
Findings of the Association for Computational Linguistics: NAACL 2024, pages 533–548
June 16-21, 2024 ©2024 Association for Computational Linguistics

READ: Improving Relation Extraction from an ADversarial Perspective

Dawei Li, William Hogan, Jingbo Shang∗

University of California, San Diego
{dal034,whogan,jshang}@ucsd.edu

Abstract

Recent works in relation extraction (RE) have
achieved promising benchmark accuracy; how-
ever, our adversarial attack experiments show
that these works excessively rely on entities,
making their generalization capability ques-
tionable. To address this issue, we propose
an adversarial training method specifically de-
signed for RE. Our approach introduces both
sequence- and token-level perturbations to the
sample and uses a separate perturbation vocab-
ulary to improve the search for entity and con-
text perturbations. Furthermore, we introduce
a probabilistic strategy for leaving clean tokens
in the context during adversarial training. This
strategy enables a larger attack budget for en-
tities and coaxes the model to leverage rela-
tional patterns embedded in the context. Exten-
sive experiments show that compared to vari-
ous adversarial training methods, our method
significantly improves both the accuracy and
robustness of the model. Additionally, exper-
iments on different data availability settings
highlight the effectiveness of our method in
low-resource scenarios. We also perform in-
depth analyses of our proposed method and
provide further hints. We will release our code
at https://github.com/David-Li0406/READ.

1 Introduction

Relation extraction (RE) is an important subtask
of information extraction and plays a crucial role
in many other natural language processing (NLP)
tasks like knowledge base construction (Luan et al.,
2018) and question answering (Sun et al., 2021).
The goal of RE is to determine the relationship
between a head entity and a tail entity. For exam-
ple, given the sentence “Miettinen hired for WPS
champ Sky Blue.”, the RE models are supposed to
predict the relation “Employee-Of ” between the
head entity “Miettinen” and the tail entity “Sky
Blue”. With the recent advances in pre-trained
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Sentence Prediction

Org Miettinen hired for WPS champ
Sky Blue.

Employee-Of
!

Adv Miettinen hired for WPS champ
Jeez Blue.

No-Relation
%

Table 1: An example from SemEval. We use green
color to represent the head entity and orange color to
represent the tail entity. Underlining is used for word
substitution.

language model (Kenton and Toutanova, 2019; Liu
et al., 2019) and self-supervised learning (Qin et al.,
2021; Hogan et al., 2022; Hogan, 2022) techniques,
RE models have achieved promising benchmark
accuracy, reaching levels comparable to human per-
formance.

The recent success of RE models sparks a grow-
ing interest in conducting more detailed analy-
ses (Han et al., 2020c; Peng et al., 2020; Zhang
et al., 2023). A significant issue that arises in this
context is to explore whether the RE model learns
from context or entities for relation prediction. An-
alyzing this problem could reveal the underlying
nature of RE models and offer informative insights
for their improvement. To address this issue, var-
ious methods are proposed such as information
masking (Peng et al., 2020) and counterfactual anal-
ysis (Wang et al., 2022b). One drawback of these
methods is they usually involve removing entities
or context in the sample and observing the model’s
performance with the remaining part. That enables
them to draw the conclusion about how much can
the model learn from entity/ context when giving
each of them individually. However, whether the
model would prefer to learn from context or entities
when both of them are given still remains unclear.
We name this problem learning preference in RE.

To address this issue, we propose a novel
approach READ, a.k.a. improving Relation
Extraction from an ADversarial perspective. We
begin by introducing the utilization of adversar-
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ial attacks (Jin et al., 2020; Garg and Ramakrish-
nan, 2020) as a means to investigate the model’s
learning preference and robustness. Adversarial
attacks in NLP are designed to deceive the model
by making very few text substitutions. As the ex-
ample shown in Table 1, by replacing the original
word “Sky” with another word “Jeez”, the attack
method successfully fools the model into assign-
ing an incorrect label “No-Relation” to this sample.
Adversarial attacks provide a highly insightful per-
spective for determining the crucial parts of the
sample from the model’s viewpoint. In this particu-
lar example, we can conclude that the word “Sky”,
as a part of the entity name, is crucial for the model
to make accurate predictions.

