
Findings of the Association for Computational Linguistics: NAACL 2024, pages 69–92
June 16-21, 2024 ©2024 Association for Computational Linguistics

SpeedE: Euclidean Geometric Knowledge Graph Embedding Strikes Back

Aleksandar Pavlović and Emanuel Sallinger
Research Unit of Databases and Artificial Intelligence

TU Wien
Vienna, Austria

aleksandar.pavlovic@tuwien.ac.at, emanuel.sallinger@tuwien.ac.at

Abstract

Geometric knowledge graph embedding mod-
els (gKGEs) have shown great potential for
knowledge graph completion (KGC), i.e., auto-
matically predicting missing triples. However,
contemporary gKGEs require high embedding
dimensionalities or complex embedding spaces
for good KGC performance, drastically limit-
ing their space and time efficiency. Facing these
challenges, we propose SpeedE, a lightweight
Euclidean gKGE that (1) provides strong in-
ference capabilities, (2) is competitive with
state-of-the-art gKGEs, even significantly out-
performing them on YAGO3-10 and WN18RR,
and (3) dramatically increases their efficiency,
in particular, needing solely a fifth of the train-
ing time and a fourth of the parameters of the
state-of-the-art ExpressivE model on WN18RR
to reach the same KGC performance.

1 Introduction

Geometric knowledge graph embedding models
(gKGEs) represent entities and relations of a knowl-
edge graph (KG) as geometric shapes in the seman-
tic vector space. gKGEs achieved promising per-
formance on knowledge graph completion (KGC)
and knowledge-driven applications (Wang et al.,
2017; Broscheit et al., 2020); while allowing for an
intuitive geometric interpretation of their captured
patterns (Pavlović and Sallinger, 2023a,b).

Efficiency Problem. Recently, increasingly more
complex embedding spaces were explored to boost
the KGC performance of gKGEs (Sun et al., 2019;
Zhang et al., 2019; Cao et al., 2021). However,
more complex embedding spaces typically require
more costly operations or more parameters, low-
ering their time and space efficiency compared to
Euclidean gKGEs (Wang et al., 2021). Even more,
most gKGEs require high-dimensional embeddings
to reach good KGC performance, increasing their
time and space requirements (Chami et al., 2020;
Wang et al., 2021). Thus, the need for (1) complex

embedding spaces and (2) high-dimensional em-
beddings lowers the efficiency of gKGEs, hindering
their application in resource-constrained environ-
ments, especially in mobile smart devices (Sun
et al., 2019; Zhang et al., 2019; Wang et al., 2021).

Table 1: Dimensionality, MRR, convergence time, and
number of parameters of SotA gKGE’s on WN18RR.

Model Dim. MRR Conv. Time #Parameters

SpeedE 50 .500 6min 2M
ExpressivE 200 .500 31min 8M
HAKE 500 .497 50min 41M
ConE 500 .496 1.5h 20M
RotH 500 .496 2h 21M

Challenge and Methodology. Although there has
been much work on scalable gKGEs, any such work
has focused exclusively on either reducing the em-
bedding dimensionality (Balazevic et al., 2019a;
Chami et al., 2020; Bai et al., 2021) or using sim-
pler embedding spaces (Kazemi and Poole, 2018;
Zhang et al., 2020; Pavlović and Sallinger, 2023b),
thus addressing only one side of the efficiency prob-
lem. Facing these challenges, this work aims to
design a Euclidean gKGE that performs well on
KGC under low-dimensional conditions, reducing
its storage space, inference, and training times. To
reach this goal, we analyze ExpressivE (Pavlović
and Sallinger, 2023b), a Euclidean gKGE that has
shown promising performance on KGC under high-
dimensional conditions.

Contribution. Based on ExpressivE, we propose
the lightweight SpeedE model that (1) halves Ex-
pressivE’s inference time and (2) enhances Expres-
sivE’s distance function, significantly improving
its KGC performance. We evaluate SpeedE on
the three standard KGC benchmarks, WN18RR,
FB15k-237, and YAGO3-10, finding that it (3) is
competitive with SotA gKGEs on FB15k-237 and
even outperforms them significantly on WN18RR

69

and the large YAGO3-10 benchmark. Further-
more, we find that (4) SpeedE preserves Expres-
sivE’s KGC performance on WN18RR with much
fewer parameters, in particular, requiring solely a
fourth of the number of parameters of ExpressivE
and solely a fifth of its training time to reach the
same KGC performance (Table 1, also c.f. Sec-
tion 6.3). In total, we propose the SpeedE model,
which reaches strong KGC performance using low-
dimensional embeddings while maintaining the low
space and time requirements of Euclidean gKGEs.

Organization. Our paper is organized as follows:
Section 2 introduces the KGC problem. Section 3
reviews related work. Section 4 discusses the Ex-
pressivE model. Section 5 disassembles Expres-
sivE’s components to find a simpler model that still
supports the core inference patterns (c.f. Section 2)
and continues by building on these results to in-
troduce the lightweight SpeedE model. Section 6
empirically evaluates SpeedE’s KGC performance
and studies its space and time efficiency. Finally,
Section 7 summarizes our results, and the appendix
lists proofs, further experiments, and setup details.

2 Knowledge Graph Completion

This section discusses the KGC problem and its
empirical evaluation (Abboud et al., 2020). First,
we introduce the triple vocabulary, consisting of
a finite set of relations R and entities E. We use
this vocabulary to define triples, i.e., expressions
of the form rj(eh, et), where rj ∈ R, eh, et ∈ E,
and where we call eh the triple’s head and et its
tail. A finite set of triples over the triple vocabulary
is called a knowledge graph G. KGC describes the
problem of predicting missing triples of G.

Empirical Evaluation. To experimentally evalu-
ate gKGEs, a set of true and corrupted triples is
required. True triples ri(eh, et) ∈ G are corrupted
by substituting either eh or et with any ec ∈ E such
that the corrupted triple does not occur in G. To
estimate a given triple’s truth, gKGEs define scores
over triples and are optimized to score true triples
higher than false ones. The KGC performance of a
gKGE is measured with the mean reciprocal rank
(MRR), the average of inverse ranks (1/rank), and
H@k, the proportion of true triples within the pre-
dicted ones whose rank is at maximum k.

Theoretical Evaluation. A gKGE’s theoretical
capabilities are commonly evaluated by studying
the inference patterns it captures. An inference

pattern is a logical rule ϕ ⇒ ψ, where ϕ is called
its body and ψ its head. A rule ϕ⇒ ψ is satisfied
over a graph G iff if ϕ is satisfied in G, then ψ
must be satisfied in G. A rule of the form ϕ⇒ ⊥
states that the pattern ϕ is never satisfied in G. For
instance, r1(X,Y) ∧ r1(Y,X) ⇒ ⊥ represents
that there is no pair of entities X,Y ∈ E, such that
both r1(X,Y) ∈ G and r1(Y,X) ∈ G.

Intuition of Capturing. Following (Sun et al.,
2019; Abboud et al., 2020; Pavlović and Sallinger,
2023b), a gKGE captures an inference pattern if
there is an embedding instance such that the pat-
tern is captured (1) exactly and (2) exclusively as
formalized in the appendix. Capturing a pattern
means, at an intuitive level, that there is an embed-
ding instance such that (1) if the instance satisfies
the pattern’s body, then it also satisfies its head,
and (2) the instance does not capture any unwanted
inference pattern.

Core Inference Patterns. Next, we briefly list
important inference patterns that are commonly
studied in the gKGE literature (Sun et al., 2019; Ab-
boud et al., 2020; Pavlović and Sallinger, 2023b):
(1) symmetry r1(X,Y) ⇒ r1(Y,X), (2) anti-
symmetry r1(X,Y) ∧ r1(Y,X) ⇒ ⊥, (3) in-
version r1(X,Y) ⇔ r2(Y,X), (4) composi-
tion r1(X,Y) ∧ r2(Y, Z) ⇒ r3(X,Z), (5) hi-
erarchy r1(X,Y) ⇒ r2(X,Y), (6) intersection
r1(X,Y)∧ r2(X,Y) ⇒ r3(X,Y), and (7) mutual
exclusion r1(X,Y) ∧ r2(X,Y) ⇒ ⊥. We shall
call these seven types of patterns core inference
patterns henceforth.

3 Related Work

The main focus of our work lies on gKGEs, i.e.,
knowledge graph embedding models (KGEs) that
allow for a geometric interpretation of their cap-
tured inference patterns. Thus, we have excluded
neural KGEs as they are typically less interpretable
(Dettmers et al., 2018; Socher et al., 2013; Nathani
et al., 2019; Wang et al., 2021). gKGEs are com-
monly classified by how they embed relations:

Bilinear gKGEs embed relations as matrices, al-
lowing them to factorize a graph’s adjacency matrix
by computing the bilinear product of entity and re-
lation embeddings. The pioneering bilinear model
is RESCAL (Nickel et al., 2011), embedding rela-
tions with full-rank d×dmatrices and entities with
d-dimensional vectors. However, its parameter size
grows quadratically with its dimensionality d, lim-

70

iting RESCAL’s scalability (Kazemi and Poole,
2018). Thus, more scalable bilinear gKGEs were
proposed, such as DistMult (Yang et al., 2015),
ComplEx (Trouillon et al., 2016), TuckER (Bal-
azevic et al., 2019b), SimplE (Kazemi and Poole,
2018), QuatE (Zhang et al., 2019), and DualQuatE
(Cao et al., 2021). Although these enhanced models
could capture increasingly more inference patterns,
none of them can capture composition patterns.

Spatial gKGEs embed relations as semantic re-
gions within the embedding space. BoxE (Abboud
et al., 2020) is the pioneering spatial gKGE, embed-
ding relations with two bounded hyper-rectangles.
This allows BoxE to capture most of the core in-
ference patterns. However, purely spatial models
cannot capture composition patterns.

Functional gKGEs embed relations as functions
fri : Kd → Kd and entities as high-dimensional
points ej ∈ Kd over some field K. The pioneering
functional model is TransE (Bordes et al., 2013),
which embeds relations as translations from head
to tail entity embeddings. However, representing
relations as translations limits TransE from cap-
turing inference patterns, such as symmetry or hi-
erarchy. Thus, many extensions were proposed,
solving some of these limitations, such as RotatE
(Sun et al., 2019), MuRP (Balazevic et al., 2019a),
RotH (Chami et al., 2020), HAKE (Zhang et al.,
2020) and ConE (Bai et al., 2021). However, none
of these models can capture hierarchy patterns.

Spatio-Functional gKGEs. Recently, Pavlović
and Sallinger (2023b) proposed ExpressivE, a
spatio-functional gKGE that combines the ad-
vantages of both spatial and functional models
by embedding relations as hyper-parallelograms.
Thereby, it can capture all core inference patterns
simultaneously.

Embedding Space Problem. Although these
model families are vastly different, many contem-
porary gKGEs overcome the limitations of for-
mer ones by exploring increasingly more complex
spaces. For example, while (a) RESCAL and Dist-
Mult use the Euclidean space R, (b) ComplEx uses
the complex space, extending R by one imaginary
unit, (c) QuatE uses the quaternion space, extend-
ing R by three imaginary units, and (d) DualQuatE
uses the dual-quaternion space, extending R by
seven imaginary units. Thus, a d-dimensional en-
tity embedding of (a) RESCAL and DISTMULT
requires d, (b) ComplEx requires 2d, (c) QuatE

requires 4d, and (d) DualQuatE requires even 8d
real-valued parameters. Therefore, gKGEs based
in more complex embedding spaces typically re-
quire more parameters, lowering their efficiency
compared to Euclidean gKGEs (Wang et al., 2021).

High-Dimensionality Problem. Even more, most
gKGEs require high-dimensional embeddings to
reach good KGC performance (Chami et al., 2020;
Wang et al., 2021). Yet, high embedding dimension-
alities of 200, 500, or 1000 (Sun et al., 2019; Zhang
et al., 2019) increase the time and space require-
ments of gKGEs, limiting their efficiency and ap-
plication to resource-constrained environments, es-
pecially mobile smart devices (Wang et al., 2021).

