods # real Val Seen Val Unseen
NE↓ OSR↑ SR↑ SPL↑ NE↓ OSR↑ SR↑ SPL↑

Random Walk 0 10.2 5 3 1 9.5 6 3 2
LLaMA2-7B (Zero-shot) 0 10.2 0 0 0 9.5 0 0 0
GPT-4 (Zero-shot) 0 10.5 15 9 8 10.2 17 10 8
GPT-4 (Few-shot) 1 10.1 17 10 9 9.9 22 13 11
NavGPT (Zhou et al., 2023a) 0 - - - - 6.5 42 34 29

RecBert (Hong et al., 2021) 10 10.8 9 7 6 10.1 13 9 9
DuET (Chen et al., 2022) 10 10.0 21 14 12 9.9 20 12 11
LLaMA2-7B 10 10.2 15 11 10 9.6 16 11 9
LangNav (with LLaMA2-7B) 10 7.5 39 31 27 7.0 42 32 28

RecBert (Hong et al., 2021) 100 9.3 27 20 19 9.4 26 19 17
DuET (Chen et al., 2022) 100 9.2 31 21 18 9.4 32 23 19
LLaMA2-7B 100 9.6 29 21 18 9.1 30 19 17
LangNav (with LLaMA2-7B) 100 7.4 40 32 28 7.1 45 34 29

Table 1: Results on the R2R dataset with 10 or 100 real world trajectories. LangNav finetunes LLaMA2-7B on the
mixture of the real-world trajectories and 10,000 synthetic trajectories from GPT-4.

# synthetic data Data-generating LM # seed scenes NE↓ OSR↑ SR↑ SPL↑
2,000 GPT-3.5 10 9.8 31.0 15.6 12.2
2,000 GPT-4-turbo 1000 8.1 42.9 24.9 19.6

500 GPT-4 10 8.0 38.2 24.5 20.6
2,000 GPT-4 10 7.0 42.2 31.1 26.6
10,000 GPT-4 10 7.0 41.9 31.6 27.5
2,000 + 2,000 GPT-4 + GPT-4-turbo 10 + 1000 7.1 43.2 32.6 28.3

Table 2: Performance on the R2R val unseen set as we vary the number of synthetically generated data, the
underlying LM from which the synthetic data is generated, and number of seed scenes. Here the seed scenes refer to
the scans from which trajectories are sampled, with multiple trajectories originating from each seed scene.

language-only baseline that does not make use of
the synthetic data from GPT-4.

All finetuning methods use the same set of
10/100 trajectories. For these experiments, we
did not find significant differences in performance
when using the object detection module, and hence
we only relied on the image captioning system to
give the language description of each view angle
in the prompt template. See appendix A for the
training setup including hyperparameters.

Results. The results are shown in table 1. We find
that our GPT-4 zero- and few-shot results underper-
form the NavGPT baseline despite using the same
backbone model, potentially due to NavGPT’s use
of ground truth distance information and chain-of-
thought prompting (Wei et al., 2022; Kojima et al.,
2023). Just finetuning LLaMA2-7B on the 10/100
gold trajectories does not perform well, although it
is comparable to the vision-based policies. Train-
ing on a mixture of synthetic and R2R trajecto-
ries improves performance by a nontrivial margin,
and the LLaMA2-7B-based LangNav approaches

the performance of NavGPT despite being many
times smaller, indicating the effectiveness of our
pipelined prompting strategy for distilling the rich
navigation-relevant world knowledge within GPT-4
to a smaller (and more efficient) language model.6

Ablation study. In table 2 we vary both the num-
ber of synthetic trajectories and the data-generating
LM. Switching the synthetic data source from GPT-
4 to GPT-3.5/GPT-4-turbo results in noticeable
declines, highlighting the importance of using a
strong LM. Increasing the number of synthetic tra-
jectories increases performance, although the gains
are marginal when going from 2,000 to 10,000 tra-
jectories. This is potentially due to the use of only

6While we still underperform NavGPT, the performance
gap is relatively narrow—within 1% in terms of SPL. We ob-
serve that NavGPT employs object information filtered by a
ground-truth depth map, limiting the data to objects within
a 3-meter range. Such filtering is important to mitigate the
redundancy and noise often associated with unfiltered object
information (i.e., often too many irrelevant objects are de-
tected). As highlighted in the NavGPT paper, this selective
use of object information is important for achieving good
performance.
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Methods Pretraining R2R Val Seen Val Unseen
Data data NE↓ OSR↑ SR↑ SPL↑ NE↓ OSR↑ SR↑ SPL↑

R2R
10 10.8 9 7 6 10.1 13 9 9
100 9.3 27 20 19 9.4 26 19 17
0 9.5 12 8 4 9.0 12 7 3
10 10.8 11 7 6 10.7 13 9 7

RecBert
ALFRED

100 9.9 22 18 17 10.2 23 15 14

None
10 10.3 17 10 8 9.8 20 11 8
100 9.0 25 20 18 9.2 25 17 15
0 9.2 20 17 15 8.9 24 18 16
10 8.7 20 19 18 8.3 21 18 17

LangNav
ALFRED

100 8.1 29 25 24 8.0 29 24 22

Table 3: Domain transfer results where we pretrain a navigation agent on the simulated ALFRED environment
(which uses rendered images) and finetune on the real-world R2R environment. We use LLaMA-7B (Touvron et al.,
2023a) as our backbone model, and compare against the RecBert (Hong et al., 2021) baseline.

10 real trajectories from a single scene to prompt
LLMs which results in lack of instruction diver-
sity (see examples in appendix E). To investigate
the influence of the scene diversity, we use 1,000
navigation instructions sampled from various R2R
scenes to prompt GPT-4-turbo7 to generate 2,000
additional synthetic trajectories. We can see that
although the 2,000 trajectories generated by GPT-4-
turbo are not of the same quality as those generated
by GPT-4, scaling up using these trajectories out-
performs the results from the 10,000-trajectory set.

