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Abstract

Pretrained Language Models (PLMs) benefit
from external knowledge stored in graph struc-
tures for various downstream tasks. However,
bridging the modality gap between graph struc-
tures and text remains a significant challenge.
Traditional methods like linearizing graphs for
PLMs lose vital graph connectivity, whereas
Graph Neural Networks (GNNs) require cum-
bersome processes for integration into PLMs.
In this work, we propose a novel graph-
guided self-attention mechanism, GraSAME.
GraSAME seamlessly incorporates token-level
structural information into PLMs without ne-
cessitating additional alignment or concatena-
tion efforts. As an end-to-end, lightweight mul-
timodal module, GraSAME follows a multi-
task learning strategy and effectively bridges
the gap between graph and textual modali-
ties, facilitating dynamic interactions between
GNNs and PLMs. Our experiments on the
graph-to-text generation task demonstrate that
GraSAME outperforms baseline models and
achieves results comparable to state-of-the-art
(SOTA) models on WebNLG datasets. Further-
more, compared to SOTA models, GraSAME
eliminates the need for extra pre-training tasks
to adjust graph inputs and reduces the number
of trainable parameters by over 100 million.

1 Introduction

The paradigm of pre-training and fine-tuning has in-
creasingly become the standard approach for lever-
aging the inherent knowledge of language models
in a wide range of Natural Language Processing
(NLP) tasks (Xu et al., 2021). Pretrained Language
Models (PLMs) like Transformer (Vaswani et al.,
2017), T5 (Raffel et al., 2020), and GPT (Brown
et al., 2020), which are trained on extensive text cor-
pora, have demonstrated remarkable performance
across various NLP challenges. However, these
models primarily focus on textual data, present-
ing a significant limitation in processing structured

information, such as Knowledge Graphs (KGs),
molecular graph and social networks. Such graph
structures are crucial for storing external knowl-
edge and can significantly enhance PLM’s perfor-
mance on knowledge-driven tasks (Zhang et al.,
2019; Peters et al., 2019). This limitation becomes
particularly evident in tasks that require a deep
understanding of both textual and structural data,
such as graph-to-text generation (Gardent et al.,
2017), KG-based fact checking (Kim et al., 2023),
and translation between molecules and natural lan-
guage (Edwards et al., 2022).

To address the challenge of processing structural
input in PLMs, recent research has explored two
main strategies: linearizing graph structures into
text sequences (Harkous et al., 2020; Ribeiro et al.,
2021a; Schmitt et al., 2021), and encoding struc-
tural information using Graph Neural Networks
(GNNs) (Yao et al., 2020; Ribeiro et al., 2021b;
Li et al., 2021; Zhang et al., 2022). While lin-
earization allows direct fine-tuning of PLMs, stud-
ies have shown that it often fails to preserve the in-
herent structural information and explicit node con-
nectivity (Song et al., 2018; Ribeiro et al., 2019).
Conversely, while GNNs effectively encode com-
plex structures, the modality difference between
text and graphs complicates the integration with
PLMs, requiring additional training for aligning
and concatenating embeddings from graph and tex-
tual modality (Li et al., 2021; Zhang et al., 2022).

To merge the strengths of PLMs and GNNs, we
introduce GraSAME, a novel Graph-guided Self-
Attention MEchanism, enhancing PLMs’ ability
to process graph inputs. As depicted in Figure 1,
we construct a token-level hierarchical graph struc-
ture from the linearized graph sequence to maintain
the input graph’s structural integrity. GraSAME
is designed to learn the token-level graph infor-
mation from a GNN and integrate it seamlessly
into the text representation for PLM. Based on a
standard transformer architecture, we substitute the
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Figure 1: An example of KG-to-text generation. We visualize the hierarchical graph structure derived from the
linearized graph input, tokenized by T5-large tokenizer. Each token from the input text is depicted as a node. Various
relation types, each indicated by a unique color, are assigned between nodes to establish the hierarchical structure
and ensure effective information flow among neighboring nodes.

self-attention layers in the encoder with GraSAME.
As GraSAME effectively encodes the graph struc-
ture, we train only its parameters while keeping the
PLM’s parameters frozen. This approach enables
PLMs equipped with GraSAME to simultaneously
process structural and textual information dynami-
cally, eliminating the need for complex alignment
or concatenation of different modalities.