Hyperbolic gKGEs such as RotH and AttH
(Chami et al., 2020) embed entities and relations
in the hyperbolic space, which allows for high-
fidelity and parsimonious representations of hier-
archical relations (Balazevic et al., 2019a; Chami
et al., 2020), i.e., relations that describe hierarchies
between entities, such as part_of. This allowed
them to reach promising KGC performance using
low-dimensional embeddings, addressing the high-
dimensionality problem (Chami et al., 2020). Yet,
most hyperbolic gKGEs were limited to expressing
a single global entity hierarchy per relation. ConE
(Bai et al., 2021) solves this problem by embed-
ding entities as hyperbolic cones and relations as
transformations between these cones. However, hy-
perbolic gKGEs typically cannot directly employ
Euclidean addition and scalar multiplication but re-
quire far more costly hyperbolic versions of these
operations, termed Möbius Addition and Multipli-
cation. Thus, they fail to address the embedding
space problem, which results in high time require-
ments for hyperbolic gKGEs (Wang et al., 2021).

Euclidean gKGEs have recently shown strong rep-
resentation, inference, and KGC capabilities under
high-dimensional conditions. On the one hand,
HAKE (Zhang et al., 2020) achieved promising
results for representing hierarchical relations on
which hyperbolic gKGEs are typically most effec-
tive. On the other hand, ExpressivE (Pavlović and
Sallinger, 2023b) managed to capture all core in-
ference patterns. Although Euclidean gKGEs ad-
dress the embedding space problem, their reported
KGC results under low dimensionalities are dra-
matically lower than those of hyperbolic gKGEs
(Chami et al., 2020). Thus, they currently fail to
address the high-dimensionality problem.

71

Our work is inspired by (1) the gap of gKGEs
addressing both sides of the efficiency problem,
i.e., the use of (a) complex embedding spaces and
(b) high-dimensional embeddings (Wang et al.,
2021), and (2) the promising results of Euclidean
gKGEs under high embedding dimensionalities
(Pavlović and Sallinger, 2023b). In contrast to prior
work, our paper jointly focuses on both sides of
the efficiency problem to design a highly resource-
efficient gKGE.

4 The ExpressivE Model

This section reviews ExpressivE (Pavlović and
Sallinger, 2023b), a Euclidean gKGE with strong
KGC performance under high dimensionalities.

Representation. ExpressivE embeds entities
eh ∈ E via vectors eh ∈ Rd and relations rj ∈ R
via hyper-parallelograms in R2d. The hyper-
parallelogram of a relation rj is parameterized
via the following three vectors: (1) a slope vector
sj ∈ R2d representing the slopes of its boundaries,
(2) a center vector cj ∈ R2d representing its center,
and (3) a width vector wj ∈ (R≥0)

2d representing
its width. At an intuitive level, a triple rj(eh, et) is
captured to be true by an ExpressivE embedding
if the concatenation of its head and tail embedding
is within rj’s hyper-parallelogram. Formally, this
means that a triple rj(eh, et) is true if the following
inequality is satisfied:

(eht − cj − sj ⊙ eth)
|.| ⪯ wj (1)

Where exy := (ex||ey) ∈ R2d with || representing
concatenation and ex, ey ∈ E. Furthermore, the in-
equality uses the following operators: the element-
wise less or equal operator ⪯, the element-wise
absolute value x|.| of a vector x, and the element-
wise (i.e., Hadamard) product ⊙.

Scoring. ExpressivE employs the typical dis-
tance function D : E × R × E → R2d of spa-
tial gKGEs (Abboud et al., 2020; Pavlović and
Sallinger, 2023b), which is defined as follows:

D(h, rj , t) =

{
τrj(h,t) ⊘mj , if τrj(h,t) ⪯ wj

τrj(h,t) ⊙mj − kj , otherwise
(2)

Where ⊘ denotes the element-wise division
operator, τrj(h,t) := (eht − cj − sj ⊙ eth)

|.|

denotes the triple embedding, mj := 2⊙wj + 1
represents the distance function’s slopes, and
kj := 0.5⊙ (mj − 1)⊙ (mj − 1⊘mj).

Based on this distance function D(h, rj , t), we de-
fine ExpressivE’s scoring function for quantifying
the plausibility of a given triple rj(h, t) as follows:

s(h, rj , t) =−||D(h, rj , t)||2 (3)

5 The Methodology

Our goal is to design a gKGE that addresses the
efficiency problems raised by the use of (1) com-
plex embedding spaces and (2) high-dimensional
embeddings while (3) allowing for a geometric in-
terpretation of its embeddings (Abboud et al., 2020;
Pavlović and Sallinger, 2023b). We reach this goal
by designing a KGC model that (1) is based in
the Euclidean space, (2) reaches high KGC perfor-
mance under low-dimensional conditions while at
the same time supports the core inference patterns
(Section 2), and (3) is a gKGE.

Toward our goal, Section 5.1 analyzes the SotA
ExpressivE model, finding that it uses redundant
parameters that negatively affect its inference time.
By redundant parameters, we mean parameters that
can be removed while preserving the support of
the core inference patterns (Section 2). Facing this
problem, we propose the lightweight Min_SpeedE
model that removes these redundancies, halving
ExpressivE’s inference time (Section 5.1).

However, Min_SpeedE loses the ability to adjust its
distance function, which is essential for represent-
ing hierarchical relations (as empirically verified in
Section 6). Thus, Section 5.2 introduces SpeedE, a
model that enhances Min_SpeedE by adding care-
fully designed parameters for flexibly adjusting the
distance function while preserving Min_SpeedE’s
low inference times.

5.1 Min_SpeedE
To design Min_SpeedE, let us first analyze Expres-
sivE’s parameters, particularly its width vector. Ad-
justing ExpressivE’s width vector wj has two com-
peting effects: (1) it alters the distance function’s
slopes (by mj in Inequality 2), and (2) it changes
which entity pairs are inside the relation hyper-
parallelogram (by wj in Inequality 1). To increase
ExpressivE’s time efficiency substantially, we intro-
duce Min_SpeedE, a constrained version of Expres-
sivE that replaces the relation-wise width vectors
wj ∈ (R≥0)

2d by a constant value w ∈ R>0 - that
is shared across all relations rj ∈ R. The follow-
ing paragraphs theoretically analyze Min_SpeedE’s
inference capabilities and time efficiency.

72

Inference Capabilities. We find that Min_SpeedE
surprisingly still captures the core inference pat-
terns (given in Section 2) and prove this in The-
orem 5.1. We give the full proof in the appendix
and discuss one of the most interesting parts here,
namely, hierarchy patterns.

Theorem 5.1. Min_SpeedE captures the core in-
ference patterns, i.e., symmetry, anti-symmetry, in-
version, composition, hierarchy, intersection, and
mutual exclusion.

Hierarchy Patterns. According to Pavlović and
Sallinger (2023b), an ExpressivE model captures a
hierarchy pattern r1(X,Y) ⇒ r2(X,Y) iff r1’s
hyper-parallelogram is a proper subset of r2’s.
Thus, one would expect that ExpressivE’s ability to
capture hierarchy patterns is lost in Min_SpeedE,
as the width parameter w ∈ R>0 (responsible for
adjusting a hyper-parallelogram’s size) is shared
across all hyper-parallelograms. However, the ac-
tual size of a hyper-parallelogram does not solely
depend on its width but also on its slope parameter
sj ∈ R2d, allowing one hyper-parallelogram H1

to properly subsume another H2 even when they
share the same width parameter w. We have visual-
ized two hyper-parallelograms H2 ⊂ H1 with the
same width parameter w in Figure 1.

Figure 1: Representation of the two-dimensional rela-
tion hyper-parallelograms H1 and H2, such that H1

subsumes H2 and such that they share the same width
parameter w in each dimension.

Intuition. Min_SpeedE can capture H2 ⊂ H1

as w (depicted with orange dotted lines) rep-
resents the intersection of the bands (depicted
with blue and green dotted lines), expanded from

the hyper-parallelogram, and the axis of the
band’s corresponding dimension. Thus, a hyper-
parallelogram’s actual size can be adapted by solely
changing its slopes, removing the need for a learn-
able width parameter per dimension and relation.

Inference Time. The most costly operations dur-
ing inference are operations on vectors. Thus, we
can estimate ExpressivE’s and Min_SpeedE’s infer-
ence time by counting the number of vector opera-
tions necessary for computing a triple’s score: By
reducing the width vector to a scalar, many opera-
tions reduce from a vector to a scalar operation. In
particular, the calculation of mj and kj uses solely
scalars in Min_SpeedE instead of vectors. Thus,
ExpressivE needs 15, whereas Min_SpeedE needs
solely 8 vector operations to compute a triple’s
score. This corresponds to Min_SpeedE using
approximately half the number of vector opera-
tions of ExpressivE for computing a triple’s score,
thus roughly halving ExpressivE’s inference time,
which aligns with Section 6.3’s empirical results.

Key Insights. Fixing the width to a constant value
w stops Min_SpeedE from adjusting the distance
function’s slopes. As we will empirically see in
Section 6, the effect of this is a severely degraded
KGC performance on hierarchical relations. In-
troducing independent parameters for adjusting
the distance function’s slopes solves this problem.
However, these parameters must be designed care-
fully to (1) preserve ExpressivE’s geometric inter-
pretation and (2) retain the reduced inference time
provided by Min_SpeedE. Each of these aspects
will be covered in detail in the next section.

5.2 SpeedE
SpeedE further enhances Min_SpeedE by adding
the following two carefully designed scalar
parameters to each relation embedding: (1)
the inside distance slope sij ∈ [0, 1] and (2)
the outside distance slope soj with sij ≤ soj .
Let mi

j := 2sijw + 1, mo
j := 2sojw + 1, and

kj := mo
j(m

o
j − 1)/2− (mi

j − 1)/(2mi
j), then

SpeedE defines the following distance function:

D(h, rj , t) =

{
τrj(h,t) ⊘mi

j , if τrj(h,t) ⪯ w

τrj(h,t) ⊙mo
j − kj , otherwise

(4)

Again, the distance function is separated into two
piece-wise linear functions: (1) the inside distance
Di(h, rj , t) = τrj(h,t)⊘mi

j for triples that are cap-
tured to be true (i.e., τrj(h,t) ⪯ w) and (2) the out-
side distance Do(h, rj , t) = τrj(h,t) ⊙mo

j − kj

73

for triples that are captured to be false (i.e.,
τrj(h,t) ≻ w). Based on this function, SpeedE de-
fines the score as s(h, rj , t) =−||D(h, rj , t)||2.

Geometric Interpretation. The intuition of sij and
soj is that they control the slopes of the respective
linear inside and outside distance functions. How-
ever, without any constraints on sij and soj , SpeedE
would lose ExpressivE’s intuitive geometric inter-
pretation (Pavlović and Sallinger, 2023b) as sij and
soj could be chosen in such a way that distances
of embeddings within the hyper-parallelogram are
larger than those outside. By constraining these
parameters to sij ∈ [0, 1] and sij ≤ soj , we pre-
serve lower distances within hyper-parallelograms
than outside and, thereby, the intuitive geometric
interpretation of our embeddings.

Inference Time. The additional introduction of
two scalar distance slope parameters sij , s

o
j ∈ R per

relation rj does not change the number of vector
operations necessary for computing a triple’s score
and, thus, does not significantly affect SpeedE’s in-
ference time. Thus, we expect that SpeedE retains
the time efficiency of Min_SpeedE, as empirically
validated in Section 6.3.

With this, we have finished our introduction and
theoretical analysis of SpeedE. What remains to be
shown is its empirical performance, which we shall
evaluate next.

6 Experiments

This section empirically evaluates SpeedE: Sec-
tion 6.1 describes the experimental setup. Sec-
tion 6.2 studies SpeedE’s KGC performance, find-
ing that it is competitive with SotA gKGEs on
FB15k-237 and even significantly outperforms
them on YAGO3-10 and WN18RR. Section 6.3
studies SpeedE’s space and time efficiency, find-
ing that on WN18RR, SpeedE needs a quarter of
ExpressivE’s parameters to reach the same KGC
performance while training five times faster than it.