4.2 Case Study 2: Language as a Bridge for
Domain Transfer

We next experiment with using language as a
domain-invariant representation space to transfer a
policy that has been trained on a different (ren-
dered) environment (ALFRED; Shridhar et al.,
2020), to the real-world R2R environment. There
are significant differences between ALFRED and
R2R which makes straightforward domain transfer
challenging. ALFRED uses images rendered from
the synthetic AI2THOR environment (Kolve et al.,
2017), while R2R, based on the Matterport3D, in-
corporates images captured from real indoor envi-
ronments. ALFRED’s navigation trajectories and
instructions are also simpler and shorter compared
to R2R’s instructions: R2R instructions involve
guiding the agent between rooms, whereas AL-
FRED trajectories mainly keep the agent within a
single room and provides instructions for house-
hold tasks. Finally in ALFRED, the agent is limited
to rotating left/right by 90° and moving forward,

7We chose GPT-4-turbo for its lower cost.

while in R2R, the agent can move in any combi-
nation of 12 candidate heading directions and 3
elevation directions. See appendix B for detailed
discussion of these differences, and see appendix A
for the experimental setup.

Results. We pretrain both RecBert (Hong et al.,
2021)8 and LangNav on the simulated ALFRED
environment and finetune on 0/10/100 R2R tra-
jectories with object information. LangNav uses
LLaMA1-7b (Touvron et al., 2023a) as the lan-
guage model. The evaluation results for both meth-
ods are presented in table 3. Interestingly, for
RecBert, pretraining on ALFRED actually hurts
performance, potentially due to the model’s over-
fitting to the idiosyncracies of the rendered envi-
ronment. And without any R2R data, RecBert per-
forms at near chance, whereas LangNav is able to
exhibit some level of zero-shot transfer. Pretrain-
ing in ALFRED consistently leads to performance
improvements for LangNav.

4.3 Case Study 3: Combining Language and
Vision Representations

Our final case study explores whether language-
based perceptual representations can improve per-
formance on top of traditional continuous vision
features. This is motivated by the observation that
(1) in the full data setting, LangNav still underper-
forms the state-of-the-art approaches which rely on
pure vision features (see table 5 of appendix C),

8Given that RecBert (Hong et al., 2021) has similar per-
formance to DuET (Chen et al., 2022) in the few-shot setting
according to table 1, we choose RecBert to be the baseline
because it is simpler and does not require a topological map.
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Step 1 Step 2 Step 3

History steps

Instruction: Turn 180 degrees away from the television. 
Walk towards the top of the stairs. Walk down the stairs. 
Go through the doorway at the bottom of the steps. Turn 
right and walk into the first part of the room. Wait next to 
the sitting area across from the china closet.

Example # 1

To your straight ahead is, a hallway 
with a picture of a woman on the 
wall a set of stairs leading down to a 
gateway

candidate 1 (decision after editing)

To your back and 60 degree up is,
a set of stairs leading up to a 
window

candidate 2 (original decision)

Figure 4: Interpreting and editing a model’s predictions through language. At the beginning, the agent incorrectly
selected “candidate 2” to ascend the stairs. The failure might stem from the ambiguous interpretation of mistaking
the stairs for a hallway in “candidate 1”. After editing the description (marked in green), the agent correctly alters
its choice to walk down the stairs.

# Training Perceptual features SR↑ SPL↑
100 Vision only 19.0 17.4
100 Vision + language 19.3 18.0

Full train Vision only 47.1 43.4
Full train Vision + language 48.8 44.1

Table 4: Results when combining continuous visual fea-
tures with language features with RecBert. Evaluations
are conducted on R2R val unseen set.

and (2) realistic VLN scenarios would likely have
access to continuous vision features as well.

We extend the RecBert (Hong et al., 2021) by
concatenating language features to the visual fea-
tures to represent the candidate image view. Con-
cretely, the original RecBert uses ResNet-152 (He
et al., 2016) to extract the visual feature to repre-
sent each view; our extension simply concatenates
the caption representations (from BERT-base (De-
vlin et al., 2019)) to the image representation for
each view. We train this new model on both the
100-shot and the full training set case.

Results. The results are listed in table 4. We find
that language features improve the performance in
both 100-shot and full training set cases, which in-
dicates that language as a perceptual representation
can provide additional benefits on top of continu-
ous visual features, even in non-low-data settings.
This is potentially due to language serving as use-
ful prior for aspects of images that are salient for
navigation.

5 Discussion

Interpretability and editability through lan-
guage. Our use of language as a “bottleneck” per-

ceptual representation makes it possible to (more
easily) interpret and edit a model’s predictions.
As a qualitative case study, we inspect trajectories
where the model made a mistake and manually in-
spect the captions. We find that model mistakes are
generally due to incorrect or ambiguous captions.
We manually edit the captions to be correct, and
find that in many cases, this is able to change the
model’s predictions to be correct. See Figure 4 for
a concrete example. We applied this procedure to
10 randomly selected trajectories which contained
an error, and found that we were able to edit the
model’s decision to the correct one in 7 out of 10
trajectories. (For the other 3 trajectories, the failure
was not due to incorrect captions).

Disentangling vision and language models.
One the one hand, LangNav’s use of a vision
pipeline might seem like a step back from pure
deep learning-based approaches which generally
favor learning everything “end-to-end”. On the
other, the disentangling of the image module from
the language module means our approach can read-
ily make use of independent advances in vision and
language models. This might become especially
important given the recent trend in only providing
API access to state-of-the-art language models.

Non-standard navigation environments. Our
main experiments are on the R2R benchmark,
which is realistic insofar as it makes use of real
household environments. Another testbed for Lang-
Nav would be environments that lack existing
datasets, such as offices or supermarkets. While
the lack of existing benchmarks precludes our test-
ing of LangNav on such non-standard environ-
ments, we performed a preliminary study where
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we tried generating synthetic trajectories from an
office environment. We show an example in ap-
pendix J, where we find that GPT-4 is able to
generate synthetic trajectories that contain com-
mon object-scene correlations in office environ-
ments and moreover exhibit great spatial consis-
tency. Testing language as a perceptual representa-
tion in a variety of environments remains an inter-
esting avenue for future work.

6 Related Work

Language Models for Task Planning. Several
studies have explored language-based planning
(Jansen, 2020; Sharma et al., 2021; Li et al., 2022b;
Huang et al., 2022a; Ahn et al., 2022; Huang et al.,
2022b). Huang et al. (2022a) use GPT-3 (Brown
et al., 2020) and Codex (Chen et al., 2021a) for
action plan generation with semantic translation
using Sentence-RoBERTa (Huang et al., 2022a).
SayCan (Ahn et al., 2022) grounds actions using
FLAN (Wei et al., 2021) and action value functions
(Shah et al., 2021). Huang et al. (2022b) explore
incorporating grounded feedback into LLMs, while
Xiang et al. (2023) propose enhancing LLMs’ with
embodied task instructions.