Applied to KG-to-text generation task WebNLG,
we integrate GraSAME into the encoder-decoder
model T5 with multi-task fine-tuning. The KG-to-
text generation is particularly suitable as it neces-
sitates the processing of both graph and text infor-
mation, providing a clear intuition to assess the ef-
fectiveness of GraSAME. Our experiments demon-
strate that GraSAME is compatible with various
GNN architectures such as GraphSAGE (Hamilton
et al., 2017), GAT (Veličković et al., 2018) and
RGCN (Schlichtkrull et al., 2018), yielding perfor-
mance that not only surpasses baseline models but
also comparable to state-of-the-art (SOTA) mod-
els. Moreover, GraSAME effectively integrates
structural information purely during fine-tuning
and saves over 100 million trainable parameters.

In summary, our contributions are: i) Introduc-
ing a novel graph-guided attention mechanism
GraSAME to incorporate explicit structural in-
formation into PLMs. This innovation enables
PLMs to process both textual and structural in-
puts smoothly, bridging the modality gap of GNNs

and PLMs. With GraSAME, PLMs can dynam-
ically interact with GNNs, effectively interpret-
ing graph inputs, which is crucial for NLP tasks
that require structural information. ii) Applying
GraSAME to KG-to-text generation on WebNLG
datasets, achieving results comparable to SOTA
models while saving over 100 million trainable
parameters.

2 Related Work

Structural Information for PLMs. Although
PLMs inherit linguistic structure information from
pre-training (Nie et al., 2024), external structural
information helps PLMs enhance their ability to
understand the syntax of natural language (Yang
et al., 2022), summarize source code (Choi et al.,
2021) and generate better text (Song et al., 2020).
Much initial focus of infusing structural informa-
tion into PLMs has been on modifying pre-training
objectives (Peters et al., 2019; Xiong et al., 2020;
He et al., 2020). Zhang et al. (2019) utilized both
textual corpora and KGs to pre-train an enhanced
language representation model. Ke et al. (2021)
proposed three new pre-training tasks to explicitly
enhance the graph-text alignment. Also, recent
efforts increasingly aimed at injecting structural in-
formation into PLMs during fine-tuning for various
NLP tasks (Yasunaga et al., 2021; Ribeiro et al.,
2021b). Wang et al. (2021) proposed K-Adapter to
infuse knowledge into PLMs. Zhang et al. (2022)
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came up with GreaseLM model to utilise KG infor-
mation for question answering.

KG-to-text Generation. Previous approaches
to enabling PLMs to process graph inputs often
relied on linearizing the input graph into a text se-
quence (Harkous et al., 2020; Mager et al., 2020;
Ribeiro et al., 2021b; Colas et al., 2022). Ribeiro
et al. (2021a) investigated PLMs on graph-to-text
generation using linearized graphs and found that
this method is effective, yet results in the loss of
specific edge connections in graphs (Song et al.,
2018; Beck et al., 2018; Ribeiro et al., 2019).
Also, Yuan and Faerber (2023) evaluated gener-
ative models using linearized graph and uncovered
the issues of hallucinations in the models. An al-
ternative approach to encode the graph inputs is
leveraging GNNs (Koncel-Kedziorski et al., 2019;
Ribeiro et al., 2020). But this method typically
entails additional steps such as aligning modalities
and concatenating embeddings (Li et al., 2021),
which adds complexity to the development of a
seamless end-to-end pipeline for integrating GNN
with PLM. Diverging from the previous methods,
our work synthesizes the strengths of both lin-
earized graph and GNN. Moreover, GraSAME also
follows a lightweight fine-tuning avoiding updat-
ing the parameters of the whole model, inspired
by the adapter and parameter-efficient fine-tuning
approaches (Houlsby et al., 2019; Ribeiro et al.,
2021b; Wang et al., 2021; Yuan et al., 2024).

3 Model

In this section, we detail the components of our
model. Theoretically, GraSAME is adaptable to
any attention-based PLMs. We choose T5 model
(Raffel et al., 2020) as our foundation due to its
encoder-decoder architecture, which is well-suited
for KG-to-text generation.

3.1 Encoder-Decoder Model

Encoder-decoder model, such as T5, is a classic
Transformer model consisting of encoder and de-
coder layers. Each encoder layer includes two dis-
tinct sublayers: a self-attention mechanism and
a position-wise fully connected feed-forward net-
work. The self-attention mechanism utilizes h dis-
tinct attention heads. Consider a conditional gen-
eration task such as KG-to-text generation, where
the input is a sequence of tokens x = (x1, . . . , xn)
with each xi ∈ Rdx , and the aim is to generate
target sequence of tokens y = (y1, . . . , yn). The

attention head processes an input sequence, the out-
puts of all attention heads are merged via concate-
nation, followed by a parameterized linear transfor-
mation to yield the final output of the self-attention
sublayer. The computation of each output element
zi, with each zi ∈ Rdz , involves a weighted sum of
linearly transformed input elements, defined as:

zi =

n∑

j=1

αij(xjW
V ), (1)

where αij represents the weight coefficient, calcu-
lated using a softmax function:

αij = softmax(
(xiW

Q)(xjW
K)T√

dk
). (2)

The matrices W V ,WQ,WK ∈ Rdx×dz are layer-
specific trainable parameters, and are distinct for
each attention head.