6.1 Experimental Setup

Datasets. We empirically evaluate SpeedE on the
three standard KGC benchmarks, WN18RR (Bor-
des et al., 2013; Dettmers et al., 2018), FB15k-237
(Bordes et al., 2013; Toutanova and Chen, 2015),
and YAGO3-10 (Mahdisoltani et al., 2015). We pro-
vide detailed information about these benchmarks,
including their languages, licenses, and number of
triples in Appendix I.2.

Characteristics. Table 2 displays the following
characteristics of the benchmarks: their number of
entities |E| and relations |R|, their curvature CG

(taken from Chami et al. (2020)), and the Krack-
hardt scores κ (taken from Bai et al. (2021)), con-
sisting of the four metrics: (connectedness, hierar-
chy, efficiency, LUBedness). Both CG and κ state
how tree-like a benchmark is and, thus, how hierar-
chical its relations are. Following the procedure of
Chami et al. (2020), we employ the standard aug-
mentation protocol (Lacroix et al., 2018), adding
inverse relations to the benchmarks.

Table 2: Benchmark dataset characteristics. Curvature
CG is from (Chami et al., 2020); the lower, the more
hierarchical the data. Krackhardt scores κ are from (Bai
et al., 2021); the higher, the more hierarchical the data.

Dataset |E| |R| CG κ

FB15k-237 14,541 237 -0.65 (1.00, 0.18, 0.36, 0.06)
WN18RR 40,943 11 -2.54 (1.00, 0.61, 0.99, 0.50)
YAGO3-10 123,143 37 -0.54 -

Setup. We compare our SpeedE model to (1)
the Euclidean gKGEs ExpressivE (Pavlović and
Sallinger, 2023b), HAKE (Zhang et al., 2020),
TuckER (Balazevic et al., 2019b), MuRE (Balaze-
vic et al., 2019a), and RefE, RotE, and AttE (Chami
et al., 2020), (2) the complex gKGEs ComplEx-
N3 (Lacroix et al., 2018) and RotatE (Sun et al.,
2019), and (3) the hyperbolic gKGEs ConE (Bai
et al., 2021), MuRP (Balazevic et al., 2019a), and
RefH, RotH, and AttH (Chami et al., 2020). Fol-
lowing Pavlović and Sallinger (2023b), we train
SpeedE and ExpressivE for up to 1000 epochs
using gradient descent and the Adam optimizer
(Kingma and Ba, 2015) and stop the training if the
validation H@10 score does not increase by min-
imally 0.5% for WN18RR, YAGO3-10, and 1%
for FB15k-237 after 100 epochs. We average the
experimental results over three runs on each bench-
mark to handle marginal performance fluctuations.
Furthermore, as in (Chami et al., 2020), we evalu-
ate SpeedE and ExpressivE in the low-dimensional
setting using an embedding dimensionality of 32.

Reproducibility. We list further details on our
experimental setup, hardware, hyperparameters, li-
braries (Ali et al., 2021), and definitions of metrics
in the appendix. To facilitate the reproducibility of
our results, we provide SpeedE’s source code in a
public GitHub repository1.

1https://github.com/AleksVap/SpeedE

74

Table 3: Low-dimensional (d = 32) KGC performance
of SpeedE, Min_SpeedE, ExpressivE, and SotA gKGEs
on WN18RR, FB15k-237, and YAGO3-10 split by em-
bedding space. The results of: SpeedE, Min_SpeedE,
and ExpressivE were obtained by us; ConE are from
(Bai et al., 2021), HAKE and RotatE are from (Zheng
et al., 2022), TuckER are from (Wang et al., 2021), and
any other gKGE are from (Chami et al., 2020).

Model WN18RR FB15k-237 YAGO3-10

MRR H@1 MRR H@1 MRR H@1

E
uc

lid
ea

n
Sp

ac
e

SpeedE .493 .446 .320 .227 .413 .332
Min_SpeedE .485 .442 .319 .226 .410 .328
ExpressivE .485 .442 .298 .208 .333 .257
TuckER .428 .401 .306 .223 - -
MuRE .458 .421 .313 .226 .283 .187
RefE .455 .419 .302 .216 .370 .289
RotE .463 .426 .307 .220 .381 .295
AttE .456 .419 .311 .223 .374 .290
HAKE .416 .389 .296 .212 .253 .164

N
on

-E
uc

lid
ea

n
Sp

ac
e RotatE .387 .330 .290 .208 .235 .153

ComplEx-N3 .420 .390 .294 .211 .336 .259
MuRP .465 .420 .323 .235 .230 .150
RefH .447 .408 .312 .224 .381 .302
RotH .472 .428 .314 .223 .393 .307
AttH .466 .419 .324 .236 .397 .310
ConE .471 .436 - - - -

6.2 Knowledge Graph Completion

This section evaluates the KGC performance of
SpeedE and SotA gKGEs. Furthermore, we study
how well these models represent hierarchical re-
lations, on which hyperbolic gKGEs are typically
most effective (Balazevic et al., 2019a; Chami et al.,
2020). Finally, we analyze the effect of embedding
dimensionality on SpeedE’s KGC performance.

Low-Dimensional KGC. Following the evaluation
protocol of Chami et al. (2020), we evaluate each
gKGE’s performance under d = 32. We report the
MRR and H@1 in Table 3 and provide the com-
plete results in the appendix. Table 3 reveals that
on YAGO3-10 — the largest benchmark, contain-
ing over a million triples — SpeedE outperforms
any SotA gKGE by a relative difference of 7%
on H@1, providing strong evidence for SpeedE’s
scalability to large KGs. Furthermore, it shows
that our enhanced SpeedE model is competitive
with SotA gKGEs on FB15k-237 and even out-
performs any competing gKGE on WN18RR by a
large margin. Furthermore, SpeedE’s performance
gain over Min_SpeedE on the highly hierarchical
dataset WN18RR (see Table 2) provides strong em-
pirical evidence for the effectiveness of the distance
slope parameters for representing hierarchical rela-
tions under low-dimensional conditions. SpeedE’s
performance on the more hierarchical WN18RR al-

ready questions the necessity of hyperbolic gKGEs
for representing hierarchical relations, which will
be further investigated in the following.

Hierarchical Relations (Chami et al., 2020; Zhang
et al., 2020) describe hierarchies between entities,
such as part_of. Hyperbolic gKGEs have shown
great potential for representing hierarchical rela-
tions, outperforming Euclidean gKGEs under low-
dimensional conditions and thereby justifying the
increased model complexity added by the hyper-
bolic space (Chami et al., 2020). To study SpeedE’s
performance on hierarchical relations, we evaluate
SpeedE on the triples of any hierarchical relation of
WN18RR following the methodology of Bai et al.
(2021). Table 4 presents the results of this study. It
reveals that SpeedE significantly improves over Ex-
pressivE on most relations and outperforms RotH
on five out of the seven hierarchical ones. Most
notably, SpeedE improves over RotH by a relative
difference of 23% on H@10 on the hierarchical re-
lation _member_of_domain_usage, providing em-
pirical evidence for SpeedE’s promising potential
for representing hierarchical relations even under
low-dimensional settings. The performance gain
on hierarchical relations is likely due to the added
distance slope parameters, which allow for inde-
pendently adjusting the distance function’s slopes.

Table 4: H@10 of ExpressivE, RotH, and SpeedE on
hierarchical relations (Bai et al., 2021) of WN18RR.

Relation ExpressivE RotH SpeedE

_member_meronym 0.362 0.399 0.379
_hypernym 0.276 0.276 0.301
_has_part 0.308 0.346 0.330
_instance_hypernym 0.509 0.520 0.543
_member_of_domain_region 0.365 0.365 0.397
_member_of_domain_usage 0.545 0.438 0.538
_synset_domain_topic_of 0.468 0.447 0.502

Dimensionality Study. To analyze the effect of
the embedding dimensionality on the KGC per-
formance, we evaluate state-of-the-art gKGEs on
WN18RR under varied dimensionalities. Figure 2
visualizes the results of this study, displaying er-
ror bars for our SpeedE model with average MRR
and standard deviation computed over three runs.
The figure reveals that, surprisingly, ExpressivE
significantly outperforms RotH, especially under
low-dimensional conditions, and that the enhanced
SpeedE model achieves an additional performance
improvement over ExpressivE. This result provides
further evidence for the great potential of Euclidean

75

gKGEs under low-dimensional conditions.

Figure 2: MRR of SotA gKGEs on WN18RR using
d ∈ {10, 16, 20, 32, 50, 200, 500}.

High-Dimensional KGC. The KGC performance
of SotA gKGEs under high-dimensional conditions
(i.e., d ≥ 200) is listed in the appendix. It reveals
that on FB15k-237, SpeedE achieves highly com-
petitive KGC performance compared to gKGEs of
its own family while dramatically outperforming
any competing gKGE on WN18RR.

6.3 Space and Time Efficiency
This section empirically analyzes SpeedE’s space
and time efficiency compared to SotA gKGEs.

Time per Epoch. Following the methodology of
Wang et al. (2021), Table 5 displays the training
time per epoch of SpeedE and SotA gKGEs for
WN18RR, FB15k-237, and YAGO3-10 with em-
bedding dimensionality d = 32, negative sampling
size n = 500, and batch size b = 500. The times
per epoch were recorded on a GeForce RTX 2080
Ti GPU of our internal cluster. The empirical re-
sults of the table align with the theoretical results
of Sections 5.1 and 5.2, stating that SpeedE ap-
proximately halves ExpressivE’s inference time
and, thus, also its time per epoch. Furthermore,
the results emphasize SpeedE’s efficiency benefits
over SotA gKGEs, as they reveal that under the
same configurations, SpeedE solely requires about
a sixth of RotH’s and AttH’s time per epoch.

Next, to provide a fair comparison of each gKGE’s
space and time efficiency, we measure the conver-
gence time of gKGEs with approximately equal
KGC performance. Specifically, we observe that
SpeedE with dimensionality d = 50 achieves com-
parable or slightly better KGC performance on
WN18RR to ExpressivE with d = 200 and the
best-published results of RotH, HAKE, and ConE

Table 5: Time per epoch of SpeedE, ExpressivE, RotH,
and AttH.

Model Time per Epoch

WN18RR FB15k-237 YAGO3-10
SpeedE 7s 22s 88s

ExpressivE 15s 46s 185s
RotH 42s 112s 520s
AttH 43s 113s 533s

with d = 500. In particular, the results are summa-
rized in Table 1 (provided in Section 1).

Hypotheses. Since (1) the dimensionality of
SpeedE embeddings is much smaller in compari-
son to RotH’s, HAKE’s, ConE’s, and ExpressivE’s
dimensionality, while (2) SpeedE achieves compa-
rable or even slightly better KGC performance, we
expect a considerable improvement in SpeedE’s
space and time efficiency at comparable KGC per-
formance. Next, based on Table 1’s results, we
analyze how strongly SpeedE reduces the model
size and convergence time of competing gKGEs.

Model Size Analysis. Since |R| << |E| in most
graphs, (WN18RR: |R|/|E| = 0.00012) and since
SpeedE, ExpressivE, ConE, and RotH embed each
entity with a single real-valued vector, SpeedE
(d = 50) needs solely a quarter of ExpressivE’s
(d = 200) and a tenth of ConE’s and RotH’s
(d = 500) number of parameters, while preserv-
ing their KGC performance on WN18RR (Table 1).
As HAKE requires two real-valued vectors per en-
tity, SpeedE (d = 50) solely needs a twentieth of
HAKE’s (d = 500) parameters to achieve a slightly
better KGC performance. Table 1 lists the number
of parameters of a trained SpeedE model and SotA
gKGEs, empirically confirming that SpeedE signif-
icantly reduces the size of competing gKGEs.

Convergence Time Analysis. To quantify the con-
vergence time, we measure for each gKGE the
time to reach a validation MRR score of 0.490,
i.e., approximately 1% less than the worst reported
MRR score of Table 1. As outlined in the table,
SpeedE converges already after 6min. Thus, while
keeping strong KGC performance on WN18RR,
SpeedE speeds up ExpressivE’s convergence time
by a factor of 5, HAKE’s by a factor of 9, ConE’s
by a factor of 15, and RotH’s by a factor of 20.