Instruction Tuning. There has been much re-
cent work finetuning smaller language models such
as LLaMA on synthetic instruction-following data
generated by GPT-3.5/GPT-4 (Peng et al., 2023;
Taori et al., 2023; Chiang et al., 2023; Wu et al.,
2023). Existing works have generally focused on
traditional language tasks. Our work instead fine-
tunes LMs for embodied navigation tasks using
language descriptions.

Vision-and-Language Navigation. There has
been much work on vision and language navigation
on the R2R dataset (Anderson et al., 2018a). Ap-
proaches such as the speaker-follower model (Fried
et al., 2018) and environmental dropout method
(Tan et al., 2019), reinforced cross-modal match-
ing (Wang et al., 2019), and self-monitoring (Ma
et al., 2019) have been proposed. Recent advance-
ments include VLBERT-based methods (Hong
et al., 2021) and object-informed sequential BERT
(Qi et al., 2021). Qiao et al. (2022) incorporate ad-
ditional pretext tasks into VLN pre-training based
on Hong et al. (2021). ALFRED (Shridhar et al.,
2020) involves interactive actions in a synthetic
environment (Kolve et al., 2017), with methods uti-
lizing dense single vector representations (Shridhar

et al., 2020; Singh et al., 2021; Pashevich et al.,
2021; Kim et al., 2021; Blukis et al., 2022) or a
panoramic view space (Suglia et al., 2021). CLIP-
Nav (Dorbala et al., 2022) explores the zero-shot
VLN with CLIP while Kurita and Cho (2020) pro-
poses a generative language model-based naviga-
tion approach. For instruction synthesis, Nguyen
and Daumé III (2019) and Thomason et al. (2020)
studies rule-based instruction synthesis in Matter-
port3D environment. Finally, our work is closely
related to Zhou et al. (2023a) and Schumann et al.
(2023), which also use language descriptions of an
agent’s perceptual representation to perform navi-
gation with an LM.

7 Conclusion

We show that we can learn to navigate in a real-
world environments by using language as a percep-
tual representation. Language naturally abstracts
away low-level perceptual details, which we find
to be beneficial for efficient data generation and
sim-to-real transfer. However, this is also a seri-
ous limitation insofar as a picture really is worth a
“thousand words” in some cases; we are certainly
not suggesting the abandonment of traditional (con-
tinuous) vision features for vision-language naviga-
tion. But our case studies nonetheless demonstrate
the promise of language as a perceptual representa-
tion for vision-language navigation.

Limitations

While we find that LangNav is promising in set-
tings where only a handful of real trajectories
are available, on the full dataset it still underper-
forms vision-based agents by a nontrivial margin,
as shown in table 5 of appendix C. This is espe-
cially true when compared to state-of-the-art ap-
proaches such as ScaleVLN (Wang et al., 2023)
which make use of large-scale pretraining data
as well as more involved imitation/reinforcement
learning algorithms that require access to an envi-
ronment oracle. However, we note that while Lang-
Nav underperforms baselines in data-rich regimes,
it overfits less to scenes seen during training, as
demonstrated by the smaller drop in performance
when applying the policy to unseen scenes during
training.
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A Implementations Details

We used the LLaMA-7B model (Touvron et al.,
2023a) and the LLaMA2-7B model (Touvron et al.,
2023b) for our method, fine-tuning it on 72 V100-
32GB GPUs with a batch size of 144. The training
tokens had a maximum length of 1024, while dur-
ing inference, the maximum length was set to 2048.
The AdamW optimizer (Loshchilov and Hutter,
2017) with a learning rate of 2× 10−5 and weight
decay of 0 was employed for optimization. The
WarmupDecayLR learning rate scheduler was used
for learning rate scheduling. For image caption-
ing in both the R2R and ALFRED tasks, BLIP (Li
et al., 2022a) was utilized. Deformable DETR (Zhu
et al., 2020) was used for object detection in the
R2R dataset, with suppression of outdoor object
categories. We used the ground-truth object detec-
tion results provided in ALFRED when we gener-
ated the instruction-following pairs in § 4.2. When
prompting GPT-4 / GPT-4-turbo / GPT-3.5 API,
we set the temperature as 1 and top_p as 1. The
cost of collecting the generated 10,000 trajecto-
ries by prompting GPT-4 API (OpenAI, 2023) was
around $500. In the few-shot learning experiments
in § 4.1 and § 4.2, we set ρ = 0. While when
fine-tuning with the full train set in appendix D,
we set ρ = 0.2. We pretrain on 128K ALFRED
instruction-following pairs whose format is given
in § 3.2. We augment the observations in ALFRED
to 12 views and randomly mask a variable number
of views to mimic the irregular number of candi-
dates in R2R. The RecBERT baselines in table 1,
table 3, and table 4 are pre-trained on 10/100 tra-
jectories from R2R with masked language mod-
eling (MLM) and single action prediction (SAP)
tasks (Hao et al., 2020). The DUET baselines
in table 1 are pre-trained on 10/100 trajectories
with MLM, SAP, and masked region classification
(MRC) tasks (Chen et al., 2022).

B Differences between ALFRED and
R2R.

The primary cause of the vast difference between
ALFRED and R2R lies in their environmental ren-
dering: ALFRED utilizes images from the syn-
thetic AI2THOR environment (Kolve et al., 2017),
whereas R2R, drawing from the Matterport3D
database, features images from actual indoor en-
vironments. We summarize the differences in the
following aspects:

Visual appearance. ALFRED uses images ren-

dered from the synthetic AI2THOR environment,
while R2R, based on the Matterport3D, incorpo-
rates images captured from real indoor environ-
ments. These image sources differ in texture, oc-
clusion, illumination, and other visual aspects.

Step size. There is a difference in step sizes
between the two tasks (see the right part of fig. 5).
ALFRED uses a step size of 0.25 meters, while
R2R has larger and more variable step sizes. To
bridge this gap, we consolidate four consecutive
MoveAhead steps into a single step along the AL-
FRED trajectory.