3.2 Graph-guided Self-Attention Mechanism

Self-attention allows for the interaction of token
representations by treating each input sequence as
a fully-connected graph with tokens as nodes (Yao
and Wan, 2020). However, this process does not
retain the original structural information and ex-
plicit connectivity between the tokens. To address
this issue, we introduce GraSAME, a method that
integrates text with token-level hierarchical graph
representation illustrated in Figure 1.

3.2.1 Architecture of GraSAME

GraSAME involves incorporating a GNN within
the self-attention layer of the PLM. This addi-
tion enables the direct encoding of the hierarchical
graph structure and facilitates the smooth transfer
of structural information into the PLM. We visual-
ize the architecture in Figure 2.

Graph Neural Network. The graph neural net-
work models structural characteristics of the input
graph effectively by using various graph convolu-
tional layers. The primary goal of the GNN is to
learn the representations for both individual nodes
and the overall graph structure. In most GNN mod-
els, the node representation is updated iteratively
by aggregating the representations of its neighbor-
ing nodes. The representation of node vi at the
l-th layer is represented by h(l), with the initial
representation h(0) set to the node’s feature vector
xi. The process of representation update at the l-th
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Figure 2: The architecture of GraSAME. The
text embedding x is fed into a GNN along with the

edge index derived from the hierarchical graph structure.
This process generates a graph embedding x̃ , which
subsequently induces the Q vector. The Q vector then
guides the self-attention mechanism to produce a graph-
aware representation z̃. The visualization of GNN is
taken from GraphSAGE (Hamilton et al., 2017).

layer involves two main operations:

a(l) = AGGREGATE(l)
(
{h(l−1)

j : j ∈ N (vi)}
)
,

(3)

h
(l)
i = COMBINE(l)

(
h
(l−1)
i , a(l)

)
, (4)

where N (vi) denotes the neighbors of vi. The
AGGREGATE function compiles message pass-
ing from these neighbors, using techniques like
MEAN, MAX, or SUM, varying with the GNN
architecture. The COMBINE function then inte-
grates this aggregated information into the node’s
current representation, thereby updating it.

Incorporating Method. Drawing inspiration
from the multimodal self-attention layer by Yao
and Wan (2020), we present a graph-guided self-
attention architecture designed to simultaneously
encode text representation and hierarchical graph
structure. In our approach, all tokens in the input
text are treated as nodes, with their initial features
derived from the token representations in h(l). As
shown in Figure 2, the token representations are
aggregated and updated through a GNN layer. This
process generates the vector Q, which subsequently

guides the self-attention layer in the encoder of the
PLM.

Formally, we adapt Equation 2 such that the
weight coefficient α̃ij is derived from the node
representation x̃i in the graph modality, and the
token representation xj from the text modality:

α̃ij = softmax
(
(x̃iW

Q)(xjW
K)T√

dk

)
. (5)

The output of the self-attention layer is then calcu-
lated as:

z̃i =
n∑

j=1

α̃ij(xjW
V ). (6)

This modification ensures that the hidden word rep-
resentations are influenced by the graph embedding.
In each encoder layer of the model, we incorporate
residual connections and layer normalization. The
standard self-attention layer in the encoder is re-
placed with GraSAME, while the decoder retains
the standard Transformer implementation. In the
encoder’s final layer, z̃i serves as the input to the
decoder, which generates the target sequence.

3.2.2 Graph Representation
As PLMs are designed to process textual input only,
it becomes necessary to perform certain preprocess-
ing steps when addressing graph-based NLP tasks.
Considering the task of KG-to-text generation, we
represent the graph input as a linearized graph fol-
lowing prior studies (Harkous et al., 2020; Ribeiro
et al., 2021a), and also extract a token-level hierar-
chical graph structure to ensure information flow
among neighboring nodes.

Linearized Graph. In line with Ribeiro et al.
(2021a), we linearize the graph into a sequence of
text augmented with special tokens. As depicted
in Figure 1, a KG triple is composed of a head,
relation, and tail entity. Accordingly, we prepend
each entity with special tokens: <H>, <R>, <T>.
Furthermore, to distinguish between text and graph
inputs, we introduce the <Graph> token.1 Previ-
ous work (Ribeiro et al., 2021a) suggests that PLMs
generate fluent text regardless of the linearization
order of the graph. Hence we adhere to the default
sequence in which triples appear in the dataset.