In our preliminary experiment applying ad-
versarial attacks to RE, we discovered a clear
over-dependency on entities within the current
RE model. This is consistent with the previous
works (Peng et al., 2020) that RE models tend to uti-
lize shallow cues from entities to make predictions.
Our analysis revealed that this over-dependency
is the underlying cause of the models’ vulnera-
bility to adversarial attacks and can also lead to
poor generalization in clean samples. So the key
to improving current RE models is to mitigate this
over-dependency on entities.

One straightforward approach to bolster models’
robustness is text substitution. However, the con-
siderable time cost to generate adversarial samples
with the text substitution method constrains it in
scaling in large RE datasets (Yoo and Qi, 2021).
Also, in our preliminary experiments, we observed
a performance drop in the clean test set with text
substitution, which has also been reported by previ-
ous works (Xu et al., 2022b)1. So we shift our fo-
cus towards virtual adversarial training (Miyato
et al., 2016; Madry et al., 2018), which applies con-
tinuous perturbations at the embedding level during
training, rendering it a more refined and efficient
approach. Our method builds upon the advance-
ments of the current adversarial training methods
in NLP (Zhu et al., 2019; Li and Qiu, 2021) and
introduces both sequence- and token-level pertur-
bations to the RE sample. To facilitate perturbation
searching, we devise a separate perturbation vocab-
ulary that tracks the accumulated perturbation for
entity and context respectively. Furthermore, we
propose a novel probabilistic strategy to encour-

1We put the experiment result and analysis of text substitu-
tion in Appendix A

age the model to leverage relation patterns from
the unperturbed context. Through extensive exper-
iments, we demonstrate the effectiveness of our
method on both adversarial and clean test samples.
We also observe significant improvements in low-
resource settings, indicating the great potential of
our method in scenarios with limited data. We con-
duct a series of in-depth analyses to give more hints
about READ.

The contribution of our work could be summa-
rized as follows:
• We propose READ, a novel adversarial method

to improve current RE models’ robustness.
• READ adopts adversarial attacks to analyze RE

models’ learning preferences and expose an ob-
vious over-dependency on entities.

• To enhance RE models’ generalization, READ
utilizes a virtual adversarial training explicit de-
sign for RE. Experiments on three mainstream
datasets demonstrate the effectiveness of READ.

2 Related Work

2.1 Relation Extraction

Early RE methods employ pattern-based al-
gorithms (Mooney, 1999) or statistical meth-
ods (Mintz et al., 2009; Riedel et al., 2010; Quirk
and Poon, 2017) to handle relation extraction.
Neural-based RE models (Zhang and Wang, 2015;
Peng et al., 2017; Miwa and Bansal, 2016) emerge
with the advancements in deep learning and nat-
ural language processing. Among them, the
transformer-based RE models (Shi and Lin, 2019)
achieve state-of-the-art performance. To further en-
hance performance, various self-supervised learn-
ing mechanism designs for RE have been pro-
posed (Soares et al., 2019; Qin et al., 2021; Hogan
et al., 2022).

There are some works that explore applying ad-
versarial training in RE. Qin et al. (2018) proposes
a generative adversarial training framework to ad-
dress the noisy labeling problem in distantly super-
vised relation extraction. Hao et al. (2021) adopt
adversarial training to address the false negatives
problem in relation extraction. Both Zhang et al.
(2020) and Li et al. (2023c) design new adversarial
training pipelines to generate augmented samples
for RE. In our work, we propose to analyze and im-
prove RE models from an adversarial perspective
to expose and reduce the excessive reliance of the
models on entities.
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2.2 Adversarial Attack & Training

Text substitution is one of the most commonly used
methods in NLP to attack models or generate adver-
sarial samples (Iyyer et al., 2018; Ebrahimi et al.,
2018). It replaces the original word with its syn-
onym based on certain criteria like word embed-
ding similarity (Zang et al., 2020; Ren et al., 2019;
Jin et al., 2020) or model infilling (Garg and Ra-
makrishnan, 2020; Li et al., 2020). There are also
some works that propose character-level (Gao et al.,
2018; Li et al., 2018) and phrase-level (Lei et al.,
2022) substitutions to generate various adversarial
samples. However, those substitution methods are
often challenged by the massive space of combina-
tions when searching for the target word to replace,
making them time-costly to implement (Yoo and
Qi, 2021).

