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Abstract

We study (differentially) private federated
learning (FL) of language models. The lan-
guage models in cross-device FL are relatively
small, which can be trained with meaning-
ful formal user-level differential privacy (DP)
guarantees when massive parallelism in train-
ing is enabled by the participation of a mod-
erate size of users. Recently, public data has
been used to improve privacy-utility trade-offs
for both large and small language models. In
this work, we provide a systematic study of us-
ing large-scale public data and LLMs to help
differentially private training of on-device FL
models, and further improve the privacy-utility
tradeoff by techniques of distillation. More-
over, we propose a novel distribution matching
algorithm with theoretical grounding to sam-
ple public data close to private data distribu-
tion, which significantly improves the sample
efficiency of (pre-)training on public data. The
proposed method is efficient and effective for
training private models by taking advantage
of public data, especially for customized on-
device architectures that do not have ready-to-
use pre-trained models.

1 Introduction

Federated Learning (FL) (McMahan et al., 2017,
2018; Kairouz et al., 2019) is designed to collabo-
ratively train a global model on decentralized data
across user clients while protecting data privacy. FL
emerged as an effective privacy-preserving solution
of training (language) models, as rich text data are
generated by users, which may contain sensitive
and personal information. After McMahan et al.
(2017) proposed to train on-device recurrent neural
networks, FL has been widely used in various natu-
ral language processing applications and products,
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was an intern at Google. Correspondence to: Boxin
Wang boxinw2@illinois.edu and Zheng Xu
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including next-word prediction (Hard et al., 2018),
keyword spotting (Hard et al., 2020), and out-of-
vocabulary word discovery (Chen et al., 2019).

To further protect user privacy, Differential Pri-
vacy (DP) (Dwork et al., 2006; Dwork, 2011;
Dwork and Roth, 2014; McMahan et al., 2018)
is introduced to provide formal privacy guarantees
of models trained by federated learning. DP for
deep learning explicitly adds random noise with
bounded sensitivity to a training process (e.g., DP-
SGD (Abadi et al., 2016)), ensuring a quantifiable
similarity in output model distributions when the
training dataset changes. When combining DP
with FL, a variant of DP-SGD called DP-FedAvg
(McMahan et al., 2018)) is applied to guarantee
user-level DP (Dwork, 2010). Current research pri-
marily focuses on applying user-level DP to small
on-device models with fewer than 10 million pa-
rameters (McMahan et al., 2018; Kairouz et al.,
2021; Ramaswamy et al., 2020). The model size
is limited due to challenges such as significant DP
noise required to preserve privacy (Li et al., 2021)
and the communication costs in cross-device FL.

Recent advances in large language models
(LLMs) (Thoppilan et al., 2022; Radford et al.,
2019; Brown et al., 2020; Devlin et al., 2019; Raffel
et al., 2020) have revolutionized natural language
processing (NLP) and achieved unprecedented per-
formance on various tasks such as text generation,
machine translation, and sentiment analysis. How-
ever, their success comes at a cost of requiring mas-
sive amounts of computational resources, making
them difficult to deploy on resource-constrained
devices such as smartphones, tablets, or other edge
devices. Additionally, there are concerns regarding
the user privacy in various aspects such as memoriz-
ing personal information in training, and exposing
private query in inference.

Recent work explore incorporating public infor-
mation to improve privacy-utility trade-off in ap-
plying DP for (large) LMs (Yu et al., 2022; Li et al.,
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2021). Public data (Amid et al., 2021) or other
side information (Li et al., 2022) are also studied
for (DP) FL. In non-DP FL settings, Nguyen et al.
(2022) studies the effect of initializing from a pre-
trained model. However, it is an open question on
how to leverage the power of pre-trained LLMs to
facilitate private FL for on-device LMs.

In this work, we answer the question through
systematic study aimed at enhancing private feder-
ated learning for on-device LMs with public pre-
trained LMs. Specifically, Our approach involves
leveraging both public data and pre-trained LLMs
to improve differentially private federated learn-
ing for on-device models by techniques of pub-
lic pre-training and distillation. Additionally, we
propose a novel distribution matching algorithm,
which is backed by theoretical analysis, to sam-
ple public data closely resembling the private data
distribution, which significantly increases sample
efficiency in public training. Moreover, our ex-
tensive empirical results align with our theoretical
predictions, further substantiating our approach.
Our work complements existing research by uti-
lizing LLMs to improve public training through
knowledge distillation for private cross-device fed-
erated learning, and achieve a strong privacy-utility
trade-off with substantial improvements on sam-
pling efficiency for public data. Our method points
to a novel direction of efficiently enhancing private
FL with public pretraining data and LLMs.

We summarize our contributions as follows:
• We focus on improving private federated learning

for language modeling tasks and explore ways to
leverage public data and pre-trained LLMs for tok-
enizers, training protocols, and data (sub)sampling.

• We conduct comprehensive studies and compare
the use of Sentence Piece tokenizers from public
LLM and unigram tokenizers from private corpus.
We find that adopting public tokenizers from LLMs
can not only prevent the potential privacy leakage
from the private tokenizer vocabulary, but also lead
to better learning utility with DP guarantees.

• For training protocol, we propose to leverage public
LLM to teach private on-device LMs by knowledge
distillation. We demonstrate that distilling public
LLM to pre-train on-device LM can lead to more
than 7% accuracy improvement with tight privacy
bound (ε = 1.77). Moreover, it can achieve high
data efficiency of using only 1% of the public data
compared to that in public pre-training without
LLM, and attain better accuracy.

• We further propose a novel distribution matching
method that leverages both private on-device LMs
and public LLMs to select public records close
to private data distribution. We show that using
0.08% of carefully sampled public data to train on-
device LM can lead to comparable performance as
public pre-training on-device LMs with the whole
pre-training corpus. Moreover, it reduces the pub-
lic training time from more than one week to a
few hours. Our method is grounded in theoretical
analysis, which is corroborated by our extensive
empirical results.