Hierarchical Graph Structure. We derive a
token-level hierarchical graph structure from the
linearized graph, as depicted in Figure 1. The

1For the KG-to-text generation task, the prompt “translate
graph to English: ” is added as a task description to match the
input format of T5.
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concept of this hierarchy is inspired by the tree-
like structures observed in functional organizations
such as companies, universities, and even insect
societies (Pooler, 2017; Anderson et al., 2001), and
has been explored in neural network research for
knowledge representation as well (Ying et al., 2018;
Moutsinas et al., 2021; Chen et al., 2020). In this
structure, each token dynamically interacts within
its hierarchical tier through message passing, which
we believe helps preserve the graph’s original ex-
plicit connectivity and ensures effective informa-
tion flow among neighboring nodes. Formally, let’s
consider a graph G = (V, E ,R), where V is the set
of nodes and E comprises labeled edges of the form
(u, r, v). Here, u and v represent nodes in V , and r
from R denotes the relation type. In our structure,
each token in the linearized graph is considered
as a node, and we define specific relation types r
between two nodes to enhance the hierarchy:

1. r1 connects the global node <Graph> to spe-
cial tokens <H>, <R>, <T>.

2. r2 links adjacent special tokens within a triple.

3. r3 connects special tokens to their respective
entity tokens.

4. r4 joins consecutive tokens within entities.

5. r5 associates special tokens sharing the same
entity.

An example of such a hierarchical graph is pre-
sented in Figure 1. We design the edges to be bidi-
rectional, as this approach of information propaga-
tion in multiple directions can enhance the model’s
performance (Yao et al., 2020).

4 Multi-Task Fine-Tuning

Our training approach employs a multi-task learn-
ing strategy with efficient, lightweight fine-tuning.
We initialize the model with pretrained parame-
ters denoted by ϕ. The parameters of the PLM re-
main frozen, and only the GNN component within
GraSAME is updated, given its effective encoding
of graph structure.

4.1 Training Objectives

We retain the standard language model objective
of generating the next token in a sequence while
introducing an additional graph reconstruction task.
This task is designed to strengthen the relation

types between pairs of nodes, enhancing the hi-
erarchy.

Text Generation. The text generation task is
implemented by a PLM with a language modeling
head on top. Given an input sequence x and a graph
representation G, the model aims to generate a tar-
get sequence y by minimizing the cross-entropy
loss:

LTG = −
|y|∑

i=1

logPϕ(yi|y1:i−1, x,G), (7)

where Pϕ is the generative probability from PLM.
Graph Reconstruction. Building on previous

work that focused on predicting relationships be-
tween entities (Song et al., 2020; Li et al., 2021),
our approach reformulates the graph reconstruction
task. We aim to predict the relation type r in the
triple (u, r, v), where u and v are nodes in the hier-
archical graph structure. Node representations hu
and hv are derived from the last hidden states of
the PLM’s encoder. Consequently, the probability
of relation r is given by:

p(r|u, v) = softmax(W [hu;hv] + b), (8)

where W and b are trainable parameters. The loss
for graph reconstruction is computed using cross-
entropy loss:

LGR = −
∑

⟨u,r,v⟩∈E
log p(r|u, v). (9)

We integrate the text generation loss and the
graph reconstruction loss to train the PLM. The
overall training loss is defined as follows:

Ltotal = LTG + λLGR, (10)

where λ is a weighting coefficient.2

5 Experiments

In this section, we introduce the details of our exper-
iments on KG-to-text generation task. We modify
T5 for conditional generation from Huggingface
(Wolf et al., 2019), and implement GraSAME with
the GNN layers provided by PyTorch Geometric
(Fey and Lenssen, 2019).

2We observed that the value of λ significantly impacts
performance. After tuning on the validation set of the WebNLG
unconstrained dataset, we set λ to 0.08, which yielded the
best BLEU score. Further details are provided in Appendix C.
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5.1 Dataset

WebNLG3 (Gardent et al., 2017) is a commonly-
used benchmark in KG-to-text generation (Chen
et al., 2020; Li et al., 2021; Li and Liang, 2021;
Colas et al., 2022; Ke et al., 2021). We employ
WebNLG version 2.1 for our experiments, as it
represents a refined version of the widely-used ver-
sion 2.0 (Shimorina and Gardent, 2018; Chen et al.,
2020; Ke et al., 2021; Colas et al., 2022). This ver-
sion offers two distinct splits: unconstrained and
constrained.