Virtual adversarial training (VAT) methods gen-
erate adversarial samples by applying perturbations
to the embedding space (Miyato et al., 2018). This
helps VAT become more efficient than traditional
text substitution methods. VAT makes the model
more robust under adversarial attacks while also
improving the model’s performance in clean test
samples (Miyato et al., 2016; Cheng et al., 2019).
To make VAT more effective, Zhu et al. (2019) ac-
cumulate perturbation in multiple searching steps
to craft adversarial examples. Li and Qiu (2021)
devise a Token-Aware VAT (TA-VAT) method to
allocate more attack budget to the important to-
kens in the sequence. While there are some works
that apply virtual adversarial training methods to
RE for different purposes, we propose an Entity-
Aware VAT method explicitly designed for RE to
mitigate over-dependency and non-generalization
on entities. We give a more detailed discussion
about adversarial attacks and training in NLP in
Appendix B.

3 Adversarial Attack for RE

In this section, we start by analyzing the state-
of-the-art (SOTA) RE models’ performance under
textual adversarial attacks. Then, through further
analysis, we expose the over-dependency and non-
generalization on entities in the current RE models.

3.1 Attack Settings

We apply adversarial attacks on ERICA (Qin et al.,
2021) and FineCL (Hogan et al., 2022), the two
SOTA models with RE-specific self-supervised
training. We choose three RE datasets to conduct

experiments: SemEval-2010 Task 8 (Hendrickx
et al., 2019), ReTACRED (Stoica et al., 2021) and
Wiki80 (Han et al., 2019). For each dataset, we
randomly choose 1,000 test samples to conduct
experiments on. We use different attack methods
including BAE (Garg and Ramakrishnan, 2020),
TextFooler (Jin et al., 2020), TextBugger (Li et al.,
2018) and Projected Gradient Descent (PGD) At-
tack (Madry et al., 2018). Here, PGD Attack is a
white-box attack that utilizes the model’s gradient,
while the remaining three attacks are black-box at-
tacks. We use Textattack2 package and follow all
the hyper-parameter settings in the original papers.

To evaluate how RE models perform under ad-
versarial attacks, we follow the previous works (Li
et al., 2021; Xu et al., 2022a) and report clean ac-
curacy (the model accuracy on clean examples),
accuracy under attack (the model accuracy on ad-
versarial examples subjected to a specific attack),
and the number of queries (the average number of
queries the attacker required to perform success-
ful attacks). The experiment results are shown in
Table 2.

To access RE models’ learning preferences, we
analyze whether tokens in entities would be at-
tacked more than them in context. If so, that means
entities are more important than context in the
model’s perspective. For each dataset, We calcu-
late how frequently the adversarial attacks involve
the entity (Entity Freq) and the proportion of the
perturbed entity in all perturbed tokens (Entity Ra-
tios). We also report the average proportion of the
entity length in the sample for comparison (Entity
%). The experiment results are shown in Table 3.

3.2 Result Analysis

Here we analyze the attacking results of TextFooler
on FineCL and put the remaining results with other
attack methods and models into Section 5.3 and
Appendix C. As shown in Table 2, FineCL suffers
from a dramatic performance drop up to 91.2% in
the Wiki80 dataset. In the other two datasets, there
is also an obvious performance drop compared with
using the clean test set, offering evidence that cur-
rent RE models are not very robust under ad-
versarial attacks.