2 Differentially Private Federated
Learning for On-device LMs

In this section, we walk through the preliminar-
ies of differentially private federated learning of
language models following the cross-device fed-
erated learning literature (McMahan et al., 2018;
Kairouz et al., 2019, 2021). We also introduce the
experimental setup used throughout this paper.
Cross-device Federated Learning. McMahan
et al. (2017) introduce federated learning to collab-
oratively train LMs for next-word prediction from
decentralized user data on a large number of mobile
devices without directly sharing the private data. A
common training algorithm of federated learning
is FedAvg (McMahan et al., 2017), where each
client downloads the current model from the cen-
tralized server, computes an update by performing
local computation on their dataset (e.g., running
SGD) and sends the update back to the server. The
server aggregates the updates across clients to up-
date the global model and send the updated model
back to local clients to achieve the goal of col-
laborative learning without directly accessing the
training data on each user’s mobile device.

In our experiments, we follow previous work
(Kairouz et al., 2021; Amid et al., 2021; Wu et al.,
2022) and sample 100 clients in each training round.
Each client uses a batch size of 16 for local training.
We set the training rounds T = 1600 in total.
User-level Differential Privacy. To further pro-
tect user privacy, Differential Privacy (DP) (Dwork
et al., 2006; Dwork, 2011; Dwork and Roth, 2014)
was introduced to provide a formal privacy guaran-
tee for federated learning.

Definition 2.1 ((ε, δ)-Differential Privacy). A ran-
domized algorithmM with domain N|X | is (ε, δ)-
differentially private if for all S ⊆ Range(M) and
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for any adjacent datasets D and D′:

Pr[M(D) ∈ S] ≤ exp(ε) Pr[M(D′) ∈ S] + δ.

Definition 2.1 provides a formal definition of
(ε, δ)-DP by bounding the change in output dis-
tribution caused by a small input difference (or,
adjacent datasets) for a randomized algorithm. In
the FL setting, it is preferable to bound the output
distribution caused by different users in order to
protect the privacy of each client’s whole dataset.
Specifically, adjacent datasets ofD andD′ for user-
level differential privacy (Dwork, 2010) are defined
as: D can be obtained from D′ by adding or sub-
tracting all the records of a single user/client, which
determines the unit of privacy guarantees.

In our experiments, we use DP-FTRL (Kairouz
et al., 2021) for privacy accounting and private
federated training, which can achieve strong pri-
vacy guarantee in practical FL scenarios (Xu et al.,
2023). We use δ = 10−6 and consider two ε
bounds: a tight privacy bound with ε = 1.77 by
using a large noise multiplier m = 8.83, and a
slightly loose privacy bound with ε = 18.71 and
noise multiplier m = 1.13. We present more hy-
perparameter tuning details in Appendix §C.
On-device LMs. Due to the limited memory con-
straints of mobile devices, on-device LMs are rela-
tively small (usually less than 10M parameters). In
our work, we focus on two types of on-device auto-
regressive LMs: LSTM (Hochreiter and Schmidhu-
ber, 1997) and transformers (Vaswani et al., 2017).
More model details can be found in Appendix §B.2.
Pre-trained LLMs. In addition to the on-device
LMs trained on private datasets, this work also as-
sumes that we have access to LLMs pre-trained on
a large public corpus to aid private learning. Specif-
ically, we use LaMDA (Thoppilan et al., 2022) 2B
throughout this work as an example, and conduct
a systematic study of leveraging LLMs to help pri-
vate training of on-device LMs.
Datasets. We focus on next word prediction task
on the StackOverflow benchmark dataset (2019) for
private federated learning. Since StackOverflow is
naturally keyed by users, each client in FL is a user
in the Stack Overflow online forum. The examples
of a client are sentences of questions and answers
posted by a specific user. We follow (Reddi et al.,
2021; Kairouz et al., 2021) to construct a validation
set of 10K samples, and a test set of 16.5M samples.
Our evaluation metric is in-vocabulary next word
(token) prediction accuracy, which is computed
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Figure 1: Next word (token) prediction accuracy for on-
device LSTM with different tokenizers in the private FL.

as the ratio of accurately predicted in-vocabulary
words to the total number of words in the sequence
(excluding OOV tokens).

In addition to StackOverflow as the (pri-
vate) dataset, we use the realnews variant
c4/realnewslike of C4 dataset (Raffel et al.,
2020), as the public dataset. We analyzed the
sources of the public C4 dataset and the Stack-
overflow dataset for private training, and verified
that there is no explicit overlap between public
C4 dataset and the private StackOverflow dataset.
More details can be found in Appendix §B.1.

3 Inspiration from LLMs

The success of publicly pre-trained LLMs motivate
us to have retrospective views on further improving
private on-device LMs. In this section, we explore
inpiration from LLMs: the use of subword tokeniz-
ers and a large public corpus for pre-training. We
apply them to on-device LMs, and observe that
both techniques bring significant performance im-
provement for private FL.

3.1 Using Public Tokenizer from LLMs

Tokenizer is an important module of LMs, which
transforms natural languages into a sequence of
predefined symbol sets (vocabulary). Prior work in
the literature of private FL of LMs (McMahan et al.,
2018; Kairouz et al., 2021; Amid et al., 2021) use
word-level unigram tokenizers potentially directly
built from user data, which may need additional pri-
vacy budget (Ponomareva et al., 2022; Bagdasaryan
et al., 2022).

Recent LLMs adopt sub-word tokenizers (Kudo
and Richardson, 2018; Sennrich et al., 2016; Schus-
ter and Nakajima, 2012), which mitigate most out-
of-vocabulary (OOV) problems and yield state-of-
the-art performance across different downstream
tasks. This motivate us to replace the prior word-
level unigram tokenizers with public sub-word to-
kenizers. Specifically, we use SentencePiece tok-
enizer (Kudo and Richardson, 2018) from LaMDA.