WebNLG unconstrained. Each WebNLG sam-
ple comprises several KG triples and a correspond-
ing descriptive text. The triples are structured as
(head, relation, tail) and the model is supposed to
generate fluent text to describe the input triples. An
illustrative example is presented in Figure 1. In the
unconstrained dataset, there is no overlap of input
graphs between the train, validation, and test sets.

WebNLG constrained. The data structure of
constrained is as same as unconstrained dataset.
However, the constrained dataset presents a greater
challenge by ensuring that there is no overlap of
triples in the input graphs across train, validation
and test sets.

5.2 Setting

As an enhancement of self-attention mechanism, a
foundational model is required for the implementa-
tion of GraSAME. For our experiments, T5-large
serves as the foundational model. Prior to training,
we expand T5’s vocabulary to include the special
tokens <H>, <R>, <T>, and <Graph>. To ensure
fair comparisons, we maintain consistent hyper-
parameters across both the baseline and our mod-
els.4 All models are fine-tuned with the training
set. The BLEU score on validation set is employed
to identify the best-performing model, which is
subsequently evaluated on the test set.

Evaluation Metrics. To evaluate the perfor-
mance of the models, we use the automatic evalu-
ation metrics BLEU (Papineni et al., 2002), ME-
TEOR (Denkowski and Lavie, 2014), ROUGE-L
(Lin, 2004) and chrF++ (Popović, 2015) follow-
ing previous work (Shimorina and Gardent, 2018;
Ribeiro et al., 2021a). The evaluations are con-
ducted using the official evaluation script from

3https://synalp.gitlabpages.inria.fr/
webnlg-challenge/

4Details on the hyper-parameters are provided in Appendix
A.

the WebNLG challenge (Shimorina and Gardent,
2018).

Baseline. T5-large is employed as the baseline
model. Previous research (Ribeiro et al., 2021a;
Ke et al., 2021) has demonstrated T5’s SOTA per-
formance on graph-to-text generation, making it
a robust baseline (Clive et al., 2022). This choice
allows for a fair comparison with our approach.

GraSAME is integrated into the T5-large model
for our experiments. We investigate the efficacy of
different GNNs for encoding the hierarchical graph
structure and denote them as:

GraSAME-GAT. Graph Attention Network
(GAT) (Veličković et al., 2018) is used as the GNN
component in GraSAME. GAT utilizes an atten-
tion mechanisms to aggregate the information from
neighbouring nodes.

GraSAME-RGCN. We also integrate Rela-
tional Graph Convolutional Network (RGCN)
(Schlichtkrull et al., 2018) with GraSAME. RGCN
extends the Graph Convolutional Network (Kipf
and Welling, 2016), enabling it to process local
graph neighborhoods within large-scale relational
data.

GraSAME-SAGE. GraphSAGE (Hamilton
et al., 2017) is an inductive framework that ef-
ficiently generates node embeddings for unseen
nodes by leveraging node feature information. We
also combine it with GraSAME.

5.3 Evaluation Results
5.3.1 Main Results

Model A P B M R C

GCN ✗ - 60.80 42.76 71.13 -
KGPT ✓ 177M 64.11 46.30 74.57 -
JointGT(T5) ✓ 265M 66.14 47.25 75.91 -

T5-large ✗ 737M 61.41 45.96 71.70 75.27
GraSAME-GAT ✗ 75.7M 60.44 44.91 70.73 72.49
GraSAME-RGCN ✗ 453M 60.26 44.46 70.93 71.88
GraSAME-SAGE ✗ 151M 65.55 48.38 74.55 77.34

Table 1: Results on WebNLG unconstrained. A denotes if
additional pre-training tasks are implemented or not. P = Train-
able parameters, B = BLEU, M = METEOR, R = ROUGE,
C = chrF++. The results of GCN, KGPT, JointGT(T5) are
re-printed from Shimorina and Gardent (2018), Chen et al.
(2020) and Ke et al. (2021), respectively. Bold indicates the
best score of the models we trained. Underline indicates the
best score of SOTA models in previous work.

We present the primary results for WebNLG un-
constrained in Table 1. Remarkably, our leading
model, GraSAME-SAGE, surpasses the baseline
T5-large in all metrics, despite having over 500
million fewer trainable parameters. We believe this
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Model 1 triple 2 triples 3 triples 4 triples 5 triples 6 triples 7 triples

T5 46.81 67.58 64.39 64.86 58.73 68.91 62.97
GraSAME +7.80 +1.85 +3.05 +2.52 +3.73 -2.83 +8.61

Table 2: BLEU scores for different graph sizes in WebNLG unconstrained test set. T5 is the baseline model T5-large,
GraSAME is the best performed model GraSAME-SAGE. +, - denote the difference of scores.

is due to the powerful encoding ability of Graph-
SAGE for unseen nodes (for example, the special
tokens we add to the model’s vocabulary manu-
ally). Although other models don’t outperform the
baseline T5, they still achieve noteworthy perfor-
mance, achieving BLEU scores of over 60 with
much fewer trainable parameters than baseline.