Discussion. These results show that SpeedE is not
only competitive with SotA gKGEs on FB15k-237
and significantly outperforms them on YAGO3-10

76

and WN18RR but even preserves their KGC perfor-
mance on WN18RR with much fewer parameters
and a dramatically shorter convergence time, in
particular speeding up the convergence time of the
SotA ExpressivE model by a factor of 5, while
using solely a fourth of its number of parameters.

7 Conclusion

Although there has been much work on resource-
efficient gKGEs, any such work has focused exclu-
sively on reducing the embedding dimensionality
(Balazevic et al., 2019a; Chami et al., 2020; Bai
et al., 2021) or using simpler embedding spaces
(Kazemi and Poole, 2018; Zhang et al., 2020;
Pavlović and Sallinger, 2023b), thus addressing
only one side of the efficiency problem.

In this work, we address the embedding space and
dimensionality side jointly by introducing SpeedE,
a lightweight gKGE that (1) provides strong in-
ference capabilities, (2) is competitive with SotA
gKGEs, even significantly outperforming them on
YAGO3-10 and WN18RR, and (3) dramatically
increases the efficiency of current gKGEs, need-
ing solely a fifth of the training time and a fourth
of the number of parameters of the SotA Expres-
sivE model on WN18RR to reach the same KGC
performance.

8 Limitations and Future Work

SpeedE and ExpressivE use one d-dimensional vec-
tor to embed entities and four, respectively, six
d-dimensional vectors to embed relations. Thus,
ExpressivE and SpeedE have the same space com-
plexity, which is linear in the number of relations
and entities (i.e., O(d|E| + d|R|). A critical lim-
itation of both models is that they use the same
dimensionality d for relations and entities. Being
able to decouple the relation and entity embedding
dimensionalities might be crucial for further raising
their efficiency as (1) at an intuitive level, entities
are less complex objects than relations (which rep-
resent sets of pairs of entities) and therefore (2)
entity embeddings might solely require a lower em-
bedding dimensionality than relation embeddings.
Since in real-world KGs, the number of entities is
typically much higher than the number of relations,
a lower entity dimensionality might further raise
the model’s efficiency.

Since gKGEs naturally provide a geometric inter-
pretation of their learned patterns, how to automat-
ically and efficiently mine these learned patterns

from the embeddings — to make the implicitly
learned knowledge explicit and further raise the
model’s transparency — remains an open challenge
and forms an exciting branch for future work. Fi-
nally, another interesting direction for future work
points at how to integrate knowledge graph em-
beddings in novel practical applications, such as
aligning their learned knowledge with the latent
representations of large language models.

9 Ethical Impact

We designed SpeedE with the goal of finding a
highly resource-efficient model for KGC that, at
the same time, provides a geometric interpretation
of its captured patterns. Therefore, our work aligns
with two pressing challenges of the machine learn-
ing community in general and the KGC community
in particular, namely, (1) raising the resource ef-
ficiency of KGC models while (2) offering some
degree of explainability via the geometric interpre-
tation of captured patterns. Specifically, SpeedE
reduces the training time — and thus the total com-
pute — of the SotA ExpressivE model on WN18RR
to one-fourth while sustaining ExpressivE’s KGC
performance and geometric interpretation. There-
fore, we do not foresee any negative impact, but
even expect a potential positive environmental (see
1) and social impact (see 2) of our work by in-
troducing a highly resource-efficient model that
allows for some degree of explainability.

Acknowledgements

Financial support for this research has been pro-
vided by the Vienna Science and Technology
Fund (WWTF) under grants [10.47379/VRG18013,
10.47379/NXT22018, 10.47379/ICT2201], as well
as the Christian Doppler Research Association
(CDG) JRC LIVE.

References
Ralph Abboud, İsmail İlkan Ceylan, Thomas

Lukasiewicz, and Tommaso Salvatori. 2020. Boxe:
A box embedding model for knowledge base
completion. In Advances in Neural Information
Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual.

Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Lau-
rent Vermue, Sahand Sharifzadeh, Volker Tresp, and
Jens Lehmann. 2021. PyKEEN 1.0: A Python Li-
brary for Training and Evaluating Knowledge Graph

77

https://proceedings.neurips.cc/paper/2020/hash/6dbbe6abe5f14af882ff977fc3f35501-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6dbbe6abe5f14af882ff977fc3f35501-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6dbbe6abe5f14af882ff977fc3f35501-Abstract.html
http://jmlr.org/papers/v22/20-825.html
http://jmlr.org/papers/v22/20-825.html

Embeddings. Journal of Machine Learning Research,
22(82):1–6.

Yushi Bai, Zhitao Ying, Hongyu Ren, and Jure
Leskovec. 2021. Modeling heterogeneous hierar-
chies with relation-specific hyperbolic cones. In Ad-
vances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Process-
ing Systems 2021, NeurIPS 2021, December 6-14,
2021, virtual, pages 12316–12327.

Ivana Balazevic, Carl Allen, and Timothy Hospedales.
2019a. Multi-relational poincaré graph embeddings.
In Advances in Neural Information Processing Sys-
tems, volume 32. Curran Associates, Inc.

Ivana Balazevic, Carl Allen, and Timothy Hospedales.
2019b. TuckER: Tensor factorization for knowledge
graph completion. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 5185–5194, Hong Kong, China. As-
sociation for Computational Linguistics.

Kurt D. Bollacker, Robert P. Cook, and Patrick Tufts.
2007. Freebase: A shared database of structured
general human knowledge. In Proceedings of the
Twenty-Second AAAI Conference on Artificial In-
telligence, July 22-26, 2007, Vancouver, British
Columbia, Canada, pages 1962–1963. AAAI Press.

Antoine Bordes, Nicolas Usunier, Alberto García-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013. Pro-
ceedings of a meeting held December 5-8, 2013, Lake
Tahoe, Nevada, United States, pages 2787–2795.

Samuel Broscheit, Kiril Gashteovski, Yanjie Wang, and
Rainer Gemulla. 2020. Can we predict new facts
with open knowledge graph embeddings? A bench-
mark for open link prediction. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2020, Online, July 5-10,
2020, pages 2296–2308. Association for Computa-
tional Linguistics.

Zongsheng Cao, Qianqian Xu, Zhiyong Yang, Xiaochun
Cao, and Qingming Huang. 2021. Dual quater-
nion knowledge graph embeddings. Proceedings
of the AAAI Conference on Artificial Intelligence,
35(8):6894–6902.

Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic
Sala, Sujith Ravi, and Christopher Ré. 2020. Low-
dimensional hyperbolic knowledge graph embed-
dings. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
6901–6914, Online. Association for Computational
Linguistics.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d knowl-
edge graph embeddings. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Arti-
ficial Intelligence (IAAI-18), and the 8th AAAI Sym-
posium on Educational Advances in Artificial Intel-
ligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 1811–1818. AAAI Press.

Seyed Mehran Kazemi and David Poole. 2018. Simple
embedding for link prediction in knowledge graphs.
In Advances in Neural Information Processing Sys-
tems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada, pages 4289–4300.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Alexandre Lacoste, Alexandra Luccioni, Victor
Schmidt, and Thomas Dandres. 2019. Quantifying
the carbon emissions of machine learning. arXiv
preprint arXiv:1910.09700.

Timothée Lacroix, Nicolas Usunier, and Guillaume
Obozinski. 2018. Canonical tensor decomposition
for knowledge base completion. In International
Conference on Machine Learning.

Haonan Lu and Hailin Hu. 2020. Dense: An en-
hanced non-abelian group representation for knowl-
edge graph embedding. CoRR, abs/2008.04548.

Farzaneh Mahdisoltani, Joanna Biega, and Fabian M.
Suchanek. 2015. YAGO3: A knowledge base from
multilingual wikipedias. In Seventh Biennial Con-
ference on Innovative Data Systems Research, CIDR
2015, Asilomar, CA, USA, January 4-7, 2015, Online
Proceedings. www.cidrdb.org.

George A. Miller. 1995. Wordnet: A lexical database
for english. Commun. ACM, 38(11):39–41.

Deepak Nathani, Jatin Chauhan, Charu Sharma, and
Manohar Kaul. 2019. Learning attention-based em-
beddings for relation prediction in knowledge graphs.
In Proceedings of the 57th Conference of the Associ-
ation for Computational Linguistics, ACL 2019, Flo-
rence, Italy, July 28- August 2, 2019, Volume 1: Long
Papers, pages 4710–4723. Association for Computa-
tional Linguistics.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In Proceedings of
the 28th International Conference on Machine Learn-
ing, ICML 2011, Bellevue, Washington, USA, June
28 - July 2, 2011, pages 809–816. Omnipress.

Aleksandar Pavlović and Emanuel Sallinger. 2023a.
Building bridges: Knowledge graph embeddings
respecting logical rules (short paper). In Alberto

78

http://jmlr.org/papers/v22/20-825.html
https://proceedings.neurips.cc/paper/2021/hash/662a2e96162905620397b19c9d249781-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/662a2e96162905620397b19c9d249781-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/f8b932c70d0b2e6bf071729a4fa68dfc-Abstract.html
https://doi.org/10.18653/v1/D19-1522
https://doi.org/10.18653/v1/D19-1522
https://dl.acm.org/doi/10.5555/1619797.1619981
https://dl.acm.org/doi/10.5555/1619797.1619981
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.209
https://doi.org/10.18653/v1/2020.acl-main.209
https://doi.org/10.18653/v1/2020.acl-main.209
https://doi.org/10.1609/aaai.v35i8.16850
https://doi.org/10.1609/aaai.v35i8.16850
https://doi.org/10.18653/v1/2020.acl-main.617
https://doi.org/10.18653/v1/2020.acl-main.617
https://doi.org/10.18653/v1/2020.acl-main.617
https://doi.org/10.1609/aaai.v32i1.11573
https://doi.org/10.1609/aaai.v32i1.11573
https://proceedings.neurips.cc/paper/2018/hash/b2ab001909a8a6f04b51920306046ce5-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/b2ab001909a8a6f04b51920306046ce5-Abstract.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1910.09700
http://arxiv.org/abs/1910.09700
http://proceedings.mlr.press/v80/lacroix18a.html
http://proceedings.mlr.press/v80/lacroix18a.html
http://arxiv.org/abs/2008.04548
http://arxiv.org/abs/2008.04548
http://arxiv.org/abs/2008.04548
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper1.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper1.pdf
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://doi.org/10.18653/v1/p19-1466
https://doi.org/10.18653/v1/p19-1466
https://icml.cc/2011/papers/438_icmlpaper.pdf
https://icml.cc/2011/papers/438_icmlpaper.pdf
https://api.semanticscholar.org/CorpusID:259099691
https://api.semanticscholar.org/CorpusID:259099691

Mendelzon Workshop on Foundations of Data Man-
agement.

Aleksandar Pavlović and Emanuel Sallinger. 2023b. Ex-
pressive: A spatio-functional embedding for knowl-
edge graph completion. In 11th International Confer-
ence on Learning Representations, ICLR 2023, Kigal,
Rwanda, May 1-5, 2023.

Richard Socher, Danqi Chen, Christopher D. Manning,
and Andrew Y. Ng. 2013. Reasoning with neural
tensor networks for knowledge base completion. In
Advances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meet-
ing held December 5-8, 2013, Lake Tahoe, Nevada,
United States, pages 926–934.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embedding
by relational rotation in complex space. In 7th In-
ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. Proceedings of the 3rd Workshop on Con-
tinuous Vector Space Models and their Composition-
ality.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Com-
plex embeddings for simple link prediction. In Pro-
ceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY,
USA, June 19-24, 2016, volume 48 of JMLR Work-
shop and Conference Proceedings, pages 2071–2080.
JMLR.org.