Action type. A complete ALFRED trajectory
includes not only navigation actions but also in-
teraction actions, where the interaction actions are
combined with a target object to change the state
of the surrounding environment. In order to filter
the interaction actions in ALFRED, we divide each
ALFRED trajectory into multiple sub-trajectories
and keep the sub-trajectories that are labeled with
the GotoLocation tag.

Instruction complexity. Due to trajectory split-
ting, ALFRED’s navigation trajectories and instruc-
tions appear simpler and shorter compared to R2R’s
instructions. R2R instructions involve guiding the
agent between rooms, whereas ALFRED trajecto-
ries mainly keep the agent within a single room.

Action space. In ALFRED, the agent is limited
to rotating left/right by 90° and moving forward,
while in R2R, the agent can move in any combina-
tion of 12 candidate heading directions and 3 eleva-
tion directions. The number of available movement
directions is irregular. This difference in action
space makes R2R trajectories more human-like. To
address this, we introduce randomness by adding or
reducing a heading offset of ±30° to the agent’s di-
rection at each step in ALFRED, allowing rotations
of 30° or 60° in addition to 90°.

C Performance on full data

In Table 5 we show the performance of LangNav
on the full dataset, as well as comparisons against
the state-of-the-art. While we find that LangNav is
promising in settings where only a handful of real
trajectories are available, on the full dataset it still
underperforms vision-based agents by a nontrivial
margin. This is especially true when compared
to state-of-the-art approaches such as ScaleVLN
(Wang et al., 2023) which make use of large-scale
pretraining data as well as more involved imita-
tion/reinforcement learning algorithms that require
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Appearance

ALFRED R2R

Step Size

ALFRED

R2R

t = T - 1 t = TComplexity of Instructions

ALFRED: Carry the bowl to the glass coffee table.

R2R: Go to the left of the bed and out of the 
bedroom. Then go down the hall and make a right 
at the top of the stairs, go past the stairs and go a 

couple steps into the bedroom and wait there.

Figure 5: Task gap between ALFRED and R2R. We highlight notable distinctions between the navigation tasks in
ALFRED and R2R, encompassing variations in appearance, step size, and instruction complexity. See appendix B
for more details.

access to an environment oracle during training.
However, we note that while LangNav underper-
forms baselines in data-rich regimes, it overfits less
to scenes seen during training, as demonstrated by
the smaller drop in performance when applying the
policy to unseen scenes during training.

D Multi-Task Performance

One of the advantages of our approach is its inher-
ent suitability for multitasking. Similar to LLMs
use instruction to handle multiple language tasks
concurrently, we consolidate task information and
inputs into instructions. To validate the multitask-
ing capability of our method, we extend its applica-
tion to the ALFRED task.

Metrics on ALFRED. We evaluate our model on
ALFRED using two metrics: Task Success (Task)
and Goal-Condition Success (GC). Task Success
measures the ratio of trajectories where object po-
sitions and state changes accurately match all task
goal conditions at the end. GC assesses the ratio of
completed goal conditions in each action sequence.
Task Success is only considered successful when
GC is also 1. On average, each ALFRED task has
2.55 goal conditions. We also calculate the Path
Length Weighted Metrics (PLW) for both Task and
GC, which normalize the metrics based on the actual
action sequence length.

Results of the Multi-Task Model. In ALFRED
task, we set ρ = 0 as the expert policy in ALFRED
is suboptimal. To save training time and balance

the data amount between R2R and ALFRED, we
utilize only 50% of the training dataset, resulting
in a dataset for ALFRED with 386K data pairs. For
R2R task training, we maintain ρ = 0.2 and run
each demonstration trajectory twice, resulting in a
training set size of 235K for R2R. Consequently,
the merged dataset for the multitask model contains
a total of 621K instruction-following data pairs. We
select VLN Bert (Hong et al., 2021) as the base-
line for the R2R task and Seq2seq model (Shridhar
et al., 2020) for the ALFRED task. Given the sub-
stantial differences between the R2R task and the
ALFRED task (§ 4.2), our method is, to the best
of our knowledge, the first model that simultane-
ously addresses these two tasks. In table 6 and
table 7, we find that the multitask model exhibits
superior performance compared to the single-task
models. These results underscore the capability of
our method to effectively handle multiple highly
diverse tasks.

E Bias of generated navigation
instructions

We list four generated instructions from one output
of GPT-4 with 10 seed trajectories as we mentioned
in § 4.1 as bellow:

Examples of generated instructions

1. Start from the main entrance door, pass
the living room, and enter the kitchen on
your right. Locate the refrigerator, then
turn left and stop just before the dining
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Method Training data Needs Oracle Val Seen Val Unseen Drop

Seq2Seq (SF) (Anderson et al., 2018b) R2R No 38.6 21.8 16.8
RCM (Wang et al., 2019) R2R Yes 67.4 42.5 24.9
Speaker-Follower (Fried et al., 2018) R2R+SpeakerAug. Yes 70.1 54.6 15.5
RecBert† (Hong et al., 2021) R2R+PREV Yes 71.8 54.5 17.3
HAMT (Chen et al., 2021b) R2R+PREV Yes 75.0 65.7 9.3
ScaleVLN (Wang et al., 2023) R2R+PREV No 67.2 47.4 19.8
ScaleVLN (Wang et al., 2023) R2R+PREV Yes 76.9 72.9 4.0
ScaleVLN (Wang et al., 2023) R2R+PREV+ScaleVLN No 71.1 57.0 14.1
ScaleVLN (Wang et al., 2023) R2R+PREV+ScaleVLN Yes 80.5 78.1 2.4

LangNav R2R No 55.0 43.2 11.8
LangNav (M) R2R+ALFRED No 55.9 45.6 10.3

Table 5: Comparison with state-of-the-art vision-based methods on the R2R dataset when trained on the full dataset.
We use success rate (SR) as the performance metric. “Needs oracle” indicates that the model needs to rely on an
oracle during training that can give the ground-truth next action based on a sampled path from the model.(M):
Multi-Task model.
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Figure 6: Investigating the Impact of the Randomness Factor ρ on Model Performance. This image caption depicts
an ablation study exploring the influence of the randomness factor ρ on our model’s performance in both few-shot
learning and full-set training scenarios. We test ρ with values of 0.0, 0.1, 0.2, and 0.3.