As for the model’s learning preference, from
Table 3 we find Entity Freq is quite high in the
three datasets, suggesting entities are frequently
targeted for attacks. Also, Entity Ratio is much

2https://github.com/QData/TextAttack
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(a). Overview Pipeline (b) Seperated Perturbation Vocabularies

(c) Clean Token Leaving Strategy

x ...  [E11]  wa ...  [E12]  ws ...  wt [E21]  wb ...  [E22]  ... 

...  [E11]  wadv
a ...  [E12]  ws ...  wt [E21]  wadv

b ...  [E22]  ... xadv

+

p

*

m

...  [p11]  pa ...  [p12]  ps ...  pt [p21]  pb ...  [p22]  ... 

x ...  [E11]  wa ...  [E12]  ws ...  wt [E21]  wb ...  [E22]  ... 

p ...  [p11]  pa ...  [p12]  ps ...  pt [p21]  pb ...  [p22]  ... 

δ ...  [δ11]  δa ...  [δ12]  δs ... δt [δ21] δb ...  [δ22]  ... 

η ...  [η11]  ηa ...  [η12]  ηs ... ηt [η21] ηb ...  [η22]  ... 
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Avelino Vieira Airport is the 

airport serving Arapoti ,Brazil.

Clean Sample

Adversarial Sample

Figure 1: (a) Overview pipeline of our method which adopts adversarial methods to analyze and improve RE
models. (b) Separated perturbation vocabularies (Section 4.2). (c) Clean token leaving strategy (Section 4.3). We
use “[E11]/[E12]” and “[E21]/[E22]” to mark the head and tail entity respectively.

Dataset Clean AUA Query
SemEval 92.7 18.1 (-80.5%) 73.83

ReTACRED 90.1 27.6 (-69.4%) 227.07
Wiki80 96.1 8.5 (-91.2%) 111.28

Table 2: TextFooler attack results on three RE datasets.

higher than Entity %, indicating that entities are
more often considered important words according
to the model’s perspective. Based on these two
findings we deduce that Current RE models rely
more on entities to make predictions.

The aforementioned conclusion makes us won-
der about the RE models’ robustness and general-
ization toward entities. To evaluate it, we calculate
the attack success (AS) rate of entity and context
respectively. As Table 4 shows, we find the AS of
entity is significantly higher than that of context,
which means entities are more vulnerable to attacks.
This provides evidence that over-dependency on
entities has led to a non-generalization within
the model.

4 Adversarial Training for RE

To improve the robustness and generalization of
the RE models, READ employs an Entity-Aware
Virtual Adversarial Learning method. In this sec-
tion, we first give a brief illustration of the virtual
adversarial training (VAT) process, then we will

Entity Freq Entity Ratio Entity %
SemEval 77.1 38.0 12.0

ReTACRED 52.6 12.7 9.2
Wiki80 90.7 36.4 17.4

Table 3: Analysis of the model’s learning preference.
We report how frequently the entity is attacked (En-
tity Freq), the proportion of the perturbed entity in all
perturbed tokens (Entity Ratios), and the average pro-
portion of the entity length in the sample (Entity %).

Entity AS Context AS
SemEval 68.5 62.3

ReTACRED 44.2 33.9
Wiki80 84.2 75.5

Table 4: Attack success (AS) rate of entity and con-
text. The AS for entity and context is calculated by
dividing the total number of successfully attacked en-
tities/contexts by the total number of attacked enti-
ties/contexts.

introduce our Entity-Aware VAT method in detail.

4.1 Virtual Adversarial Training

In virtual adversarial learning, we first need to find
a small perturbation δ that maximizes the misclas-
sification risk of the model. Then, with the per-
turbation added to the original inputs X , the goal
of virtual adversarial learning is to optimize the
model parameter θ to minimize the loss of those

536



adversarial samples. That Min-Max process can be
summarized as follows:

min
θ

E(X,y)

[
max
||δ||≤ϵ

L(fθ(X + δ), y)

]
(1)

where X is the embedding of the input sequence
and y is the ground truth label. ϵ is the norm ball
used to restrict the magnitude of δ.