Kai Wang, Yu Liu, Dan Lin, and Michael Sheng. 2021.
Hyperbolic geometry is not necessary: Lightweight
Euclidean-based models for low-dimensional knowl-
edge graph embeddings. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2021,
pages 464–474, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo.
2017. Knowledge graph embedding: A survey of
approaches and applications. IEEE Trans. Knowl.
Data Eng., 29(12):2724–2743.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao,
and Li Deng. 2015. Embedding entities and relations
for learning and inference in knowledge bases. In
3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings.

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. 2019.
Quaternion knowledge graph embeddings. In Ad-
vances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 2731–2741.

Zhanqiu Zhang, Jianyu Cai, Yongdong Zhang, and Jie
Wang. 2020. Learning hierarchy-aware knowledge
graph embeddings for link prediction. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applica-
tions of Artificial Intelligence Conference, IAAI 2020,
The Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, pages 3065–3072. AAAI
Press.

Wenjie Zheng, Wenxue Wang, Fulan Qian, Shu Zhao,
and Yanping Zhang. 2022. Hyperbolic hierarchical
knowledge graph embeddings for link prediction in
low dimensions. CoRR, abs/2204.13704.

79

https://openreview.net/pdf?id=xkev3_np08z
https://openreview.net/pdf?id=xkev3_np08z
https://openreview.net/pdf?id=xkev3_np08z
https://proceedings.neurips.cc/paper/2013/hash/b337e84de8752b27eda3a12363109e80-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/b337e84de8752b27eda3a12363109e80-Abstract.html
https://openreview.net/forum?id=HkgEQnRqYQ
https://openreview.net/forum?id=HkgEQnRqYQ
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
http://proceedings.mlr.press/v48/trouillon16.html
http://proceedings.mlr.press/v48/trouillon16.html
https://doi.org/10.18653/v1/2021.findings-emnlp.42
https://doi.org/10.18653/v1/2021.findings-emnlp.42
https://doi.org/10.18653/v1/2021.findings-emnlp.42
https://doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.1109/TKDE.2017.2754499
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575
https://proceedings.neurips.cc/paper/2019/hash/d961e9f236177d65d21100592edb0769-Abstract.html
https://doi.org/10.1609/aaai.v34i03.5701
https://doi.org/10.1609/aaai.v34i03.5701
https://doi.org/10.48550/arXiv.2204.13704
https://doi.org/10.48550/arXiv.2204.13704
https://doi.org/10.48550/arXiv.2204.13704

A Organization

This appendix includes complete proofs, experimental setup details, and additional results. In particular,
Section B lists the complete low-dimensional benchmark results. Section C provides an overview of
SpeedE’s modifications and their impact on SpeedE’s efficiency and prediction performance. Section D
studies the relevance of the distance slope parameters by performing an ablation study. Section E reports
the KGC performance of SpeedE and SotA gKGEs under high-dimensional conditions. Section F briefly
summarizes the notation that is used throughout this paper. Section G formally defines vital concepts for
SpeedE that we will use in our proofs. Based on the introduced concepts, Section H proves Theorem 5.1.
Finally, Section I lists details on reproducing our results and on our implementation, training setup,
evaluation protocol, and estimated CO2 emissions.

B Complete Low-Dimensional KGC Results

This section reports the complete KGC performance of SotA gKGEs under low-dimensional conditions
(i.e., d = 32). Table 6 displays these results, where the results for SpeedE, Min_SpeedE, and ExpressivE
were obtained by us; for ConE are from (Bai et al., 2021), for HAKE are from (Zheng et al., 2022), for
TuckER are from (Wang et al., 2021), and for any other gKGE are from (Chami et al., 2020). Table 6
reveals that on YAGO3-10 — the largest benchmark, containing over a million triples (see Appendix I.2,
Table 11) — SpeedE outperforms any considered gKGE by a relative difference of 7% on H@1, providing
strong evidence for SpeedE’s scalability to large KGs. Furthermore, it shows that our enhanced SpeedE
model is competitive with SotA gKGEs on FB15k-237 and even outperforms any competing gKGE on
WN18RR by a large margin. Furthermore, SpeedE’s performance gain over Min_SpeedE on the highly
hierarchical dataset WN18RR provides strong empirical evidence for the effectiveness of the distance
slope parameters for representing hierarchical relations under low-dimensional conditions.

Table 6: KGC performance under low dimensionalities (d = 32) of SpeedE, Min_SpeedE, ExpressivE, and SotA
gKGEs on WN18RR, FB15k-237, and YAGO3-10 split by embedding space.

Space Model WN18RR FB15k-237 YAGO3-10

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

E
uc

lid
ea

n

SpeedE .493 .446 .512 .584 .320 .227 .356 .504 .413 .332 .453 .564
Min_SpeedE .485 .442 .499 .573 .319 .226 .356 .502 .410 .328 .449 .563
ExpressivE .485 .442 .499 .571 .298 .208 .331 .476 .333 .257 .367 .476
TuckER .428 .401 - .474 .306 .223 - .475 - - - -
MuRE .458 .421 .471 .525 .313 .226 .340 .489 .283 .187 .317 .478
RefE .455 .419 .470 .521 .302 .216 .330 .474 .370 .289 .403 .527
RotE .463 .426 .477 .529 .307 .220 .337 .482 .381 .295 .417 .548
AttE .456 .419 .471 .526 .311 .223 .339 .488 .374 .290 .410 .537
HAKE .416 .389 .427 .467 .296 .212 .323 .463 .253 .164 .286 .430

N
on

-E
uc

lid
ea

n

RotatE .387 .330 .417 .491 .290 .208 .316 .458 .235 .153 .260 .410
ComplEx-N3 .420 .390 .420 .460 .294 .211 .322 .463 .336 .259 .367 .484
MuRP .465 .420 .484 .544 .323 .235 .353 .501 .230 .150 .247 .392
RefH .447 .408 .464 .518 .312 .224 .342 .489 .381 .302 .415 .530
RotH .472 .428 .490 .553 .314 .223 .346 .497 .393 .307 .435 .559
AttH .466 .419 .484 .551 .324 .236 .354 .501 .397 .310 .437 .566
ConE .471 .436 .486 .537 - - - - - - - -

C SpeedE’s Advancements

When we theoretically analyzed ExpressivE, we noticed that (1) its space and time efficiency and (2) its
prediction performance could significantly be increased by (a) replacing its width vector with a scalar
and (b) adding flexibility to its distance function by enhancing it with learnable parameters that (c) are
constrained in such a way that the intuitive geometric interpretation of its embeddings is preserved. The
advancements of Points (a), (b), and (c) (discussed in Section 5) are highly non-trivial and need significant
theoretical and empirical effort to show that they do not have a negative impact but even a significant

80

positive impact on SpeedE’s prediction performance and resource efficiency. The following paragraphs
briefly discuss each reported evidence for SpeedE’s advancements over SotA gKGEs.

Min_SpeedE’s Inference Capabilities. Surprisingly, there is no theoretical downside to replacing
ExpressivE’s relation-wise width parameters wj with a constant width w, as shown in Theorem 5.1
(proven in Appendix H). Specifically, it shows that Min_SpeedE, a model that replaces ExpressivE’s width
vector with a scalar, still captures all core inference patterns and, thus, does not lose any of its inference
capabilities.

Min_SpeedE’s Prediction Performance. Furthermore, Min_SpeedE has no empirical downside com-
pared to ExpressivE, as verified in Table 3. Specifically, Table 3 shows that Min_SpeedE performs
similarly or slightly better than ExpressivE on KGC under low embedding dimensionalities, although
Min_SpeedE replaces ExpressivE’s width vector with a scalar.

SpeedE’s Performance Boost Analysis. Recall, as explained in Section 3, hyperbolic gKGEs were
proposed to capture hierarchical relations more effectively with low embedding dimensionalities, which
was the key reason for their strong KGC performance under low-dimensional conditions (Chami et al.,
2020). To test how well SpeedE performs on hierarchical relations, we evaluated SpeedE’s KGC
performance on hierarchical relations of the highly hierarchical benchmark WN18RR and compared them
to the KGC performance of SotA gKGES. Table 4 presents the results of this analysis, showing that our
SpeedE model outperforms the best-performing gKGEs on most hierarchical relations. Thus, SpeedE’s
performance boost under low-dimensional conditions is likely due to SpeedE’s strong performance
on hierarchical relations (see Table 4). Furthermore, Table 3 shows that SpeedE even outperforms
Min_SpeedE by a large margin on WN18RR, which gives strong empirical evidence for the hypothesis
that the added learnable parameters in SpeedE’s distance function boost SpeedE’s KGC performance in
low-dimensional conditions. Even more, Table 3 reveals that SpeedE outperformed any competing gKGE
by a large margin on the highly hierarchical benchmark WN18RR.

SpeedE’s Scalability and Efficiency Results. To test whether SpeedE’s prediction performance scales to
larger KGs, we benchmarked SpeedE on the YAGO3-10 benchmark (which contains over one million
triples) and reported the results in Table 3. We found that SpeedE outperforms any of the considered
gKGEs on YAGO3-10 by a large margin, even outperforming the best-performing hyperbolic gKGE,
namely AttH, on most metrics. These results provide strong empirical evidence for SpeedE’s scalability
to large KGs with millions of triples. Moreover, we did not solely show that SpeedE reaches SotA
KGC performance but that it even dramatically boosts the resource efficiency of any considered gKGE.
Specifically, Table 1 shows that SpeedE preserves ExpressivE’s KGC performance on WN18RR with
fewer parameters and a much smaller training time. In particular, SpeedE requires solely a fourth of
ExpressivE’s number of parameters and only a fifth of its training time to reach the same KGC performance.
Table 5 further emphasizes SpeedE’s efficiency benefits over SotA gKGEs, revealing that under the same
configurations, SpeedE requires half of ExpressivE’s and about a sixth of RotH’s and AttH’s time per
epoch on all benchmarks.

Conclusion. In this section, we have very comprehensively shown that SpeedE’s modifications did not
solely lead to significant KGC performance boosts as verified in Theorem 5.1, Figure 2, and Tables 3 and
4, but also that SpeedE dramatically boosts the space and time efficiency of SotA gKGEs as shown in
Tables 1 and 5.

D Ablation Study

To study the necessity of sij and soj in SpeedE, we introduce two versions of SpeedE: (1) Eq_SpeedE
that forces sij = soj and (2) Diff_SpeedE, where sij and soj can be different. We hypothesize that the
flexibility of different sij and soj might be beneficial under lower dimensionalities, while under higher
dimensionalities, reducing the number of parameters and thus setting sij = soj might be beneficial. Figure 3
visualizes the result of this analysis, empirically supporting our hypothesis, as Diff_SpeedE outperforms
Eq_SpeedE under low dimensionalities and vice-versa in high ones.

81

Figure 3: MRR of different ablations of SpeedE on WN18RR using d ∈ {10, 16, 20, 32, 50, 200, 500}

E High-Dimensional KGC Results

This section reports the KGC performance of SotA gKGEs under high-dimensional conditions (i.e.,
d ≥ 200). Table 7 displays these results, where the results for SpeedE were obtained by us, for ExpressivE
are from (Pavlović and Sallinger, 2023b), for HAKE are from (Zhang et al., 2020), for ConE are from
(Bai et al., 2021), for BoxE are from (Abboud et al., 2020), for MuRE and MuRP are from (Balazevic
et al., 2019a; Chami et al., 2020), for DistMult are from (Dettmers et al., 2018), for RotatE are from
(Sun et al., 2019), for TuckER are from (Balazevic et al., 2019b), and for any other gKGE are from
(Chami et al., 2020). Table 7 reveals that on FB15k-237, SpeedE achieves highly competitive KGC
performance compared to gKGEs of its own family while dramatically outperforming any competing
gKGE on WN18RR.

Table 7: KGC performance under high dimensionalities of SpeedE and SotA gKGEs on WN18RR and FB15k-237
split by model family.