Table 6: Performance of the Multi-task Model on R2R.
We demonstrate the multi-task capability of the LM
agent. For single-task models, each model is trained
within the task data. We trained the multi-task model
with data from both R2R and ALFRED tasks.

Models R2R Seen R2R Unseen
SR↑ SPL↑ SR↑ SPL↑

Single-Task 55.0 51.0 43.2 37.9
Multi-Task 55.9 51.7 45.6 40.0

Table 7: Performance of the Multi-task Model on AL-
FRED. ST: Single-Task. MT: Multi-Task.

ALFRED Seen ALFRED Unseen
Task↑ GC↑ Task↑ GC↑

ST 0.0 (0.0) 6.0 (4.7) 0.5 (0.1) 9.5(7.8)
MT 0.0 (0.0) 6.4 (5.0) 0.6 (0.2) 9.8 (7.8)

table.

2. Navigate from the couch in the living
room, move towards the mantel, and then
stop next to the fireplace. Avoid any
furniture and obstacles on your path.

3. Begin at the foot of the bed in the
master bedroom. Walk forward and enter the
attached bathroom. Once you’re inside,
stop next to the bathtub.

4. Start in the family room, walk towards
the TV, then turn right and pass the
bookshelf. Stop when you reach the large
bay window overlooking the garden.

We can see from the above synthetic instructions
that (a) patterns of the synthetic instructions are
similar, which are like "Start from place A, go pass
place B, stop at place C", (b) scenes are limited to
the living area and a single floor, however, the R2R
tasks always require the agent navigating across
floors and in some non-living area.
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F Impact of the randomness factor

We conduct the ablation study to investigate the
impact of the randomness factor ρ on the model’s
performance in both few-shot learning and full-set
fine-tuning scenarios. Interestingly, we observe dif-
ferent behaviors of the model with varying ρ values
in these scenarios. Fig. 6 illustrates our findings.
In the 10-shot scenario, increasing ρ negatively
affected the model’s performance. However, in
the full-set scenario, the model achieved optimal
performance at ρ = 0.2.

G Example of the Full Trajectory

We plot an example of a full text-based trajectory
in R2R as we mentioned in § 3.2 as bellow:

Full R2R trajectory

Task description:

You are a navigation agent who must navigate
according to instructions given only descriptions
of your current position via natural language. The
natural language description is sometimes
incorrect.

Navigation instruction:

Go across the kitchen passed the pizza oven into
the next room. Stop just inside the bedroom.

Navigation trajectory:

Step 1:

( environment:)
To your 60 degree left is,
a kitchen with a stove, sink, and
refrigerator
Details: oven, bowl, dining table,
microwave, refrigerator
To your 30 degree left is,
a kitchen with white cabinets and a
white stove top oven
Details: oven, bowl, microwave,
potted plant, chair
To your 60 degree right is,
a living room filled with furniture
and a fire place
Details: couch, chair
To your back is,
a room with a bed and a painting on
the wall

You chose:

( navigation agent:)

a living room filled with furniture
and a fire place

Step 2:

( environment:)

To your 150 degree left is,
a kitchen with a stove top oven
sitting next to a counter
Details: oven, dining table,
microwave, refrigerator, chair
To your back is,
a kitchen with a wooden table and
white appliances
Details: oven, bowl, dining table,
microwave, refrigerator, apple,
couch, chair
To your 30 degree right is,
a living room with a couch a chair
and a window
Details: couch
To your 120 degree right is,
a dining room table with a bowl of
fruit on it
Details: chair, bowl, dining table
To your 150 degree right is,
a bowl of fruit sits on a wooden
table
Details: couch, chair, bowl, dining
table

You chose:

( navigation agent:)
a living room with a couch a chair
and a window

Step 3:

( environment:)
To your back is,
a kitchen with a table, chairs, and
stairs
Details: oven, dining table,
refrigerator, potted plant, chair
To your 150 degree right is,
a room with a table, chairs, and
stairs
Details: oven, chair, refrigerator,
dining table
To your straight ahead and 30 degree
down is,
a view of a hallway from the top of
stairs
Details: refrigerator
To your 90 degree right and 30 degree
up is,
a room with a staircase and a mirror
on the wall
Details: toilet

You chose:

( navigation agent:)
a view of a hallway from the top of
stairs

Step 4:

( environment:)
To your back and 60 degree up is,
a living room filled with furniture
and a ceiling fan
Details: oven, potted plant,
refrigerator
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To your 90 degree left and 30 degree
up is,
a living room with a couch and a
table
To your straight ahead and 30 degree
up is,
a bedroom with a bed and a mirror on
the wall
Details: bed

You chose:

( navigation agent:)
a bedroom with a bed and a mirror on
the wall

Step 5:

( environment:)
To your back is,
a hallway leading to a kitchen and
living room
Details: refrigerator, potted plant
To your 30 degree left is,
a room with a wooden door and a
mirror
To your straight ahead is,
a bedroom with a bed, dresser, mirror
and a ceiling fan
Details: potted plant, bed
To your 30 degree right is,
a bedroom with a bed and a ceiling
fan
Details: potted plant, bed
To your 60 degree right is,
a bedroom with a bed, dresser and
mirror
Details: potted plant, bed

You chose:

( navigation agent:)
stop

H Complete Prompt Template of
Generating Trajectories for GPT-4

We list our complete templates for prompting GPT-
4 to generate synthetic instructions (Phase I) and
synthetic trajectories to fulfill the instruction (Phase
II).

Phase I: Prompt template for generating synthetic
instructions

System prompt:
I am going to give you example instructions written
by humans to train a deep learning-based navigation
agent acting inside a home. These example
instructions are intended to be completed by the
navigation agent in 5-7 steps.

Few shot examples:

- {real_instruction_1}

- {real_instruction_2}
- {real_instruction_3}

User:

Your goal is to write 10 more instructions like
the above that can be used to train a navigation
agent. Since the navigation agent will be
navigating in different home environments, your
instructions should also be diverse and cover a
wide range of home environments and rooms.
You should make sure that the instruction can be
completed by an agent in 5 to 7 steps.