936



To conduct comparison between unigram tok-
enizers and subword tokenizers for next word (to-
ken) prediction task, we convert the next word pre-
diction accuracy into next token prediction accu-
racy. This conversion is achieved through splitting
each word using the SentencePiece tokenizer. We
consider all tokens within a word as accurate if the
predicted word is correct. We compare standard
SentencePiece models (vocabulary size = 32K)
with unigram tokenizers that selects the top-k fre-
quent words from user data with k = 10K or 32K
as vocabulary.

We present the private FL accuracy on the Stack-
Overflow dataset in Figure 1. For the unigram tok-
enizer, using a larger vocabulary size in the DP set-
ting can result in a slight performance drop, which
can be different from the observation in non-DP
settings (Charles et al., 2022; Xu et al., 2022a). It
is possible that the parameter increase of the em-
bedding layer enlarges the effect of DP noise and
hurts the final accuracy. However, for next token
prediction accuracy, although the public Sentence-
Piece tokenizer from LaMDA also consists of 32K
tokens, it can significantly improve the private FL
accuracy upon the unigram tokenizers, especially
with smaller DP noise and ε = 18.71. We also ob-
serve that SentencePiece tokenizer finds no OOV
tokens in the StackOverflow dataset, thus yielding
the same high prediction accuracy with or without
the OOV token. Therefore, we use SentencePiece
tokenizer in the rest of this paper.

3.2 Publicly pre-training for On-device LMs
In addition to the use of subword tokenizers, LLMs
benefit from pre-training on a large public cor-
pus (Li et al., 2022; Yu et al., 2022). In this section,
we explore pre-training on-device LMs on public
corpus to improve private federated learning.
Pre-training Details. We use the standard autore-
gressive language modeling loss LLM to pre-train
on-device LMs on the public C4 dataset, which
takes around 1, 400K steps (over a week of sin-
gle GPU time) to process the entire dataset with
the batch size of 512. We then use the publicly
pre-trained checkpoint as the start point for private
federated learning. We leave more details in §B.2.
Results. We present the next token prediction accu-
racy on the private StackOverflow dev set in Table
1. We observe that the accuracy on the private
dataset significantly improves after pre-training
for different different privacy budgets, shedding
light on an effective way to boost private FL perfor-

w/o pre-training w/ pre-training

Rounds 0 1600 0 1600

ε = 1.77 0.00 20.48 16.94 27.27
ε = 18.71 24.45 30.13

Table 1: Next Token Prediction Accuracy on the private
StackOverflow dev set with or without public pre-training.

mance. We also observe that after pre-training, it
gives reasonable zero-shot accuracy on the private
dataset even without private training (round=0).

4 Distillation from Public LLM

On one hand, the cost of public pre-training for
on-device LMs is still expensive on a large pub-
lic corpus (around a week of GPU time). On the
other hand, existing LLMs are well pre-trained and
demonstrate promising performance across a va-
riety of downstream tasks. This motivates us to
explore on whether we can leverage existing LLMs
to improve the sample efficiency of pre-training on-
device LMs. In this section, we answer the question
above with systematic studies and show that we can
improve the sample efficiency by using only 1%
of pre-training data and distillation from LLMs,
achieving similar or even better performance than
using 100% of pretrianing data without distillation.

4.1 Distillation Design

Inspired by the literature of model compression
(Sun et al., 2020; Jiao et al., 2019), we use knowl-
edge distillation to transfer the knowledge from
trained LLMs into on-device LMs during pre-
training. The distillation pipeline contains the fol-
lowing two steps:
Building a distillation corpus. Given an input
sequence from the public pre-training corpus, the
LLM outputs the probability distribution over the
vocabulary for next token prediction at each decod-
ing step. To construct a distillation corpus, we save
the top-k logits with k nonzero entries zT from the
teacher LLM as a silver-label dataset. In this way,
the distillation corpus is model-agnostic, and thus
can be applied to different variants of on-device
LMs for pre-training. Moreover, selecting a rea-
sonable top-k for the logits can both help compress
the distillation corpus to a moderate size and fil-
ter out noisy signals from tokens with low output
probabilities.
Public pre-training with distillation loss. Since
we align the tokenizer of the on-device LM with
the LLM to share the same vocabulary, we can
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Figure 2: Ablation studies on how distillation steps and top-k logits in distillation impact next token prediction accuracy (Acc.)
of on-device LSTM models on the dev set of the private StackOverflow dataset.

align the output distribution of on-device LMs and
LLMs by the cross-entropy loss. Formally, for
next token prediction task, given the output log-
its from student on-device LMs zS , the gold la-
bel from the pre-training corpus y, and the logits
from the distillation corpus of LLMs zT , we add
an additional knowledge distillation loss LKD =
CE(zS/t, zT /t) to the pre-training language mod-
eling loss LLM = CE(zS ,y) as our public pre-
training loss Lpub = LLM + βLKD where t is the
temperature. More distillation details are in §B.3.

4.2 Experimental Results
After public pre-training with knowledge distil-
lation, We use the checkpoints at different pre-
training steps as the start point for private feder-
ated learning. Our main results can be found in
Table 2. We show that by using 1% C4 dataset for
pre-training with knowlegde distillation, we can
significantly improve the sample efficiency without
hurting but even improving the private FL accuracy
for both LSTM and transformers, when compared
with public pre-training on the whole C4 dataset.
The sample efficiency improvement thus reduces
the pre-training cost from one week to around one
day, shedding light on a promising direction to im-
prove the efficiency and utility of private FL.
Ablation studies on distillation steps. To under-
stand whether distillation for more epochs can help
with private FL, we conduct a set of ablation studies
on distillation steps given different privacy budgets
as shown in Figure 2b and 2a. Specifically, we use
the checkpoints at different distillation steps to ini-
tialize on-device LSTM and report the next word
prediction accuracy after private FL at round 1600.
We observe a consistent performance improvement
when the distillation covers less than 5% of the C4
dataset. But when we pre-train the LM for more

epochs, the improvement becomes marginal. This
suggests that teaching on-device LMs via LLMs
can converge quickly within a few iterations.