For comparison, we also include the results of
the SOTA models from related work. Notably,
GraSAME-SAGE outperforms GCN and KGPT
on BLEU and METEOR scores, and achieves per-
formance comparable to JoinGT(T5). Our ME-
TEOR score of 48.38 is even higher than that of Jo-
inGT(T5). It is worth mentioning that both KGPT
and JointGT are pre-trained with additional tasks
to fine-tune KG-to-text generation. Additionally,
JointGT(T5) has 114 million more trainable pa-
rameters than GraSAME-SAGE. This highlights
the efficiency of our approach, demonstrating that
GraSAME can enhance PLMs by leveraging token-
level structural information for KG-to-text genera-
tion.

The results for WebNLG constrained are similar
as for WebNLG unconstrained. As illustrated in
Table 3, GraSAME-SAGE outperforms the base-
line T5, while our other models achieve compa-
rable results to it with higher BLEU scores and
fewer trainable parameters. In comparison to Jo-
inGT(T5), GraSAME-SAGE maintains over 98%
performance with fewer than 114 million trainable
parameters, and it doesn’t require additional pre-
training tasks. This prove the generalization of
our method under the constrained condition, where
there is no overlap between training and test triples.

5.3.2 Detailed Analysis on Graph Size
We conduct a comprehensive analysis focusing on
input graph size, as detailed in Table 2. Notably,
GraSAME consistently improves the BLEU scores
across various input triple counts, except for six-
triple inputs. The most pronounced improvement
occurs with seven-triple inputs, where the BLEU
score surpasses the baseline by 8.61. Seven-triple
inputs form the most complex graph structure in the

Model A P B M R C

JointGT(T5) ✓ 265M 61.01 46.32 73.57 -

T5-large ✗ 737M 58.77 46.12 72.01 73.22
GraSAME-GAT ✗ 75.7M 59.21 45.38 71.01 72.79
GraSAME-RGCN ✗ 453M 60.13 45.47 71.79 72.88
GraSAME-SAGE ✗ 151M 60.27 45.81 72.01 73.29

Table 3: Results on WebNLG constrained. A denotes if addi-
tional pre-training tasks are implemented or not. P = Trainable
parameters, B = BLEU, M = METEOR, R = ROUGE, C =
chrF++. The results of JointGT(T5) are re-printed from Ke
et al. (2021). Bold indicates the best score of the models we
trained.

test set, highlighting the efficacy of GraSAME in
fortifying the PLM’s capacity to process complex
graph inputs through token-level structural inte-
gration. Interestingly, a significant improvement
also emerges in one-triple input graphs, likely due
to the baseline model’s propensity for generating
hallucinations with shorter input graphs.5

5.4 Human Evaluation

Model Fluency Meaning

Gold 5.59 5.71
T5 5.57 5.41
GraSAME 5.56 5.62

Table 4: Human evaluation on WebNLG unstrained. T5
denotes the baseline model T5-large, GraSAME denotes
GraSAME-SAGE. The Fleiss’ Kappa κ is 0.42, which in-
dicates moderate agreement.

To further assess the quality of the generated text,
we conduct a human evaluation using the crowd-
sourcing platform Amazon Mechanical Turk.6 We
randomly select 100 texts generated by both base-
line and GraSAME-SAGE models, along with their
corresponding gold standard references. In line
with previous studies (Castro Ferreira et al., 2019;
Ribeiro et al., 2021a), we ask three annotators to
rate the texts on a 1-7 Likert scale across two di-
mensions: (i) Fluency: Assessing whether the text

5A more in-depth error analysis is presented in Section 6.
6https://www.mturk.com
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is fluent, natural, and easy to read. (ii) Meaning:
Evaluating if the text accurately conveys the in-
formation from the input graph without includ-
ing extraneous information (hallucination). We
specifically instruct annotators to pay close atten-
tion to instances of hallucination, as this issue has
gained significant attention in recent PLM research
(González Corbelle et al., 2022; Ji et al., 2023;
Yuan and Faerber, 2023).