Family Model WN18RR FB15k-237

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Fu
nc

tio
na

l/
Sp

at
ia

l

SpeedE .512 .460 .531 .615 .348 .253 0.386 .536
ExpressivE .508 .464 .522 .597 .350 .256 .387 .535
HAKE .497 .452 .516 .582 .346 .250 .381 .542
ConE .496 .453 .515 .579 .345 .247 .381 .540
BoxE .451 .400 .472 .541 .337 .238 .374 .538
MuRE .475 .436 .487 .554 .336 .245 .370 .521
RefE .473 .430 .485 .561 .351 .256 .390 .541
RotE .494 .446 .512 .585 .346 .251 .381 .538
AttE .490 .443 .508 .581 .351 .255 .386 .543
MuRP .481 .440 .495 .566 .335 .243 .367 .518
RefH .461 .404 .485 .568 .346 .252 .383 .536
RotH .496 .449 .514 .586 .344 .246 .380 .535
AttH .486 .443 .499 .573 .348 .252 .384 .540

B
ili

ne
ar

DistMult .430 .390 .440 .490 .241 .155 .263 .419
RotatE .476 .428 .492 .571 .338 .241 .375 .533
ComplEx-N3 .480 .435 .495 .572 .357 .264 .392 .547
QuatE .488 .438 .508 .582 .348 .248 .382 .550
TuckER .470 .443 .482 .526 .358 .266 .394 .544

82

F Notation

In this section, we give a brief overview of the most important notations we use. Note that, for ease of
readability and comparability, we use exactly the same language as ExpressivE (Pavlović and Sallinger,
2023b).
v . . . non-bold symbols represent scalars
v . . . bold symbols represent vectors, sets or tuples
0 . . . represents a vector of zeros (the same semantics apply to 0.5, 1, and 2)
⊘ . . . represents the element-wise division operator
⊙ . . . represents the element-wise (Hadamard) product operator
⪰ . . . represents the element-wise greater or equal operator
≻ . . . represents the element-wise greater operator
⪯ . . . represents the element-wise less or equal operator
≺ . . . represents the element-wise less operator
x|.| . . . represents the element-wise absolute value
|| . . . represents the concatenation operator

G Definition of Capturing

In this section, we introduce the formal semantics of SpeedE models. Note that, for ease of readability
and comparability, we use exactly the same language as ExpressivE (Pavlović and Sallinger, 2023b). In
places where SpeedE significantly differs from ExpressivE, we will explicitly note this and compare the
two. Specifically, this section introduces the notions of capturing a pattern in a SpeedE model that we
informally discussed in Section 2. Furthermore, it introduces some additional notations, which will help
us simplify the upcoming proofs and present them intuitively.

Knowledge Graph. A tuple (G,E,R) is called a knowledge graph, where R is a finite set of relations,
E is a finite set of entities, and G ⊆ E ×R×E is a finite set of triples. W.l.o.g., we assume that any
relation is non-empty since removing any virtual entity pair embedding from a hyper-parallelogram would
be trivial, just adding unnecessary complexity to the proofs.

SpeedE Model. We define a SpeedE model as a tuple M+ = (ϵ,σ, w,ρ), where ϵ ⊂ 2R
d

is the set of
entity embeddings, σ ⊂ 2R

d
is the set of center embeddings, w ∈ R>0 represents the width constant,

and ρ ⊂ 2R
d

is the set of slope vectors. Note that this definition is slightly different from an ExpressivE
model M = (ϵ,σ, δ,ρ), where instead of the width constant w, we have δ ⊂ 2R

d
that represents the set

of width embeddings.

Linking Embeddings to KGs. A SpeedE model M+ = (ϵ,σ, w,ρ) and a KG (G,E,R) are linked via
the following assignment functions: The entity assignment function fe : E → ϵ assigns to each entity
eh ∈ E an entity embedding eh ∈ ϵ. Based on fe, the virtual assignment function fv : E ×E → R2d

defines for any pair of entities (eh, et) ∈ E a virtual entity pair embedding fv(eh, et) = (fe(eh)||fe(et)),
where || represents the concatenation operator. Furthermore, we define SpeedE’s relation assignment
function f+

h (rj) : R → R2d × R × R2d as f+
h (rj) = (chtj , w, s

th
j), where chtj = (chj ||ctj) with

chj , c
t
j ∈ σ and where sthj = (stj ||shj) with stj , s

h
j ∈ ρ. Note that this is different from ExpressivE’s

relation assignment function fh(rj) : R → R2d × R2d × R2d, where fh(rj) = (chtj ,w
ht
j , sthj) with

wht
j = (wh

j ||wt
j) being two concatenated width embeddings.

Virtual Triple Space. To be able to assign a geometric interpretation to f+
h (rj), we briefly recap the

definition of the virtual triple space R2d introduced by Pavlović and Sallinger (2023b). Specifically, the
virtual triple space is constructed by concatenating the head and tail entity embeddings. In detail, this
means that any pair of entities (eh, et) ∈ E×E defines a point in the virtual triple space by concatenating
their entity embeddings eh, et ∈ Rd, i.e., (eh||et) ∈ R2d. We will henceforth call the first d dimensions
of the virtual triple space the head dimensions and the second d dimensions the tail dimensions. A set
of important sub-spaces of the virtual triple space are the 2-dimensional spaces created from the k-th

83

dimension of the head and tail dimensions — i.e., the k-th and (d+ k)-th virtual triple space dimensions.
We call them correlation subspaces as they visualize the captured relation-specific dependencies of head
and tail entity embeddings. Moreover, we call the correlation subspace spanned by the k-th and (d+ k)-th
virtual triple space dimension the k-th correlation subspace. Now, the geometric interpretation of f+

h (rj)
within the virtual triple space is a hyper-parallelogram whose edges are solely crooked in each correlation
subspace, representing the relationship between head and tail entity embeddings.

Model Configuration. We call a SpeedE model M+ together with a concrete relation assignment
function f+

h a relation configuration m+
h = (M+,f+

h). If m+
h additionally has a virtual assignment

function fv, we call it a complete model configuration m+ = (M+,f+
h ,fv). Note that an ExpressivE

relation configuration mh = (M ,fh) and a complete ExpressivE model configuration m = (M ,fh,fv)
are defined differently by replacing M+ and f+

h with their ExpressivE equivalents, i.e., M and fh.

Definition of Truth. A triple rj(eh, et) is captured to be true in some m+, with rj ∈ R and eh, et ∈ E iff
Inequality 5 holds for the assigned embeddings of h, t, and r. This means more precisely that Inequality 5
needs to hold for fv(eh, et) = (fe(eh)||fe(et)) = (eh, et) and f+

h (rj) = (chtj , w, s
th
j). Note that, for

ExpressivE, the definition of a triple’s truth is slightly different, as w in Inequality 5 would be exchanged
by the respective width embedding wht

j .

(eht − chtj − sthj ⊙ eth)
|.| ⪯ w, (5)

Intuition. At an intuitive level, a triple rj(eh, et) is captured to be true by some complete SpeedE
model configuration m+ iff the virtual pair embedding fv(eh, et) of entities eh and et lies within the
hyper-parallelogram of relation rj defined by f+

h (rj).

Simplifying Notations. Therefore, to simplify the upcoming proofs, we denote with fv(eh, et) ∈ f+
h (rj)

that the virtual pair embedding fv(eh, et) of an entity pair (eh, et) ∈ E × E lies within the hyper-
parallelogram f+

h (rj) of some relation rj ∈ R in the virtual triple space. Accordingly, for sets of virtual
pair embeddings P := {fv(eh1 , et1), . . . ,fv(ehn , etn)}, we denote with P ⊆ f+

h (rj) that all virtual
pair embeddings of P lie within the hyper-parallelogram of the relation rj . Furthermore, we denote with
fv(eh, et) ̸∈ f+

h (rj) that a virtual pair embedding fv(eh, et) does not lie within the hyper-parallelogram
of a relation rj and with P ̸⊆ f+

h (rj) we denote that an entire set of virtual pair embeddings P does not
lie within the hyper-parallelogram of a relation rj .

Capturing Inference Patterns. Based on the previous definitions, we define capturing patterns formally:
A relation configuration m+

h captures a pattern ψ exactly if for any ground pattern ϕB1 ∧· · ·∧ϕBm ⇒ ϕH
within the deductive closure of ψ and for any instantiation of fe and fv the following conditions hold:

• if ϕH is a triple and if m+
h captures the body triples to be true — i.e., fv(args(ϕB1)) ∈

f+
h (rel(ϕB1)), . . . ,fv(args(ϕBm)) ∈ f+

h (rel(ϕBm)) — then m+
h also captures the head triple

to be true — i.e., fv(args(ϕH)) ∈ f+
h (rel(ϕH)).

• if ϕH = ⊥, then m+
h captures at least one of the body triples to be false — i.e., there is some

j ∈ {1, . . . ,m} such that fv(args(ϕBj)) ̸∈ f+
h (rel(ϕBj)).

where args() is the function that returns the arguments of a triple, and rel() is the function that returns
the relation of the triple. Furthermore, a relation configuration m+

h captures a pattern ψ exactly and
exclusively if (1) m+

h exactly captures ψ and (2) m+
h does not capture any positive pattern ϕ (i.e.,

ϕ ∈ {symmetry , inversion, hierarchy , intersection, composition}) such that ψ ̸|= ϕ except where
the body of ϕ is not satisfied over m+

h .

Discussion. The next paragraphs provide some intuition of the above definition of capturing a pattern.

Capturing a pattern exactly is defined straightforwardly by adhering to the semantics of logical implication
ϕ := ϕB ⇒ ϕH , i.e., a relation configuration m+

h needs to be found such that for any complete model
configuration m+ over m+

h if the body ϕB of the pattern is satisfied, then its head ϕH can be inferred.

84

Capturing a pattern exactly and exclusively imposes additional constraints. Here, the aim is not solely
to capture a pattern but additionally to showcase that a pattern can be captured independently from any
other pattern. Therefore, some notion of minimality/exclusiveness of a pattern is needed. As in Abboud
et al. (2020); Pavlović and Sallinger (2023b), we define minimality by means of solely capturing those
positive patterns ϕ that directly follow from the deductive closure of the pattern ψ, except for those ϕ that
are captured trivially, i.e., except for those ϕ where their body is not satisfied over the constructed m+

h .

The authors of (Pavlović and Sallinger, 2023b) have shown that any core inference patterns (given in Sec-
tion 2) can be expressed by means of spatial relations of the corresponding relation hyper-parallelograms
in the virtual triple space. Therefore, exclusiveness is formulated intuitively as the ability to limit the
intersection of hyper-parallelograms to only those intersections that directly follow from the captured
pattern ψ for any known relation rj ∈ R, which is in accordance with the notion of exclusiveness of the
literature (Abboud et al., 2020; Pavlović and Sallinger, 2023b).

Note that the definition of capturing patterns solely depends on relation configurations. This is vital
for SpeedE to capture patterns in a lifted manner, i.e., SpeedE shall be able to capture patterns without
grounding them first. Furthermore, being able to capture patterns in a lifted way is not only efficient but
also natural, as the aim is to capture patterns between relations. Thus, it would be unnatural if constraints
on entity embeddings were necessary to capture such relation-specific patterns.

As outlined in the previous paragraphs, the definition of capturing patterns is in accordance with the
literature (Abboud et al., 2020; Pavlović and Sallinger, 2023b), focuses on efficiently capturing patterns,
and gives us a formal foundation for the upcoming proofs, which will show that SpeedE can capture the
core inference patterns.

H Proof of Theorem 5.1

In Section 2, we have already briefly introduced inference patterns. To prove that SpeedE captures the core
inference patterns exactly and exclusively (Theorem 5.1), let us now first recall the full, formal definition
of these patterns.

Definition H.1. (Abboud et al., 2020; Pavlović and Sallinger, 2023b) Let the inference patterns be defined
as follows:

• Patterns of the form r1(X,Y) ⇒ r1(Y,X) with r1 ∈ R are called symmetry patterns.

• Patterns of the form r1(X,Y) ∧ r1(Y,X) ⇒ ⊥ with r1 ∈ R are called anti-symmetry patterns.

• Patterns of the form r1(X,Y) ⇔ r2(Y,X) with r1, r2 ∈ R and r1 ̸= r2 are called inversion
patterns.

• Patterns of the form r1(X,Y) ∧ r2(Y,Z) ⇒ r3(X,Z) with r1, r2, r3 ∈ R and r1 ̸= r2 ̸= r3 are
called (general) composition patterns.