Abaltion studies on top-k logits. We take the top-
k logits of the LLM to construct our distillation
datasets and pre-train the on-device LMs. Here, we
conduct an ablation study by pre-training different
on-device LMs with different k and evaluate how
top-k logits in distillation can impact the accuracy
of private FL. We present our empirical results in
Figure 2c and Appendix Figure 4. We observe
that pre-training with a larger k is more helpful to
achieve better downstream accuracy on private data.
To have a reasonable trade-off between dataset size
and pre-training performance, we use top-k = 10
in all the following experiments.

5 Distribution Matching

In the previous section, we achieve compelling
performance by employing LLM distillation using
only 1% of the randomly sampled pre-training cor-
pus. Now we further investigate the possibility of
improving sample efficiency by selectively identi-
fying public samples that align with the distribu-
tion of private samples. To this end, we propose a
novel distribution matching method to sample pub-
lic records for pre-training with a novel theoretical
analysis jointly considering public-private distri-
bution shift and DP mechanism. We demonstrate
that by carefully selected 0.08% of public samples,
we can pre-train on-device LMs that perform as
well as using 1% of public samples with distilla-
tion. This approach significantly improves sample
efficiency, providing an additional knob of using
public pre-training for private on-device models.
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Figure 3: Visualization of PPL distribution of the private and
public datasets evaluated by the private on-device LM and the
public LLM. The private dataset exhibits a concentration of
low PPL values, whereas the public corpus is dispersed across
a broader range of PPL values, with a higher average PPL.

5.1 Algorithm

We hypothesize two principles to sample public
records to match the private distribution: (i) the
probability of the public sample x on the private
data distribution ppriv(x) is high, which can be ap-
proximated by the prediction of the on-device LMs
trained on the private dataset; (ii) the probability
of a public sample x on the public data distribution
ppub(x) is also high, as we expect those samples
are easy-to-learn (Swayamdipta et al., 2020) and
of high data quality in the public corpus. The prob-
ability ppub(x) can be approximated by the public
pre-trained LLMs.

To verify our hypothesis, we visualize the per-
plexity (PPL) distribution of public samples and
private samples evaluated by both a privately fine-
tuned on-device LM and a public pre-trained LLM
in Figure 3. To have an “oracle” on-device LM
that well captures the private data distribution, we
fine-tune it on the private data without DP noise to
overfit the private data distribution. We randomly
sample 10k records from the public dataset and
private dataset, respectively. We observe that the
private dataset mostly concentrates on the regime
with low PPL evaluated by the public and private
LMs, whereas the public dataset is more diverse
and distributed across a broader range of PPL val-
ues. The distribution visualization confirms our
hypothesis to select public samples from the lower
left corner, which correspond to samples with high
probabilities ppub(x) and ppriv(x) on public and pri-
vate data distribution (i.e., low perplexity evaluated
by public and pirvate LMs).

In practice, we do not have an “oracle” on-device
LM trained on private data for distribution match.
Instead, we propose to fine-tune an on-device LM
with DP for certain rounds T ′ < T before con-
suming all the privacy budgets, and then use the
checkpoint at round T ′ with DP guarantee to ap-

Algorithm 1 Leveraging LLMs for distribution matching
and public training in private federated learning.

Input: Public pre-training corpus D, private corpus D∗,
sampling rate q, private fine-tuning rounds T , first-stage
fine-tuning rounds T ′ < T for distribution matching, a public
pre-trained LLM
Output: Private on-device LM with DP guarantee

1: Randomly initialize an on-device LM;
2: // 1© First-stage private federated learning
3: Use DP-FTRL to train the on-device LM for rounds T ′;
4: for each x ∈ D do
5: // 2© Probability evaluation
6: Compute the average (token) log prob log ppriv(x)

given the privately fine-tuned LM at round T ′;
7: Compute the average (token) log prob log ppub(x)

given a publicly pre-trained LLM ;
8: end for
9: // 3© Distribtion matching

10: Sort D based on log ppriv(x) + log ppub(x)
11: Sample a subset of D as D′ with top log ppriv(x) +

log ppub(x) values, such that |D′| = q|D|.
12: // 4© Public mid-training with LLM distillation
13: Train the on-device LM with the loss Lpub on D′

14: // 5© Second-stage private federated learning
15: Use DP-FTRL to train the on-device LM for the remain-

ing rounds of T − T ′

16: return On-device LM with DP guarantee

proximate ppriv(x) and perform distribution match-
ing to sample public records. This post-processing
based on a DP checkpoint will not incur any ad-
ditional privacy cost. Thereafter, we can use the
sampled public records to further train the private
checkpoint at round T ′, as a way for efficient pub-
lic (pre-)training. Following the strategy in §4,
we also employ the distillation loss to better train
the on-device LM with carefully sampled public
records to further enhance the sample efficiency.
Lastly, we use the remaining privacy budgets to
fine-tune the on-device LM until reaching round
T , and evaluate its next token prediction accuracy
at the dev and test sets. We term the paradigm of
two-stage private learning combined with public
training as “public mid-training”. This approach
differs from “public pre-training”, which involves
public pre-training prior to private FL. We present
the distribution matching protocol in Algorithm 1.