As indicated in Table 4, both the baseline and
GraSAME models produce fluent text, scoring only
marginally lower than the reference by 0.02 and
0.03, respectively. Regarding the meaningfulness
of the generated text, GraSAME surpasses the base-
line, achieving a score that is 0.21 points higher.
This human evaluation confirms that GraSAME is
capable of generating not only fluent text but also
text that more accurately encapsulates the input
information, while minimizing hallucinations.

5.5 Ablation Study

Model BLEU METEOR

GraSAME-SAGE 65.55 48.38
- bidirectional edges 60.74 45.13
- graph reconstruction 61.75 45.65

Table 5: Ablation study on WebNLG unconstrained.

We conduct an ablation study focusing on two
key aspects of the model: the bidirectional edges
and the graph reconstruction task. This study is
implemented using the top-performing GraSAME-
SAGE model on WebNLG unconstrained.

Bidirectional Edges: We retain a single edge
direction in the hierarchical graph structure, specif-
ically from bottom to top tokens.

Graph Reconstruction: We omit the graph con-
struction loss during training, allowing the model
to update solely based on the text generation loss.

The outcomes of the ablation study are detailed
in Table 5. Both the bidirectional edge and graph
reconstruction components significantly enhance
the performance of GraSAME. Excluding either
element results in a decrease in both BLEU and
METEOR scores, with a marginally greater reduc-
tion observed upon the removal of bidirectional
edges. This suggests that bidirectional edges are
crucial for adequate message passing within the
hierarchical graph structure.

Model BLEU METEOR ROUGE chrF++

Variation 1 60.62 46.57 71.03 74.67
Variation 2 60.07 46.01 70.17 74.08
GraSAME 65.55 48.38 74.55 77.34

Table 6: Results of model variations on WebNLG uncon-
strained. GraSAME = GraSAME-SAGE.

5.6 Model Variations

Considering the method of incorporating GNN into
the self-attention layer, we introduce two additional
variations of GraSAME, as visualized in Figure 4
of Appendix D. In Variation 1, the GNN gener-
ates graph embeddings to influence the vectors K
and V , instead of Q. In Variation 2, we insert the
GNN layer before the entire self-attention mecha-
nism, which means the vectors K, V and Q are all
derived from the graph embedding.

The results for the two variations are presented
in Table 6. While Variation 1 outperforms Variation
2, both variations show a decrease in performance
compared to the original GraSAME. This demon-
strates that our proposed GraSAME is a valid and
effective mechanism for encoding structural infor-
mation.

6 Error Analysis

We illustrate three examples of generated text in Ta-
ble 7. The first two examples have relatively short
input texts, whereas the third example includes a
longer and more complex input graph.

In the first and second examples, the text gener-
ated by T5 includes hallucinations not present in
the input data. In contrast, GraSAME strictly ad-
heres to facts conveyed by the input graphs. When
handling more complex graph inputs, both T5 and
GraSAME produce fluent and accurate text with-
out introducing extraneous information. However,
T5 makes a minor grammatical error with a prepo-
sition. This indicates that GraSAME effectively
mitigates the issue of hallucinations, particularly
with short and simple inputs. Moreover, for longer
and more complex inputs, GraSAME demonstrates
a superior understanding of the input structure, re-
sulting in higher-quality text generation.

7 Conclusion

In this work, we introduce GraSAME, a novel
graph-guided self-attention mechanism that en-
ables PLMs to process token-level structural in-
formation. With GraSAME, PLMs are capable of
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Model Example

Input translate graph to English: <Graph> <H> Iraq <R> language <T> Arabic

Reference Iraq language is Arabic.

T5 Arabic is a language spoken in the country of Iraq. The country is a member of the United
Nations.

GraSAME Arabic is a language spoken in Iraq.
Input translate graph to English: <Graph> <H> Madrid <R> country <T> Spain

Reference Madrid is in the country of Spain.

T5 Madrid is a city in the country of Spain and is a popular tourist destination there.

GraSAME Madrid is a city in the country of Spain.
Input translate graph to English: <Graph> <H> Monocacy National Battlefield <R> location <T>

Frederick County, Maryland <H> 14th New Jersey Volunteer Infantry Monument <R> estab-
lished <T> "1907-07-11" <H> 14th New Jersey Volunteer Infantry Monument <R> country
<T> "United States" <H> 14th New Jersey Volunteer Infantry Monument <R> category <T>
Historic districts in the United States <H> 14th New Jersey Volunteer Infantry Monument <R>
district <T> Monocacy National Battlefield <H> 14th New Jersey Volunteer Infantry Monument
<R> state <T> "Maryland"

Reference The 14th New Jersey Volunteer Infantry Monument is located on the Monocacy National
Battlefield, Frederick County, Maryland. The monument was established in 1907-07-11 and is
categorised as a historic district in the United States.