• Patterns of the form r1(X,Y) ⇒ r2(X,Y) with r1, r2 ∈ R and r1 ̸= r2 are called hierarchy
patterns.

• Patterns of the form r1(X,Y) ∧ r2(X,Y) ⇒ r3(X,Y) with r1, r2, r3 ∈ R and r1 ̸= r2 ̸= r3 are
called intersection patterns.

• Patterns of the form r1(X,Y) ∧ r2(X,Y) ⇒ ⊥ with r1, r2 ∈ R and r1 ̸= r2 are called mutual
exclusion patterns.

Based on these definitions, we will prove that SpeedE captures the core inference patterns exactly and
exclusively, thereby proving Theorem 5.1. To prove Theorem 5.1, we give the relevant propositions
obtained from and proved by Pavlović and Sallinger (2023b) and adapt them to SpeedE. For each of them,
we give proofs, which in some situations follow from the ones in Pavlović and Sallinger (2023b), and in
other situations are entirely new constructions.

85

The key change of SpeedE that will be of our concern in the following proofs is fixing the width to
a constant value, as this will require new proofs for some of the properties. Observe that SpeedE
additionally changes the distance function of ExpressivE. However, this does not affect ExpressivE’s
inference capabilities, i.e., which inference patterns can be captured. Careful inspection of the proofs of
inference capabilities given in (Pavlović and Sallinger, 2023b) shows that the only property required of
the distance function is that scores within the hyper-parallelogram are larger than those outside. As the
newly defined distance function of SpeedE keeps this property, the change of distance function between
the two models does not affect the proofs of the inference capabilities given in (Pavlović and Sallinger,
2023b). Hence, the same proof argument can be applied.

The other observation that we will make in general before giving the specific proofs is that the “exactly”
part, proved in (Pavlović and Sallinger (2023b), Propositions F.1-F.7), of “exactly and exclusively”
capturing patterns is not affected by the changes in the model. These proofs are all based on embedding
pairs of entities as points in the virtual triple space and relations as hyper-parallelograms, which is still
the case in SpeedE. Thus, we now proceed to proving that SpeedE captures the core inference patterns
exactly and exclusively.

Proposition H.2 (Inversion (Exactly and Exclusively)). Let m+
h = (M+,f+

h) be a relation configu-
ration and r1, r2 ∈ R be relations where r1(X,Y) ⇔ r2(Y,X) holds for any entities X,Y ∈ E. Then
m+

h can capture r1(X,Y) ⇔ r2(Y,X) exactly and exclusively.

Proof. The proof of this property in Expressive (Pavlović and Sallinger (2023b), Proposition G.3) is based
on a key assumption, namely that there is an mh such that fh(r1) is the mirror image of fh(r2) with
fh(r1) ̸= fh(r2). This is straightforward in ExpressivE but more complex in SpeedE. We will show
this next.

Let us first observe that in SpeedE, it is not trivially given that there is an m+
h = (M+,f+

h) such that
f+
h (r1) is the mirror image of f+

h (r2) with f+
h (r1) ̸= f+

h (r2), as fh(rj)’s width embedding wht
j

has been replaced by a shared width constant w in f+
h (rj) with j ∈ {1, 2}. Thus, what needs to be

shown is that there is a relation configuration m+
h such that f+

h (r1) is the mirror image of f+
h (r2)

with f+
h (r1) ̸= f+

h (r2), as then the original proof of ExpressivE can be directly applied to prove
Proposition H.2’s claim, i.e., that m+

h can capture r1(X,Y) ⇔ r2(Y,X) exactly and exclusively. Now, it
is interesting to see that fixing the width parameter in SpeedE as opposed to ExpressivE not only changes
the model but actually allows a quite elegant construction witnessing this property.

Let us now give this construction, thereby showing the claim. Specifically, let f+
h (r1) = (cht1 , w, s

th
1)

with cht1 = (ch1 ||ct1) ∈ R2d, w ∈ R>0, and sth1 = (st1||sh1) ∈ R2d. Furthermore, let f+
h (r2) =

(cht2 , w, s
th
2) with cht2 = (ct1||ch1) ∈ R2d, w ∈ R>0, and sth2 = (sh1 ||st1) ∈ R2d. We will, in the

following, show that the constructed fh(r2) is the mirror image of fh(r1) to prove our claim. Let
X,Y ∈ E be arbitrary entities and let fv be an arbitrary virtual assignment function defined over (X,Y)
and (Y,X) with fv(X,Y) = exy and fv(Y,X) = eyx. Then by Inequality 5, a triple r1(X,Y) is
captured to be true by m+ = (M+,f+

h ,fv) if Inequality 6 is satisfied.

(exy − cht1 − sth1 ⊙ eyx)
|.| ⪯ w (6)

(eyx − cth1 − sht1 ⊙ exy)
|.| ⪯ w (7)

(eyx − cht2 − sth2 ⊙ exy)
|.| ⪯ w (8)

Since Inequality 6 is element-wise, one can equivalently reformulate it by arbitrarily exchanging its
dimensions. Using this insight, we can replace the head and tail dimensions for each embedding, thereby
obtaining Inequality 7. Finally, by our construction of f+

h (r2), we have that cht2 = cth1 and sth2 = sht1 .
We substitute these equations into Inequality 7, thereby obtaining Inequality 8. Now, Inequality 8 states by
the definition of a triple’s truth (i.e., Inequality 5) that r2(Y,X) is captured by m+

h . Since Inequalities 6-8

86

are all equivalent, we have shown that f+
h (r1) is the mirror image of f+

h (r2). Since, it is now easy to see
that an m+

h exists such that f+
h (r1) is the mirror image of f+

h (r2) with f+
h (r1) ̸= f+

h (r2), the proof
of (Pavlović and Sallinger (2023b), Proposition G.4) can be directly applied to SpeedE. Thus, we have
proven Proposition H.2, i.e., that m+

h can capture r1(X,Y) ⇔ r2(Y,X) exactly and exclusively.

Table 8: Relation embeddings of a relation configuration m+
h that captures hierarchy (i.e., r1(X,Y) ⇒ r2(X,Y))

exactly and exclusively using width w = 1.

ch st ct sh

r1 −2.5 0.5 1.5 0

r2 1 −2 4.5 2

Proposition H.3 (Hierarchy (Exactly and Exclusively)). Let m+
h = (M+,f+

h) be a relation configu-
ration and r1, r2 ∈ R be relations where r1(X,Y) ⇒ r2(X,Y) holds for any entities X,Y ∈ E. Then
m+

h can capture r1(X,Y) ⇒ r2(X,Y) exactly and exclusively.

Proof. The proof of this property in Expressive (Pavlović and Sallinger (2023b), Proposition G.4) is based
on a key assumption, namely that there is an mh such that fh(r1) ⊂ fh(r2) with fh(r1) ̸= fh(r2).
This is straightforward in ExpressivE but much more complex in SpeedE. We will show this next.

Let us first observe that in SpeedE, it is not trivially given that there is an m+
h = (M+,f+

h) such that
f+
h (r1) ⊂ f+

h (r2) with f+
h (r1) ̸= f+

h (r2), as fh(rj)’s width embedding wht
j has been replaced

by a shared width constant w in f+
h (rj) with j ∈ {1, 2}. Thus, what needs to be shown is that there

is a relation configuration m+
h such that f+

h (r1) ⊂ f+
h (r2) with f+

h (r1) ̸= f+
h (r2), as then the

original proof of ExpressivE can be directly applied to prove Proposition H.3’s claim, i.e., that m+
h can

capture r1(X,Y) ⇒ r2(X,Y) exactly and exclusively. In the following, we construct such a relation
configuration m+

h = (M+,f+
h), where f+

h (r1) ⊂ f+
h (r2) with f+

h (r1) ̸= f+
h (r2) to prove the

claim of Proposition H.3:

Figure 1 (given on Page 5 of the main body) visualizes the relation configuration m+
h = (M+,f+

h)

provided in Table 8. As can be easily seen in Figure 1, m+
h captures f+

h (r1) ⊂ f+
h (r2) with f+

h (r1) ̸=
f+
h (r2). Thus, we have proven Proposition H.3, as (1) we have shown the existence of an m+

h that
captures f+

h (r1) ⊂ f+
h (r2) with f+

h (r1) ̸= f+
h (r2) and (2) the proof of (Pavlović and Sallinger

(2023b), Proposition G.4) can be directly applied to SpeedE since an m+
h exists such that f+

h (r1) ⊂
f+
h (r2) with f+

h (r1) ̸= f+
h (r2).

Table 9: Relation embeddings of a relation configuration m+
h that captures intersection (i.e., r1(X,Y)∧r2(X,Y) ⇒

r3(X,Y)) exactly and exclusively using width w = 1.

ch st ct sh

r1 −3.75 0.5 1 0

r2 1 −2 5 2

r3 −3.5 0.5 0.5 −1

87

Figure 4: Relation embeddings of a relation configuration mh that captures intersection (i.e., r1(X,Y) ∧
r2(X,Y) ⇒ r3(X,Y)) exactly and exclusively using width w = 1.

Proposition H.4 (Intersection (Exactly and Exclusively)). Let m+
h = (M+,f+

h) be a relation
configuration and r1, r2, r3 ∈ R be relations where r1(X,Y) ∧ r2(X,Y) ⇒ r3(X,Y) holds for any
entities X,Y ∈ E. Then m+

h can capture r1(X,Y) ∧ r2(X,Y) ⇒ r3(X,Y) exactly and exclusively.

Proof Sketch. This is similar in construction to the previous proof. Hence, we only give a proof sketch for
ease of readability. To prove Proposition H.4, observe that in (Pavlović and Sallinger (2023b), Proposition
G.5) an ExpressivE relation configuration mh with several different width embeddings is constructed.
However, the key observation we will make is that choosing the width embeddings differently is not
necessary. In fact, an interested reader inspecting the original proof can obtain a proof applicable to
SpeedE by following the proof of (Pavlović and Sallinger (2023b), Proposition G.5) analogously for the
SpeedE relation configuration m+

h described in Table 9 and visualized by Figure 4. Thus, the proof for
Proposition H.4 is straightforward given m+

h defined in Table 9 and (Pavlović and Sallinger (2023b),
Proposition G.5).

Table 10: Relation embeddings of a relation configuration m+
h that captures composition (i.e., r1(X,Y) ∧

r2(Y, Z) ⇒ r3(X,Z)) exactly and exclusively using width w = 1.

ch st ct sh

r1 −7 3 5 1

r2 −7.5 1 2 3

r3 −19.5 2 13 2

Proposition H.5 (Composition (Exactly and Exclusively)). Let r1, r2, r3 ∈ R be relations and let
m+

h = (M+,f+
h) be a relation configuration, where f+

h is defined over r1, r2, and r3. Furthermore
let r3 be the composite relation of r1 and r2, i.e., r1(X,Y) ∧ r2(Y,Z) ⇒ r3(X,Z) holds for all entities
X,Y, Z ∈ E. Then m+

h can capture r1(X,Y) ∧ r2(Y,Z) ⇒ r3(X,Z) exactly and exclusively.

Proof Sketch. This is similar in construction to the proof of Proposition H.3. Hence, we only give a proof
sketch for ease of readability. To prove Proposition H.5, observe that in (Pavlović and Sallinger (2023b),
Proposition G.6), an ExpressivE relation configuration mh with several different width embeddings is
constructed. However, choosing the width embeddings differently is not necessary. In fact, an interested
reader inspecting the original proof can obtain a proof applicable to SpeedE by following the proof of
(Pavlović and Sallinger (2023b), Proposition G.6) analogously for the SpeedE relation configuration m+

h

88

Figure 5: Relation embeddings of a relation configuration mh that captures composition (i.e., r1(X,Y) ∧
r2(Y, Z) ⇒ r3(X,Z)) exactly and exclusively using width w = 1.

described in Table 10 and visualized by Figure 5. Thus, the proof for Proposition H.5 is straightforward
given m+

h defined in Table 10 and (Pavlović and Sallinger (2023b), Proposition G.6).