Commonly, gradient ascent is used to do the
perturbation search iteratively since the inner max-
imize function is non-concave. At step t:

δt+1 =
∏

||δt||F<ϵ

δt + αg(δt)

||g(δt)||F
(2)

g(δt) = ∇δL(fθ(X + δt), y) (3)

where
∏

means the process of projecting the per-
turbation onto the norm ball. In the PGD algorithm,
Frobenius norm F is used to constraint δ.

4.2 Separate Perturbation Vocabularies
Unlike images in the computer vision field where
every pixel only carries limited information across
instances, tokens in natural language processing
are relatively independent semantic units and dif-
ferent tokens can vary in their importance for the
sequence. Previous work (Li and Qiu, 2021) pro-
poses a Token-Aware VAT method based on this
thought and designs a global perturbation vocabu-
lary to record each token’s perturbation.

In our work, we borrow this insight and improve
it for RE by using separate perturbation vocabu-
laries. Intuitively, entity and context play quite
different roles in the relation extraction process for
models (Peng et al., 2020). Entities are the main
components for the model to focus on while con-
text can provide auxiliary information. To address
this in adversarial training of RE, we keep two
perturbation vocabularies for entities and context
separately.

To be specific, we create the entity perturbation
vocabulary Ve ∈ RN×D and context perturbation
vocabulary Vc ∈ RN×D at the beginning of the
adversarial training. Here N is the vocabulary size
and D is the hidden size of the model’s embedding.
In each mini-batch, the ith token in the sequence
will be assigned an initialized perturbation from
the corresponding vocabulary as the token-level
perturbation ηi

0:

ηi
0 =

{
Ve [wi], wi ∈ Entity,

Vc [wi], wi ∈ Context.
(4)

Then we follow Li and Qiu (2021) exactly to update
the token-level perturbation. After the perturbation
optimization, the two vocabularies are updated re-
spectively with the token perturbation belonging to
their category.

4.3 Probabilistic Clean Token Leaving

To address the importance of entities in adversarial
training, we also adopt a probabilistic clean token
leaving strategy for context. In each mini-batch,
we randomly choose n% of tokens Wc in context
and mask both their token- and sentence-level per-
turbation in every perturbation optimization step
t:

Wc = RandomlySelect(Context, n) (5)

Xi
adv =

{
Xi, wi ∈Wc,

Xi + δt + ηi
t, Otherwise

(6)

There are two benefits of using our probabilistic
clean token leaving strategy. Firstly, the attack bud-
get ϵ is constant for each sentence, which means
reducing context perturbation is equivalent to in-
creasing the attack budget for the entity. So it
serves as an additional attack to further improve
the model’s robustness and generalization on enti-
ties. This is our main objective given the model’s
non-generalization and over-dependency on enti-
ties. Also, according to the previous works (Zhang
et al., 2021; Mekala et al., 2022), deep neural net-
works are more willing to learn from clean compo-
nents with less noise. So the strategy also gives the
model more chances to leverage relational patterns
present in the context (Peng et al., 2020) by learn-
ing from those clean tokens. We give a detailed
process of our Entity-Aware VAT method in Figure
1.

5 Experiment

In this section, we design experiments to test our
Entity-Aware VAT’s performance on both clean and
adversarial samples.

5.1 Setup

To evaluate our method’s performance, we report
performance on three RE datasets, SemEval-2010
Task 8 (Hendrickx et al., 2019), ReTACRED (Sto-
ica et al., 2021) and Wiki80 (Han et al., 2019).
We follow the previous work and use 1%, 10%
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Dataset Method Clean PGD TextBugger BEA TextFooler
AUA↑ Query↑ AUA↑ Query↑ AUA↑ Query↑ AUA↑ Query↑

SemEval

Normal-Train 92.7 42.2 6.55 39.2 39.03 30.5 75.27 15.9 73.83
FreeLB 93.3 45.4 6.80 41.5 39.41 31.6 75.79 15.6 73.35
TA-VAT 93.1 45.2 6.75 41.6 39.22 31.6 78.93 16.5 71.97