T5 The 14th New Jersey Volunteer Infantry Monument is located in the Monocacy National Battle-
field, Frederick County, Maryland. It was established on 11 July 1907 and is categorised as a
historic district in the United States.

GraSAME The 14th New Jersey Volunteer Infantry Monument is located on the Monocacy National
Battlefield in Frederick County, Maryland, United States. It was established on 11 July 1907 and
is categorised as a historic district in the United States.

Table 7: Examples of text generated by T5-large and GraSAME-SAGE, with hallucinations highlighted in blue and
other incorrect text marked in red.

handling text and graph input simultaneously. This
approach facilitates seamless information flow be-
tween text and graph embeddings, eliminating the
need for additional concatenation.

Evaluated on the KG-to-text generation task,
GraSAME demonstrates performance comparable
to SOTA models with significantly fewer trainable
parameters. Through a detailed analysis of graph
size and human evaluation, GraSAME demon-
strates its enhanced ability to process more com-
plex graph inputs and generate more accurate text.
Moving forward, we aim to explore GraSAME’s
potential in encoding specific graph structures, like
molecular graph (Edwards et al., 2022), in combi-
nation with large language models.

Limitation

Despite the effectiveness of our approach, we ac-
knowledge several limitations in our work. Firstly,
our method involves extracting a hierarchical graph
structure from a linearized graph. While this struc-
ture facilitates efficient information exchange, it
requires specific adjustments when applied to dif-

ferent datasets or tasks. Our goal is to combine
the advantages of PLM and GNN, yet crafting a
universal template that addresses all related tasks
remains challenging.

Secondly, we observe that the training process
of GraSAME is fast, but it tends to converge slower
than the baseline model without GraSAME. This
slower convergence is attributed to the GNN com-
ponent of GraSAME not being pre-trained, neces-
sitating additional training epochs for optimal in-
teraction with the PLM.

Thirdly, our approach still incorporates the lin-
earized graph as part of the input, which does not
align with the pre-training process of PLMs typ-
ically conducted with plain text corpora in natu-
ral language. This misalignment could potentially
lead to the forgetting of pre-trained knowledge. Ad-
dressing these limitations will be the focus of our
future work.
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A Hyperparameters

We present the hyperparameters for T5-large and
GraSAME in Table 8. We train the model until
the training process converges. To keep a fair com-
parison, we keep the hyperparameters as same as
possible. The learning rate of GraSAME is set
larger than it for T5, because GraSAME converges
slower due to fewer trainable parameters. The mod-
els are trained with 4 NVIDIA A100-SXM4-40GB
GPUs.7

7We noted that when employing Distributed Data Parallel
(Li et al., 2020), there is a possibility of sample duplication on

Hyperparameter T5 GraSAME

learning_rate 3e-5 5e-5
optimizer Adam Adam
batch_size 10 10
max_sequence_length 187 187
max_target_length 120 120
num_beam_search 3 3
random_seed 123 123

Table 8: Hyperparameters.

B Data Statistics

We report the statistics of WebNLG in Table 9,
which is the original split in WebNLG version 2.1.

Dataset
Size

| Train | | Dev | | Test |

WebNLG U 12876 1619 1600
WebNLG C 12895 1594 1606

Table 9: The statistics of dataset. WebNLG U =
WebNLG unconstrained, WebNLG C = WebNLG con-
strained.

C Impact of Graph Reconstruction Loss

To investigate how graph reconstruction loss affect
the performance and to determine the optimal value
of λ in Equation 10, we visualize the tuning pro-
cess in Figure 3. We use GraSAME-SAGE and
the validation set of the WebNLG unconstrained
dataset. The identified best value for λ is 0.08.

D Visualization of the Model Variations

To provide a clearer understanding of the model
variations, we visualize the internal structure of the
self-attention layer for the two model variations in
Figure 4.

the GPU to achieve the desired batch size, which could poten-
tially impact the test set results. Consequently, we conducted
the model evaluation on the test set using a single GPU for
accuracy.
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Figure 3: The impact of λ, experimented with GraSAME-SAGE on the validation set of WebNLG unconstrained.

(a) Variation 1: The text embedding x is fed into a GNN along with the
edge index derived from the hierarchical graph structure. This process
generates a graph embedding x̃ , which subsequently induces the K and
V vector. The Q vector then interacts with K and V vector to produce a
graph-aware representation z̃.

(b) Variation 2: The text embedding x is fed into a GNN along with the
edge index derived from the hierarchical graph structure. This process
generates a graph embedding x̃ , which subsequently induces the Q, K
and V vector.

Figure 4: Visualization of two variations of GraSAME.
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