5.2 Theoretical Analysis

In this section, we provide the theoretical analysis
of our distribution matching protocol to present
the intuition behind our selection hypothesis. In
essence, the goal of our distribution matching al-
gorithm is to have a good estimator for the private
distribution. However, characterizing the distribu-
tion shift in the context of differential privacy is
a challenging problem, in that the private models
are trained with DP noise, which can yield an inac-
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q (% of LLM Distribution Accuracy (LSTM) Accuracy (Transformer)

Public Data) Distillation Matching ε=1.77 ε=18.71 ε=1.77 ε=18.71

No Public Training 0% 20.68±0.04 28.87±0.04 23.98±0.15 28.29±0.06

Pre-training w/ public data (T ′ = 0) 100% 28.01±0.26 30.70±0.01 28.05±0.02 30.10±0.00

· LLM Distillation (100k steps) 1% 3 28.68±0.09 31.13±0.03 27.75±0.06 30.19±0.01

· LLM Distillation (8k steps) 0.08% 3 26.18±0.04 29.53±0.10 25.31±0.08 29.36±0.12

Mid-training w/ public data (T ′ = T/2) 0.08% 26.67±0.06 29.76±0.03 25.83±0.03 29.15±0.01

· LLM Distillation (8k steps) 0.08% 3 27.01±0.03 30.18±0.06 26.04±0.12 29.47±0.05

+ Distribution Matching 0.08% 3 3 28.01±0.08 30.63±0.02 27.17±0.03 29.83±0.01

Table 2: Summary of techniques to improve downstream stream next token prediction accuracy and sample efficiency for
on-device LSTM and transformer model evaluated on the StackOverflow test set.

curate estimation of private data distribution, and
thus add the complexity to our analysis.

Problem Setup. Define the text data domain as
X . Denote `pub : X → R as the log-density func-
tion of the public data distribution (i.e., `pub(x) =
log ppub(x) where ppub(x) is the public data den-
sity estimated by public LLMs), and `priv as the
accurate log-density function of the private data
distribution (i.e., `priv(x) = log ptrue priv(x) where
ptrue priv(x) is the true private data density). How-
ever, due to limited private data sampled from the
true private data distribution and DP noise injected
in the private FL, we can only obtain an inaccurate
estimation ˆ̀priv = log ppriv(x) of the true private
log-density `priv, where ppriv(x) is the private data
density estimated by private on-device LMs. Note
that we use the hat notation ˆ̀priv to denote that it is
an estimation of the true private log-density `priv.

We can view the estimation ˆ̀priv is a random vari-
able where the randomness comes from: (i) that
the private dataset we have is sampled from the
private data distribution; and (ii) the randomness in
the algorithm of obtaining ˆ̀priv based on the private
dataset, e.g., differential privacy. Following previ-
ous work (Jiang et al., 2023), we make a standard
assumption. We assume the estimated private data
log-density function is an unbiased estimator, i.e.,
E[ˆ̀priv] = `priv. Since `pub may not be ideal be-
cause of public-private domain shift, and ˆ̀priv may
mot be ideal because of its DP noise, `pub and ˆ̀priv
are neither good estimators for `priv. Can we lever-
age both of the information and form a function
ĥ : X → R that combines `pub and ˆ̀priv such that
ĥ is a good estimator for `priv? In the following
analysis, we choose ĥ = 1

2`pub+
1
2
ˆ̀priv and analyze

when and why it can be a better estimator to the
true private log-density `priv than `pub and ˆ̀priv.

We need some mathematical tools to define what
does it mean to be “better”. Concretely, we need a
metric to measure the distance between functions.
This can be done by having an inner product 〈·, ·〉

in the function space of H = {f : X → R},
and hence the norm in the function space H is
‖f‖ =

√
〈f, f〉 for ∀f ∈ H. Our analysis holds

with any choice of the inner product as long as it
does not make the log-densities norm infinite. We
discuss a concrete choice of the inner product and
its relation to the KL divergence in Appendix §D.

With the norm as a “ruler”, we are able to define
the following key quantities that formally charac-
terize the setting.
1. Public-Private Domain Distance. Let
dpub, priv = ‖`pub − `priv‖ denote the distance
between the public data log-density `pub and the
true private log-density `priv.

2. Private Domain Randomness. Let σ2priv =

E[‖ˆ̀priv − `priv‖2] denote the randomness of the
estimated private log-density, i.e., the quality of
the estimated private log-density ˆ̀priv

The above definitions are important because the
quality of a private log-density estimator would
depend on the public-private domain shift and the
private domain randomness as we show next.

Theorem 5.1. Let ε(f̂) = E[‖f̂ − `priv‖2] charac-
terise how good f̂ is as an estimator of the true pri-
vate data log-density `priv for any random function
f̂ ∈ H. Consider the following three quantities:
1. ε(`pub) characterizing the error of the public

log-density function `pub to approximate `priv

2. ε(ˆ̀priv) depicting the error of the noisy private
log-density function ˆ̀priv to approximate `priv

3. ε(ĥ) characterizing the error of ĥ = 1
2`pub +

1
2
ˆ̀priv to approximate `priv.

Then,

ε(`pub) = d2pub, priv (1)

ε(ˆ̀priv) = σ2priv (2)

ε(ĥ) =
1

4
d2pub, priv +

1

4
σ2priv (3)

Interpretation Theorem 5.1 implies that:
• ε(ĥ) ≤ 1

2 max{ε(`pub), ε(ˆ̀priv)}.
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LSTM Transformer
ε=1.77 ε=18.71 ε=1.77 ε=18.71

w/ ppub(x) 28.01±0.08 30.63±0.02 27.17±0.03 29.83±0.01

w/o ppub(x) 27.77±0.05 30.56±0.06 26.70±0.04 30.18±0.05

Table 3: Ablation studies on the use of public LLM for
distribution matching evaluated on the StackOverflow test set.

• ε(ĥ) ≤ min{ε(`pub), ε(ˆ̀priv)} if 1
3 ≤

d2pub, priv

σ2
priv
≤ 3.

Combining the above, we have the following
conclusion: recall ĥ = 1

2`pub + 1
2
ˆ̀priv =

1
2 log(ppub(x)ppriv(x)). We can expect that ĥ is bet-
ter than either `pub or ˆ̀priv for any settings. More-
over, we can expect ĥ to be better than both `pub

and ˆ̀priv if (i) there is a domain shift between the
public-private domain; and (ii) our estimated pri-
vate log-density ˆ̀priv is noisy in an extent compara-
ble to the domain shift. We leave the full proof and
additional discussion in Appendix D.