Phase II: Prompt template for generating syn-
thetic trajectories

System prompt:
Here is an example of a large language model acting
as a blind navigation agent in an indoor environment
through text descriptions. The agent is given an
instruction at the start and must follow the
instruction. At each time step, the agent is given
descriptions of its field of view via the following
template:

To your [VIEW] is [CAPTION]
- [VIEW] consists of the agent’s visible
field of view (e.g., 30 degrees right, 120
degrees left, etc.)
- [CAPTION] is the text description of
that view obtained from an image
captioning model

Few shot examples:

# Example 1
### Instruction:
{real_instruction_example}
### Trajectory:
{real_trajectory_example}

User:

Now I will give you another instruction. Please
generate a trajectory of 5-7 steps that would
complete the instruction.
# Example 2
### Instruction:
{synthetic_instruction}

I Prompts of Zero-shot and Few-shot
Navigation for GPT-4

Here we attach the the task description D in the
prompt template for prompting GPT-4 to navigate
in the R2R evaluation dataset.

Zero-shot

System prompt:
You are a navigation agent who must navigate
according to instructions given only descriptions of
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your current position via natural language. The
natural language description is sometimes incorrect.

User:

At each step, you will be given several
directions and captions for each direction. You
must choose one direction by printing only the
[caption_of_the_direction] or choose "Stop" if
you think the goal is reached.
For example:
Input:

To your [direction_1] is, [caption of
the direction_1].
......
To your [direction_N] is, [caption of
the direction_N].
You choose:
Output: [caption of the direction_3]
Hint: You should use the information inside the
instructions, history steps, and current
observations to make the decision.

Few-shot

System prompt:
You are a navigation agent who must navigate
according to instructions given only descriptions of
your current position via natural language. The
natural language description is sometimes incorrect.

User:

At each step, you will be given several
directions and captions for each direction. You
must choose one direction by printing only the
[caption_of_the_direction] or choose "Stop" if
you think the goal is reached.
For example:
Input:

To your [direction_1] is, [caption of
the direction_1].
......
To your [direction_N] is, [caption of
the direction_N].
You choose:
Output: [caption of the direction_3]

Few shot examples:

And here is an example trajectory:
### Instruction:
Go down the stairs. Turn right and go
down the hallway. Turn right and stand
near the fireplace.
### Trajectory:
Step 1:
To your straight ahead is,
an ornate doorway leading to another
room
To your 60 degree right is,
a red carpeted staircase leading to a
chandelier
To your 120 degree right is,

a room with a red carpet and a large
mirror
To your back and 30 degree down is,
a room with a red carpet and two windows
To your 120 degree left is,
a room with a red carpet and gold trim
You chose:
a room with a red carpet and gold trim
Step 2:
To your 150 degree right is,
a very ornate staircase in a house with
red and white striped chairs
To your back is,
a red carpeted hallway leading to a
staircase
To your 150 degree left is,
a hallway with a red carpet and a
chandelier
To your 120 degree left is,
a room with a red carpet and a
chandelier
To your 90 degree left is,
a room with a chandelier and two windows
To your 60 degree left is,
a room with a red carpet and a large
mirror
To your 30 degree right is,
a hallway with a red carpet and wooden
doors
You chose:
a hallway with a red carpet and wooden
doors
Step 3:
To your back is,
a hallway with a red carpet and a
chandelier
To your straight ahead is,
a hallway with a red carpet and a gold
ceiling
a hallway with a red carpet and a gold
ceiling
You chose:
a hallway with a red carpet and a gold
ceiling
Step 4:
To your 90 degree right is,
a living room with a chandelier and a
fireplace
To your 120 degree right is,
a room with a fireplace and a
chandelier in it
To your back is,
a hallway with a red carpet and gold
trim
To your 90 degree left is,
a room with a chandelier and a table in
it
To your 30 degree right is,
a living room with a chandelier and a
couch
You chose:
a living room with a chandelier and a
fireplace
Step 5:
To your straight ahead is,
a living room filled with furniture and
a fire place
To your 30 degree left is,
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a living room filled with furniture and
a chandelier
To your 150 degree right is,
a room with a chandelier and a table in
it
To your back is,
a hallway with a chandelier and a
mirror on the wall
To your 90 degree left is,
a living room filled with furniture and
a chandelier
You chose:
Stop

User:

Hint: You should use the information inside the
instructions, history steps, and current
observations to make the decision.
Now let’s start!

J Examples of Generated Trajectories in
Exotic Environments

To validate that LLMs can synthesize useful data
in more exotic environments, we conduct an ex-
periment where we handcraft a trajectory in a real
office environment and then prompt GPT-4 to gen-
erate synthetic trajectories within the scope of the
office environment. Here we first plot the language
trajectory we have sampled from a real office envi-
ronment. And then, we attach the generated trajec-
tories from GPT-4 to demonstrate the ability of a
strong LLM to generate trajectories in more exotic
environments.

Real-world trajectory

Navigation instruction:

Start from the pantry on your left, pass the board
room to enter the atrium. Go through the door to
get into the office area. Turn right at the first
corner, and then turn right to stop at the printer.

Navigation trajectory:

Step 1:

( environment:)
To your straight ahead is,
a long hallway with light on the
ceiling and a fridge on the left
To your 120 degree left is,
a lounge with a screen on the wall,
floor-to-ceiling winders, desks, and
many high chairs
To your 90 degree right is,
an auditorium with three big screens
and tiered seating facing the stage

You chose:

( navigation agent:)

a long hallway with light on the
ceiling and a fridge on the left

Step 2:

( environment:)
To your straight ahead is,
a long hallway with four posters on
the left leading to the atrium
To your back is,
a lounge with a sofa and a shelf
stocked with snacks

You chose:

( navigation agent:)

a long hallway with four posters on
the left leading to the atrium

Step 3:

( environment:)
To your straight ahead is,
an atrium with lounge chairs on the
right and a door on the straight
ahead
To your 90 degree left is,
a front desk in the corner with a
monitor on the desk.
To your 90 degree right is,
an exit gate towards a set of
commercial elevators.
To your back is,
a long hallway with posters on the
right wall

You chose:

( navigation agent:)
an atrium with lounge chairs on the
right and a door on the straight
ahead

Step 4:

( environment:)
To your straight ahead is,
An office area where there is a black
board and a work pod room.
To your 90 degree left is,
An array of office desks with
monitors and office chairs.
To your 90 degree right is,
A large office area with multiple
arrays of desks and chairs.
To your back is,
An exit door with a phone room on the
right.