Proposition H.6 (Symmetry (Exactly and Exclusively)). Let m+
h = (M+,f+

h) be a relation configu-
ration and r1 ∈ R be a symmetric relation, i.e., r1(X,Y) ⇒ r1(Y,X) holds for any entities X,Y ∈ E.
Then m+

h can capture r1(X,Y) ⇒ r1(Y,X) exactly and exclusively.

Proposition H.7 (Anti-Symmetry (Exactly and Exclusively)). Let m+
h = (M+,f+

h) be a relation
configuration and r1 ∈ R be an anti-symmetric relation, i.e., r1(X,Y) ∧ r1(Y,X) ⇒ ⊥ holds for any
entities X,Y ∈ E. Then m+

h can capture r1(X,Y) ∧ r1(Y,X) ⇒ ⊥ exactly and exclusively.

The proofs for Proposition H.6-H.7 are straightforward and work analogously to the proofs of (Pavlović
and Sallinger (2023b), Proposition G.1-G.2). This is the case, as (1) any of these patterns contain at
most one relation, (2) thus we solely need to show that no unwanted patterns over at most one relation
are captured, as any considered pattern over more than one relation (precisely inversion, hierarchy,
intersection, and composition) requires by Definition H.1 at least two or three distinct relations and thus is
not applicable, and (3) it is easy to see that, for instance, a relation hyper-parallelogram can be symmetric
without being anti-symmetric, or vice versa (i.e., without capturing any unwanted pattern).

Proposition H.8 (Mutual Exclusion (Exactly and Exclusively)). Let m+
h = (M+,f+

h) be a relation
configuration and r1, r2 ∈ R be mutually exclusive relations, i.e., r1(X,Y) ∧ r2(X,Y) ⇒ ⊥ holds for
any entities X,Y ∈ E. Then m+

h can capture r1(X,Y) ∧ r2(X,Y) ⇒ ⊥ exactly and exclusively.

The proof for Proposition H.8 is trivial, as it is straight-forward to see that (1) there is an m+
h = (M+,f+

h)

such that f+
h (r1) ∩ f+

h (r2) = ∅, thereby m+
h captures r1(X,Y) ∧ r2(X,Y) ⇒ ⊥ exactly, (2) neither

f+
h (r1) nor f+

h (r2) need to be symmetric, thereby no unwanted symmetry pattern is captured, (3) f+
h (r1)

does not need to be the mirror image of f+
h (r2), thus no unwanted inversion pattern is captured, and

finally (4) since f+
h (r1) and f+

h (r2) are disjoint, neither f+
h (r1) can subsume f+

h (r2) nor vice versa,
thus no unwanted hierarchy pattern is captured. Thus by Points 1-4, we have shown that m+

h captures
r1(X,Y) ∧ r2(X,Y) ⇒ ⊥ exactly and that it does not capture any unwanted positive pattern that is
applicable, i.e., requires at most two different relations (symmetry, inversion, and hierarchy). Thus, we
have shown Proposition H.8, i.e., that m+

h can capture r1(X,Y)∧r2(X,Y) ⇒ ⊥ exactly and exclusively.

Finally, by Propositions H.2-H.8, we have shown Theorem 5.1, i.e., that SpeedE captures the core inference
patterns exactly and exclusively.

89

I Experimental Details

The details of our experiment’s setup, benchmarks, and evaluation protocol are covered in this section.
Specifically, details on SpeedE’s implementation and about reproducing our results are covered in
Section I.1. Each benchmark’s properties are discussed in Section I.2. Our experimental setup is described
in Section I.3, including details about the chosen learning setup, hardware, and hyperparameters. The
evaluation protocol and the used metrics are discussed in Section I.4. Finally, the size of CO2 emissions
resulting from our experiments is estimated in Section I.5.

I.1 Implementation Details & Reproducibility
Following Pavlović and Sallinger (2023b), we have implemented our gKGE using PyKEEN 1.7 (Ali et al.,
2021), a Python library that runs under the MIT license and offers support for numerous benchmarks
and gKGEs. In doing so, we facilitate the comfortable reuse of SpeedE for upcoming benchmarks and
applications. To ease reproducing our findings, we provide SpeedE’s source code in a public GitHub
repository2. Additionally, the repository contains a ReadMe.md file stating library dependencies and
running instructions.

I.2 Benchmarks and Licenses
The details of the three standard KGC benchmarks, WN18RR (Dettmers et al., 2018), FB15k-237
(Toutanova and Chen, 2015), and YAGO3-10 (Mahdisoltani et al., 2015) used in our experiments are
discussed in this section. WN18RR is extracted from the WordNet database (Miller, 1995), representing
lexical relations between English words, thus naturally containing many hierarchical relations (e.g.,
hypernym-of) (Chami et al., 2020). FB15k-237 is a subset of a collaborative database consisting of
general knowledge (in English) called Freebase (Bollacker et al., 2007), which contains both hierarchical
relations (e.g., part-of) and non-hierarchical ones (e.g., nationality) (Chami et al., 2020). YAGO3-10
is a subset of YAGO3, which is a KG describing people that, similarly to FB15k-237, contains both
hierarchical relations (e.g., actedIn) and non-hierarchical relations (e.g., isMarriedTo). Table 2 (given on
Page 6 of the main body) has already stated important characteristics of the benchmarks, including their
number of entities, relations, and metrics describing how hierarchical the relations within the benchmark
are. WN18RR, FB15k-237, and YAGO3-10 (Mahdisoltani et al., 2015) already provide a split into a
training, validation, and testing set, which we directly adopted in any reported experiments. Table 11
lists characteristics of these splits, specifically the number of training, validation, and testing triples.
Furthermore, the table lists the number of entities and relations of each benchmark. Finally, concerning
licensing, we did not find a license for WN18RR nor its superset WN18 (Bordes et al., 2013). Also, we
did not find a license for FB15k-237, but we found that its superset FB15k (Bordes et al., 2013) uses the
CC BY 2.5 license. For YAGO3-10, we also did not find a license, but we found that its superset YAGO3
(Mahdisoltani et al., 2015) uses the CC BY 3.0 license.

Table 11: Benchmark split characteristics: Number of entities, relations, and training, validation, and testing triples.

Dataset |E| |R| #training triples #validation triples #testing triples

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134
YAGO3-10 123,143 37 1,079,040 4,978 4,982

I.3 Training Setup
Training Details. We have trained each model on one of four GeForce RTX 2080 Ti GPUs of our internal
cluster. In particular, during the training phase, we optimize the self-adversarial negative sampling loss
(Sun et al., 2019) using the Adam optimizer (Kingma and Ba, 2015). We use gradient descent to optimize
SpeedE’s parameters, stopping the training after 1000 epochs early if the H@10 score did not rise by at

2https://github.com/AleksVap/SpeedE

90

least 0.5% for WN18RR and YAGO3-10 and 1% for FB15k-237. Any experiment was run three times to
average over light performance variations. We will discuss the optimization of hyperparameters in the
following paragraph.

Hyperparameter Optimization. Following similar optimization principles as Balazevic et al. (2019a);
Chami et al. (2020); Pavlović and Sallinger (2023b), we manually tuned the following hyperparameters
within the listed ranges: (1) the learning rate λ ∈ {b ∗ 10−c | b ∈ {1, 2, 5} ∧ c ∈ {2, 3, 4, 5, 6}},
(2) the negative sample size n ∈ {100, 150, 200, 250}, (3) the loss margin γ ∈ {2, 3, 4, 5, 6}, (4) the
adversarial temperature α ∈ {1, 2, 3, 4}, (5) the batch size b ∈ {100, 250, 500, 1000, 2000}, and (6)
constraining the distance slope parameters to be equal — i.e., sij = soj for each relation rj ∈ R —
or not EqDS ∈ {true, false}. Following the literature (Chami et al., 2020; Lu and Hu, 2020), we
used for the large YAGO3-10 benchmark a wider range for the negative sampling size n, in particular
n ∈ {100, 200, 500, 1000, 2000}. Similar to Lu and Hu (2020), we also increased the range for margins
γ to include 50 and 100 for YAGO3-10. In accordance with Pavlović and Sallinger (2023b), we chose
self-adversarial negative sampling (Sun et al., 2019) for generating negative triples. We list the best
hyperparameters for SpeedE split by benchmark and embedding dimensionality in Table 12. Following
Chami et al. (2020), we used one parameter set for any low-dimensional experiment (i.e., d ≤ 50) and
one parameter set for any high-dimensional experiment (i.e., d > 50). Furthermore, for ExpressivE,
we used the hyperparameters of Pavlović and Sallinger (2023b) under high-dimensional conditions, as
they report the best-published results for ExpressivE. For low-dimensional conditions, ExpressivE’s
best hyperparameter setting was unknown. Thus, we optimized ExpressivE’s hyperparameters manually,
finding the hyperparameters of Table 13 to produce the best KGC results for ExpressivE under low
dimensionalities. For RotH, we used the hyperparameters of Chami et al. (2020), as they report the
best-published results for RotH. Finally, we used the same hyperparameters for each of SpeedE’s model
variants to directly compare SpeedE to them, i.e., Min_SpeedE, Diff_SpeedE, and Eq_SpeedE.

Table 12: Hyperparameters of SpeedE models that achieve the best performance on WN18RR, FB15k-237, and
YAGO3-10 split by low-dimensional (i.e., d ≤ 50) and high-dimensional setting (i.e., d > 50).

Dataset
Embedding

Dimensionality
Margin

Learning
Rate

Adversarial
Temperature

Negative
Sample Size

Batch
Size

EqDS

WN18RR d ≤ 50 3 5 ∗ 10−3 2 200 250 false
WN18RR d > 50 3 1 ∗ 10−3 2 200 250 true

FB15k-237 d ≤ 50 2 5 ∗ 10−4 4 250 100 false
FB15k-237 d > 50 4 1 ∗ 10−4 4 150 1000 false

YAGO3-10 d ≤ 50 100 1 ∗ 10−2 2 2000 2000 false

Table 13: Hyperparameters of ExpressivE that achieve the best performance on WN18RR, FB15k-237, and
YAGO3-10 under low-dimensional conditions (i.e., d ≤ 50).

Dataset
Embedding

Dimensionality
Margin

Learning
Rate

Adversarial
Temperature

Negative
Sample Size

Batch
Size

WN18RR d ≤ 50 2 5 ∗ 10−3 3 200 250

FB15k-237 d ≤ 50 2 5 ∗ 10−4 4 250 100

YAGO3-10 d ≤ 50 100 1 ∗ 10−2 2 2000 2000

I.4 Evaluation Protocol
Following the standard KGC evaluation protocol as described by Sun et al. (2019); Balazevic et al.
(2019b); Chami et al. (2020); Pavlović and Sallinger (2023b), we have evaluated ExpressivE by measuring

91

the ranking quality of each test set triple ri(eh, et) over all possible heads e′h and tails e′t: ri(e
′
h, et) for all

e′h ∈ E and ri(eh, e′t) for all e′t ∈ E. The typical metrics for evaluating the KGC performance are the
mean reciprocal rank (MRR) and H@k (Bordes et al., 2013). In particular, we have presented the filtered
metrics (Bordes et al., 2013), i.e., all triples occurring in the training, validation, and testing set are deleted
from the ranking (apart from the test triple that must be ranked), as scoring these triples highly does not
indicate a wrong inference. The most used metrics for assessing gKGEs are the filtered MRR, H@1, and
H@10 (Sun et al., 2019; Trouillon et al., 2016; Balazevic et al., 2019b; Abboud et al., 2020). Finally,
we will briefly review how these metrics are defined: The proportion of true triples among the predicted
triples whose rank is at maximum k is represented by H@k, whereas the MRR reflects the average of
inverse ranks (1/rank).

I.5 CO2 Emissions
The sum of all reported experiments took less than 150 GPU hours. This corresponds to an estimate of
approximately 16.20kg CO2-eq , based on the OECD’s 2014 carbon efficiency average of 0.432kg/kWh
and the usage of an RTX 2080 Ti on private infrastructure. We computed these estimates using the
MachineLearning Impact calculator (Lacoste et al., 2019).

92

https://mlco2.github.io/impact#compute