5.3 Experimental Results

Experimental Setup. We set T ′ = T/2 = 800
rounds for the first-stage private federated learning.
We use q = 0.08% of the whole pre-training corpus
for public training, which reduces the public train-
ing time from more than 1 weeks to a few hours
with a single GPU. For the public mid-training set-
ting, we also evaluate how LLM distillation and
distribution matching can impact the private FL
accuracy, respectively. We run all the experimental
settings for three times and report the average and
standard deviation of test accuracy on the private
StackOverflow dataset.

We present the results of on-device LSTM and
transformers in Table 2. In the pre-training set-
ting (T ′ = 0), we show that we cannot further im-
prove the sample efficiency from 1% to 0.08% with
LLM distillation improves the sample efficiency,
as the final accuracy after private FL significantly
decreases. In comparison, in the mid-training set-
ting (T ′ = T/2), using LLM distillation on the
0.08% of randomly sampled pre-training corpus
already gives better performance than pre-training.
Moreover, with distribution matching to carefully
sample public data, we further improve the private
FL accuracy, attaining comparable performance
to the setting using the whole public corpus for
pre-training.
Ablation studies on ppub(x). Our distribution
matching algorithm leverages both on-device LM
and LLM to sample data close to the private dis-
tribution. To understand how the use of LLM
(ppub(x)) impact the sampling quality, we con-

T ′ 0 400 800 1200 1600

ε=1.77 25.41 27.08 27.73 26.40 18.40
ε=18.71 28.38 30.07 30.37 29.45 19.34

Table 4: Ablation studies on the timing (T ′) of distribution
matching for mid-point public training on on-device LSTM
evaluated the StackOverflow dev set.

duct an ablation study to sample a subset of D′

based on top log ppriv(x) values alone instead of
log ppriv(x)+log ppub(x). We use the ppriv-sampled
D′ for public mid-training and report the test ac-
curacy of three runs for both on-device LSTM and
transformers given different privacy budgets in Ta-
ble 3. The experimental findings corroborate our
theoretical analysis. Specifically, when on-device
language models (LMs) are trained with high noise
levels (ε = 1.77), we find that a combined utiliza-
tion of both on-device LMs and LLMs consistently
yields superior performance. This is because the es-
timated private log-density ˆ̀priv is noisy to a degree
comparable to the domain shift, making ĥ a more
reliable estimator than ˆ̀priv. Conversely, when on-
device LMs are trained with low noise (ε = 18.71),
the performance difference between models with
and without ppub is negligible. This indicates that
the noise introduced by differentially private (DP)
training is not as significant as the distribution shift,
allowing ˆ̀priv to serve as a good estimator.

Ablation studies on T ′. T ′ separates two-stage
private federated learning and determines the tim-
ing for distribution matching and public training.
In this ablation study, we evaluate the dev set ac-
curacy of on-device LSTM given different T ′ and
privacy budgets, as shown in Table 4 and Appendix
Table 5. From the table, we can see that the on-
device LSTM achieves the best private FL accuracy
given T ′ = T/2 = 800. We think the reasons are
as follows: when T ′ = 0, we cannot perform distri-
bution matching as the on-device LM is not trained
on the private dataset yet, and thus we can only
use the randomly sampled data for pre-training;
when T ′ = 400, the on-device LM could not be
well trained on the private data distribution, thus
yielding worse distribution matching quality; when
T ′ = 1200 and T ′ = 1600, the private on-device
LM is biased towards the public data distribution
due to public training, thus giving worse private FL
accuracy. As a result, we use T ′ = 800 in our main
experiments, as it balances the private federated
training and public training to have satisfactory dis-
tribution matching capabilities without biasing too
much towards the public data distribution.
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6 Conclusion

In this work, we propose to improve private feder-
ated learning by using LLMs in public training. We
leverage LLMs to aid public training of on-device
LMs via distribution matching to sample public
data close to private data distribution, which fur-
ther improves the effectiveness and efficiency of
public training, demonstrating strong private learn-
ing accuracy while minimizing the need for large
amounts of public training data. Our work sheds
light on a promising direction to improve private
federated learning with public LLMs.
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Limitations

This work has paved the way for enhancing the
utility of differentially private on-device FL models,
using large-scale public data and LLMs, but we
also acknowledge the following limitations:
• Data Distribution Matching: The proposed

distribution matching algorithm aims to sample
public data close to the private data distribu-
tion. The choice of ĥ can be data dependent and
a weighted combination of `pub and ˆ̀priv, i.e.,
ĥ = (1 − β)`pub + β ˆ̀priv where β ∈ [0, 1], as
mentioned in Appendix §D.3. In practice, the
optimal β can be an important hyper-parameter
to tune the distribution matching algorithm. Our
work mainly leverages ĥ = 1

2`pub +
1
2
ˆ̀priv to an-

alyze when and why a better estimator to the
true private log-density `priv than `pub and ˆ̀priv.
We leave it as important future direction to get
the optimal β theoretically and empirically.
• Computational Resources: The use of large-

scale public data and LLMs can improve the
privacy-utility trade-off in DP FL models, but
this often comes at the cost of computational
resources. Our work mainly focuses on LaMDA
2B as an example of LLM due to the lack of
computational resources. While our main focus
does not lie in the knowledge distillation, we

leave it as future work to extend the size of
LLMs in public pre-training.
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A Additional Related Work

Private Federated Learning in On-device NLP Federated learning is designed to collaboratively
training NLP models without sharing sensitive user data to protect user privacy. Given relatively small
model sizes, state-of-the-art differentially private (DP) learning algorithms (McMahan et al., 2018; Kairouz
et al., 2021) have enabled on-device LMs to achieve strong downstream task utility with reasonable user-
level differentially privacy guarantee (Dwork, 2010). The success of private FL has also led to real-world
applications such as GBoard, which uses on-device LMs for next word prediction (Hard et al., 2018;
Ramaswamy et al., 2020). Recent advances in DP optimization (Kairouz et al., 2021) further improves
upon the state-of-the-art DP-SGD algorithm (Abadi et al., 2016), providing a practical tool to analyze
privacy bound for federated learning.