You chose:

( navigation agent:)

A large office area with multiple
arrays of desks and chairs

Step 5:

( environment:)
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To you straight ahead is,
A large office area with multiple
arrays of desks and chairs, as well
as trash bins.
To your 60 degree left is,
A black board in the middle of an
office area.
To your 90 degree right is,
A copy/print room with recycle bins.
To your back is,
An array of office desks and chairs
with a black board.

You chose:

( navigation agent:)
A copy/print room with recycle bins

Step 6:

( environment:)
To your 90 degree right is,
A printer on the ground and several
instruction sheet on the wall
To your back is,
A black board and an array of office
desks

You chose:

( navigation agent:)
Stop

Synthetic trajectory #1

Navigation instruction:

Begin at the elevator lobby. Exit the lobby and
turn left, heading towards the open office space.
Walk past two rows of desks, then take a right.
Continue straight until you see the coffee station.
Turn left and stop at the second conference room.

Navigation trajectory:

Step 1:

( environment:)
To your straight ahead is,
an elevator lobby with multiple
elevators and a directory stand
To your 90 degree left is,
a closed door with a sign "Stairs"
To your 90 degree right is,
a wide corridor leading to a
reception area

You chose:

( navigation agent:)
a wide corridor leading to a
reception

Step 2:

( environment:)
To your straight ahead is,

a reception area with a white desk
and three chairs
To your 120 degree left is,
a corridor leading to an open office
space with several workstations
To your 90 degree right is,
a closed door marked "Emergency Exit"

You chose:

( navigation agent:)

a corridor leading to an open office
space with several workstations

Step 3:

( environment:)
To your straight ahead is,
an open office space filled with rows
of desks and office chairs
To your 90 degree left is,
an array of cubicles with computers.
To your 90 degree right is,
an exit door with a sign "Stairs"

You chose:

( navigation agent:)

an open office space filled with rows
of desks and office chairs

Step 4:

( environment:)
To your straight ahead is,
an open office space with rows of
desks and office chairs.
To your back is,
an office space with several
workstations.
To your 90 degree left is,
a hallway leading to the break room.
To your 90 degree right is,
a corner office space with a large
round table.

You chose:

( navigation agent:)

an office space with rows of desks
and office chairs.

Step 5:

( environment:)
To your straight ahead is,
an open office space with rows of
desks and office chairs.
To your 30 degree left is,
a meeting room with a large table and
multiple chairs.
To your 120 degree right is,
a corridor leading to a door.

You chose:

( navigation agent:)
a corridor leading to a door.
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Step 6:

( environment:)
To your straight ahead is,
a door at the end of the hallway
To your 90 degree right is,
a coffee station with a variety of
coffee machines

You chose:

( navigation agent:)

a coffee station with a variety of
coffee machines

Step 7:

( environment:)
To your straight ahead is,
a small kitchenette with a fridge and
microwave
To your immediate left is,
a conference room featuring a large
glass table
To your second left is,
a second conference room with a
project screen and chairs

You chose:

( navigation agent:)

a second conference room with a
project screen and chairs

Step 8:

( environment:)
To your straight ahead is,
a conference room with a projection
screen and chairs.
To your back is,
a coffee station with various coffee
machines.

You chose:

( navigation agent:)
Stop

Synthetic trajectory #2

Navigation instruction:

Start outside the IT department’s office. Walk
straight and take the first left towards the
stairwell. Go up one flight of stairs. Upon
reaching the top, turn right and proceed to the end
of the corridor. The library is on the right.

Navigation trajectory:

Step 1:

( environment:)
To your straight ahead is,
the hallway leading to an
intersection with doors for the

office spaces on the sides
To your 90 degree left is,
a door with a sign “IT Department”
followed by some tech carts
To your 90 degree right is,
a hallway towards the elevators with
seating areas on the sides

You chose:

( navigation agent:)
the hallway leading to an
intersection with doors for the
office spaces on the sides

Step 2:

( environment:)
To your straight ahead is,
a hallway with the elevator and
murals on its sides
To your 90 degree left is,
a hallway that moves towards a
stairwell
To your back is,
a hallway leading towards the IT
department’s office

You chose:

( navigation agent:)
a hallway that moves towards a
stairwell

Step 3:

( environment:)
To your straight ahead is,
a stairwell leading upwards with
railing and stair lights
To your 90 degree left is,
a hallway towards a coffee machine
and cafeteria entrance
To your 90 degree right is,
a door to a rest room with signage
To your back is,
a hallway with murals leading back to
the IT department’s office.

You chose:

( navigation agent:)
a stairwell leading upwards with
railing and stair lights

Step 4:

( environment:)
To your straight-ahead is,
another flight of stairs leading to a
large window
To your 90 degree right is,
a hallway lined with posters and a
bench
To your back is,
a flight of stairs that leads down
with railing and stair lights

You chose:
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( navigation agent:)
a hallway lined with posters and a
bench

Step 5:

( environment:)
To your straight-ahead is,
a corridor leading to an intersection
with a water fountain to the right
To your 90 degree left is,
a large window that illuminates the
corridor and gives a view of the
street
To your 90 degree right is,
a library entrance with a signage
To your back is,
the hallway lined with posters and a
bench

You chose:

( navigation agent:)
a library entrance with a signage

Step 6:

( environment:)
To your straight ahead is,
a library filled with wooden
bookshelves and desks with desk lamps
To your back is,
a corridor leading back to the
stairwell

You chose:

( navigation agent:)
Stop

K More Examples of Generated
Trajectories

We plot more examples of the generated trajectories
from GPT-4 below:

Example #1

Navigation instruction:

Begin in the basement, walk towards the pool
table. Pass the pool table and ascend the staircase.
At the top of the stairs, turn right and walk
through the hallway. Turn left into the den, walk
through and stop by the window.