Privacy-preserving Large NLP Models Scaling up LMs with more data and parameters has signifi-
cantly improved performance and achieved great success in a variety of NLP tasks. Moreover, recent
studies show that LLM has great potential in private learning. For example, Kerrigan et al. (2020) show
that public pre-training is helpful for downstream DP fine-tuning. Follow-up studies argue that large
pre-trained LMs can be strong differentially private learners with parameter-efficient fine-tuning (Yu et al.,
2022; Bu et al., 2022) or full model fine-tuning (Li et al., 2021), narrowing the gap between non-private
training and private training. Ganesh et al. (2023) also provide theoretical groundings on the necessity
of involving public training into private learning. Motivated by the recent success of LLMs, our work
performs comprehensive studies on how to use public data and existing LLMs to help private training of
cross-device FL models.

Model Compression for Pre-trained LMs One promising approach to address the resource limitations
of LLMs is to compress them into smaller models through various techniques such as knowledge
distillation (Jiao et al., 2019; Sun et al., 2020; Wang et al., 2020), or pruning (Elbayad et al., 2020; Gordon
et al., 2020). While these techniques have demonstrated success in reducing the size of pre-trained LMs,
most resulting models are still too large (with over 10 million parameters) to be effectively deployed on
resource-constrained devices. In our work, we also explore the use of knowledge distillation in public
training, but with a primary focus on leveraging LLMs to improve sample efficiency in pre-training
on-device LMs. We aim to improve the private FL performance of on-device LMs while minimizing the
need for large amounts of training data. We recognize that private federated learning can further benefit
from advanced model compression techniques, and we leave this as a promising and orthogonal future
direction for research in this area.

B Experimental Setup Details

B.1 Verification of Non-overlap between C4 and StackOverflow Datasets

StackOverflow contains 342K clients for training with 135.8M examples. In this section, we detail the
method used to verify that there is no explicit overlap between the public C4 dataset and the private
StackOverflow dataset utilized in our study.

We explored C4 which has multiple variants1: c4/en, c4/realnewslike, and
c4/webtextlike.

To verify this hypothesis, we conducted a rigorous comparison of these two datasets and its variants.
Specifically, we compared the unique identifiers (e.g., URL for webpages in the C4 dataset, and post ID
for StackOverflow posts) between the two datasets.

No matching identifiers were found between the c4/realnewslike and the StackOverflow dataset.
Thus we use the c4/realnewslike variant as our public pretraining corpus throughout the experiment.

Through this comprehensive comparison, we have confirmed that there is no explicit overlap between
the public C4 dataset and the private StackOverflow dataset. This conclusion is critical to our study as it
ensures that the integrity and privacy-preserving conditions of our experiment are maintained.

1https://www.tensorflow.org/datasets/catalog/c4
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B.2 Pretraining Details

In this section, we outline the detailed procedures followed during the pretraining phase of our experiments.
The pretraining phase consisted of the following steps:

1. Data Preparation: We tokenized both the C4 and StackOverflow datasets using the SentencePiece
tokenizer, as described in the main text. The vocabulary size was set to 32K for both datasets.

2. Model Architecture: We follow previous work (Wang et al., 2021; Amid et al., 2021; Kairouz et al.,
2021; Wu et al., 2022) and use one-layer LSTM and transformer. Both LSTM and transformer has a
hidden size of 670 and embedding size of 96.

3. Training Procedure: We trained the model using a standard autoregressive LM loss for next token
prediction.

4. Training Hyperparameters: We employed the Adam optimizer with a learning rate of 1e-3, a batch
size of 512, and a maximum sequence length of 20 tokens. We also used gradient clipping to prevent
exploding gradients. The model was pretrained for 1400K steps on the C4 dataset to cover the whole
C4 pretraining corpus.

After pretraining, the model was then fine-tuned on the downstream task using federated learning with
differential privacy. Further details regarding the fine-tuning process can be found in the relevant sections
of the main text. We show that the pretraining procedure can significantly improve the model’s robust
performance in the downstream task performance.

B.3 Distillation Details

In this section, we delineate the specifics of our distillation process during the pretraining phase of our
on-device LM. The pretraining procedure with distillation is mostly the same as details outlined in B.2
with slight hyper-parameter differences.

We set the temparature t = 1 and top-k = 10 to extract the logits zT from teacher LLM. We use grid
search to tune the best hyper-parameter β ∈ {1e− 1, 1e− 2, 1e− 3} and follow the same pre-training
schedules as §3.2 but with a smaller batch size of 128 due to memory constraints.

C Additional Experimental Results

Hyper-parameter Tuning for Federated Learning Federated learning involves numerous hyperpa-
rameters, which is crucial for our experiment. Our hyper-parameter tuning strategy follows Xu et al.
(2022b).

Throughout our experiments, we fix the number of total rounds T = 1600. In each round, we select 100
clients from the shuffled pool for DP-FTRL, ensuring that the clients are disjoint across rounds. Within
each client, we fix the number of local epochs to one and set the batch size to 16. We also impose a
constraint on the maximum number of samples on each client, limiting it to 256.

We tune the server learning rate, client learning rate and clip norm for a certain given a noise multiplier.
Specifically, we use grid search and tune the server learning rate from {0.05, 0.1, 0.2, 0.5, 1, 2}, the client
learning rate from {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}. We use the adaptive clipping technique in (Andrew
et al., 2021; Xu et al., 2023) to help determine the clip norm, which in most of our experiments falls into
{0.1, 0.3, 0.4, 1}.

Abaltion studies on top-k logits We take the top-k logits of the LLM to construct our distillation
datasets and pre-train the on-device LMs. Here, we conduct an ablation study by pre-training different
on-device LMs with different k and evaluate how top-k logits in distillation can impact the accuracy
of private FL. We present our empirical results in Figure 2c and Appendix Figure 4. We observe that
pre-training with a larger k is more helpful to achieve better downstream accuracy on private data. To
have a reasonable trade-off between dataset size and pre-training performance, we use top-k = 10 in all
the following experiments.
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Figure 4: Ablation studies on how distillation steps and top-k logits in distillation impact next token prediction accuracy (Acc.)
of on-device LSTM models on the private StackOverflow dataset.