Navigation trajectory:

Step 1:

( environment:)
To your straight ahead is,
a basement with a pool table, a bar,
and a seating area
To your 90 degree left is,

a wall with various framed photos and
a door
To your 150 degree right is,
a storage area filled with boxes and
shelves

You chose:

( navigation agent:)
a basement with a pool table, a bar,
and a seating area

Step 2:

( environment:)
To your back is,
a basement entrance with a staircase
leading down
To your 120 degree left is,
a basement with a bar, television,
and several chairs
To your straight ahead is,
a basement with a pool table, a
dartboard, and a bar
To your 90 degree right is,
a staircase leading upwards with a
wooden railing

You chose:

( navigation agent:)
a basement with a pool table, a
dartboard, and a bar

Step 3:

( environment:)
To your back is,
a basement with a seating area and
framed photos on the wall
To your straight ahead is,
a pool table surrounded by chairs and
a dartboard on the wall
To your 150 degree left is,
a basement with a bar, television,
and several chairs
To your 90 degree right is,
a staircase leading upwards with a
wooden railing

You chose:

( navigation agent:)
a staircase leading upwards with a
wooden railing

Step 4:

( environment:)
To your back is,
a basement with a pool table and a
dartboard on the wall
To your 90 degree left is,
a hallway with various framed photos
on the walls
To your straight ahead is,
a den with a large bookshelf, couch,
and coffee table
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You chose:

( navigation agent:)

a hallway with various framed photos
on the walls

Step 5:

( environment:)
To your back is,
a staircase leading downwards into
the basement
To your straight ahead is,
a long hallway with several doors
leading to other rooms
To your 120 degree right is,
a den with a comfortable seating area
and a bookshelf

You chose:

( navigation agent:)
a long hallway with several doors
leading to other rooms

Step 6:

( environment:)
To your back is,
a hallway with various framed photos
on the walls
To your 90 degree left is,
a den filled with cozy furniture,
bookshelves, and a television
To your 90 degree right is,
a bedroom with a large bed, dresser,
and a window

You chose:

( navigation agent:)

a den filled with cozy furniture,
bookshelves, and a television

Step 7:

( environment:)
To your back is,
a hallway leading to other parts of
the house
To your 90 degree left is,
a den with several bookshelves, a
fireplace, and a large rug
To your straight ahead is,
a window overlooking the garden
outside

You chose:

( navigation agent:)
Stop

Example #2

Navigation instruction:

From the garage entrance, walk into the kitchen.
Turn left and walk past the stove. Continue
straight into the family room, then walk towards
the sliding glass doors. Step outside and stop near
the barbecue grill.

Navigation trajectory:

Step 1:

( environment:)
To your straight ahead is,
a clean garage with a parked car and
a workbench
To your 90 degree left is,
a laundry room with a washer and a
dryer
To your back is,
a driveway leading up to a garage
door
To your 120 degree left is,
a garage entrance with an open door
leading inside the house

You chose:

( navigation agent:)
a garage entrance with an open door
leading inside the house

Step 2:

( environment:)
To your 30 degree left is,
a kitchen with a stove, a
refrigerator, and a microwave oven
To your 90 degree right is,
a small mudroom with a shoe rack and
a coat hook
To your back is,
a view of a garage with a car and a
workbench

You chose:

( navigation agent:)
a kitchen with a stove, a
refrigerator, and a microwave oven

Step 3:

( environment:)
To your straight ahead is,
a large kitchen with a stove and a
range hood
To your 30 degree right is,
a kitchen with a center island and a
sink on the countertop
To your 150 degree left is,
a kitchen with a refrigerator and a
microwave oven
To your 120 degree right is,
a tiled floor leading to a hallway
with a picture on the wall

You chose:

( navigation agent:)
a large kitchen with a stove and a
range hood

972



Step 4:

( environment:)
To your straight ahead is,
a cozy family room with a TV and a
fireplace
To your 90 degree right is,
a kitchen with a sink and a
dishwasher
To your back is,
a kitchen with a countertop, a
cooktop, and an oven

You chose:

( navigation agent:)

a cozy family room with a TV and a
fireplace

Step 5:

( environment:)
To your 30 degree left is,
a sliding glass door leading to the
backyard
To your 90 degree right is,
a comfortable sofa with a coffee
table in front of a TV
To your back is,
a large kitchen with a stove and a
range hood

You chose:

( navigation agent:)
a sliding glass door leading to the
backyard

Step 6:

( environment:)
To your straight ahead is,
a well-maintained backyard with a
barbecue grill and a dining table
To your 90 degree left is,
a sliding glass door leading inside
the family room
To your back is,
a cozy family room with a TV and a
fireplace

You chose:

( navigation agent:)
a well-maintained backyard with a
barbecue grill and a dining table

Step 7:

( environment:)
To your 90 degree left is,
a barbecue grill on a patio in the
backyard
To your straight ahead is,
a backyard with a dining table and
chairs
To your 120 degree right is,

a backyard with a garden and a swing
set
To your back is,
a sliding glass door leading inside
the family room

You chose:

( navigation agent:)
Stop

Example #3

Navigation instruction:

Stand in front of the fireplace in the living room.
Walk diagonally across the room, passing the
sofa. Proceed through the door into the hallway.
Turn left and continue toward the guest room.
Stop just before entering and wait.

Navigation trajectory:

Step 1:

( environment:)
To your straight ahead is,
a living room with a fireplace and
two chairs
To your 30 degree left is,
a living room with a large window and
a dark brown couch
To your 90 degree right is,
a living room with a flat screen tv
and a view of the backyard

You chose:

( navigation agent:)

a living room with a fireplace and
two chairs

Step 2:

( environment:)
To your 60 degree left is,
a living room with a fireplace and a
floor lamp
To your 30 degree right is,
a living room with a dark brown couch
and a coffee table
To your straight ahead is,
a living room with a white rug in the
middle

You chose:

( navigation agent:)
a living room with a dark brown couch
and a coffee table

Step 3:

( environment:)
To your back is,
a living room with a fireplace and a
christmas tree
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To your 150 degree left is,
a living room with two chairs and a
painting on the wall
To your straight ahead is,
a wooden door leading to a hallway

You chose:

( navigation agent:)
a wooden door leading to a hallway

Step 4:

( environment:)
To your 90 degree left is,
a hallway with a view of a staircase
and a table
To your straight ahead is,
a hallway with a painting on the wall
and an open door

You chose:

( navigation agent:)
a hallway with a painting on the wall
and an open door

Step 5:

( environment:)
To your back is,
a hallway with a wooden floor and a
closed door
To your 120 degree left is,
a guest bedroom with a neatly made
bed and a dresser
To your 30 degree right is,
a hallway with white walls and
floor-to-ceiling mirrors

You chose:

( navigation agent:)

Stop just before entering the guest
bedroom
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