Ablation studies on the timing T ′ for mid-training T ′ separates two-stage private federated learning
and determines the timing for distribution matching and public training. In this ablation study, we evaluate
the dev set accuracy of on-device LSTM given different T ′ and privacy budgets, as shown in Table 4
and Appendix Table 5. From the table, we can see that the on-device LSTM achieves the best private FL
accuracy given T ′ = T/2 = 800. We think the reasons are as follows: when T ′ = 0, we cannot perform
distribution matching as the on-device LM is not trained on the private dataset yet, and thus we can only
use the randomly sampled data for pre-training; when T ′ = 400, the on-device LM could not be well
trained on the private data distribution, thus yielding worse distribution matching quality; when T ′ = 1200
and T ′ = 1600, the private on-device LM is biased towards the public data distribution due to public
training, thus giving worse private FL accuracy. As a result, we use T ′ = 800 in our main experiments, as
it balances the private federated training and public training to have satisfactory distribution matching
capabilities without biasing too much towards the public data distribution.

T ′ 0 400 800 1200

ε=1.77 25.41 26.43 26.73 25.20
ε=18.71 28.38 29.55 29.70 28.93

Table 5: Ablation studies on the timing (T ′) of mid-point public training for on-device LSTM w/o distribution matching.

D Detailed Theoretical Results

D.1 Discussion on the distance metrics of log-density functions

We need to define a meaningful distance metric in order to define the closeness of two log-density
functions. To do this, we can choose any inner product 〈·, ·〉 in the function space ofH = {f : X → R}.
Note that the log-density functions `pub, `priv, ˆ̀priv ∈ H. Accordingly, the norm in the function spaceH is
denoted as ‖ · ‖ and by definition ∀f ∈ H : ‖f‖ =

√
〈f, f〉.

We note that our analysis works for any choice of the inner product as long as they don’t make the
log-densities norm infinite. For a concrete example, we discuss a generalization of the L2 inner product,
i.e., the Lπ inner product where π is a distribution on X .

Formally, for this example of H = Lπ we define 〈f, g〉π = Ex∼π[f(x)g(x)] and ‖f‖π =√
Ex∼π[f(x)2].
The Lπ is a rather general definition that is common in the literature of Bayesian coresets (Zhang et al.,

2021; Campbell and Broderick, 2019) and kernel machine (Rahimi and Recht, 2007). For example, it
recovers L2 if π is chosen to be the uniform distribution on X .

Moreover, if we choose π = ppriv as the private data density, we can show that for any probability
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density function p, the distance between log p and log ppriv measured by Lppriv norm upper bounds the KL
divergence between ppriv and p:

‖ log p− log ppriv‖2π = Ex∼ppriv [(log p(x)− log ppriv(x))
2] = Ex∼ppriv

(
log

p(x)

ppriv(x)

)2

(4)

≥
(

Ex∼ppriv log
p(x)

ppriv(x)

)2

(Jensen’s Inequality)

= (KL(ppriv|p))2 (5)

In general, the distribution π characterize where in X we want to evaluate a function.
Above we discuss a concrete choice of the inner product and the accordingly the norm to measure the

distance between log-density functions. Since our analysis will work with any choice of inner product, we
return to using the notation of 〈·, ·〉 and ‖ · ‖ to remain generality in our main result.

D.2 Proof
Theorem D.1 (Theorem 5.1 Restated). Let ε(f̂) = E[‖f̂ − `priv‖2] characterise how good f̂ is as an
estimator of the true private data log-density `priv for any random function f̂ ∈ H. Consider the following
three quantities:
1. ε(`pub) that characterizes the error if we use the public log-density function `pub to approximate the
`priv

2. ε(ˆ̀priv) that characterizes the error if we use the noisy private log-density function ˆ̀priv to approximate
the `priv

3. ε(ĥ) that characterizes the error if we use ĥ = 1
2`pub +

1
2
ˆ̀priv to approximate the `priv.

Then,

ε(`pub) = d2pub, priv (6)

ε(ˆ̀priv) = σ2priv (7)

ε(ĥ) =
1

4
d2pub, priv +

1

4
σ2priv (8)

Proof. We prove a general result which gives the theorem as special cases. For β ∈ [0, 1], define

f̂β = β`pub + (1− β)ˆ̀priv. (9)

According to the definition of ε(f̂β) = E[‖f̂β − `priv‖2], we have

ε(f̂β) = E[‖f̂β − `priv‖2] = E[‖β`pub + (1− β)ˆ̀priv − `priv‖2] (10)

= E[‖β(`pub − `priv) + (1− β)(ˆ̀priv − `priv)‖2] (11)

= β2‖`pub − `priv‖2 + (1− β)2E
[
‖ˆ̀priv − `priv‖2

]
+ 2β(1− β)E

[
〈`pub − `priv, ˆ̀priv − `priv〉

]

(12)

= β2d2pub, priv + (1− β)2σ2priv + 2β(1− β)〈`pub − `priv,E[ˆ̀priv]− `priv〉 (13)

= β2d2pub, priv + (1− β)2σ2priv + 0 (14)

= β2d2pub, priv + (1− β)2σ2priv (15)

Therefore, we can see that the theorem stands as we substitute f̂1 = `pub, f 1
2
= ĥ, and f̂0 = ˆ̀priv.

D.3 Extended Analysis
Note that in the previous subsection the f̂β is a weighted combination of `pub and ˆ̀priv, i.e., f̂β =

(1 − β)`pub + β ˆ̀priv where β ∈ [0, 1]. Therefore, one can show that with the optimal weight β?, it is
guaranteed that ε(f̂β?) ≤ min{ε(`pub), ε(ˆ̀priv)}.

This framework of analysis is general (as it stands with any meaningful inner product and its norm), and
it may inspire even better ways to design estimators mitigating the domain shift and private model noise.
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