Ours 93.1 51.5 7.0 42.6 41.18 32.5 76.7 18.8 74.77

ReTACRED

Normal-Train 90.1 56.4 7.52 31.7 89.25 41.4 126.27 27.6 227.07
FreeLB 90.0 64.2 7.87 29.8 85.83 40.1 127.16 28.6 228.54
TA-VAT 91.3 68.6 8.11 28.9 83.38 41.8 128.10 30.0 230.88

Ours 91.3 76.2 8.43 34.0 89.30 49.6 140.98 38.9 252.63

Wiki80

Normal-Train 96.1 58.7 8.34 26.3 52.93 37.8 46.32 8.5 111.28
FreeLB 95.9 65.3 8.57 27.2 53.13 39.0 49.1 9.0 111.18
TA-VAT 96.5 74.0 8.82 29.2 54.56 39.3 49.55 8.3 107.21

Ours 96.7 76.3 8.99 28.8 53.40 40.0 48.64 10.7 112.08

Table 5: Experiment results on the three datasets under adversarial attacks. The best results in each dataset are in
bold. For each experiment, we run three times and the average scores are reported.

and 100% data in the training set to train the
model respectively. For the baseline RE model,
we choose BERT (Kenton and Toutanova, 2019),
RoBERTa (Liu et al., 2019), ERICA (Qin et al.,
2021) and FineCL (Hogan et al., 2022). We choose
the two best baseline models, FineCL and ERICA,
to apply the adversarial learning methods. Here we
report FineCL’s result and put the results of ERICA
in Appendix E. We compare our proposed method
with FreeLB(Zhu et al., 2019) and TA-VAT(Li and
Qiu, 2021). They are widely used virtual adversar-
ial learning methods against textual attacks. For
standard accuracy metrics, we follow the previous
works and report the F1 score for SemEval and
ReTACRED, and the accuracy score for Wiki80.
We also test our method in the document-level RE
scenario and put the result in Appeneix F.

We also test our proposed method’s performance
under adversarial attacks. All the adversarial at-
tack methods and robustness metrics we use are
mentioned in Section 3.1

5.2 Implementation Details

We build our method based on PyTorch-1.8.13

deep learning framework and Transformers-2.5.04

library. We follow the hyper-parameter settings
in the original paper to reproduce each baseline’s
result. To improve the experiments’ reliability, we
report the average results of the top three adversar-
ial hyper-parameter configurations based on their
scores in the development set. Refer to Appendix G
for more detailed settings of our experiments.

3https://pytorch.org/
4https://huggingface.co/docs/transformers/index

5.3 Results on Adversarial Samples

We employed FineCL as the baseline and assessed
the performance of each adversarial method against
different attacks. To provide a baseline compari-
son, we designated the standard model without any
adversarial training as "Normal-Train", which is in-
cluded in the first row of Table 5. From the scores
reported, we can observe some readily apparent
trends: (1). Our method consistently outperforms
other adversarial training methods under various
attack methods on the three datasets. (2) For the
ReTACRED dataset, both FreeLB and TA-VAT ex-
hibit a decrease in performance under the TextBug-
ger attack. In contrast, our method demonstrates
robust improvements in both accuracy and query
number, showing the resilience of our proposed
approach. (3) TextFooler achieves the best attack
success rate (AS) result on all three datasets, in-
dicating that current RE models are particularly
sensitive to the synonym replacement attack em-
ployed by TextFooler.

5.4 Results on Clean Samples

Table 6 presents the results evaluated using the
clean samples of each dataset. It is evident that the
utilization of adversarial training methods yields
a significant improvement in the performance of
the best baseline model (FineCL). Among the three
employed adversarial training methods, our Entity-
Aware VAT method stands out by reaching the best
score across almost every dataset and availability
setting. That indicates our improved adversarial
training method also benefits the RE model in clean
test samples.

Moreover, we have observed that adversarial
learning exhibits a more pronounced impact in low-
resource settings. For example, the improvement
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Dataset SemEval ReTACRED Wiki80
Size 1% 10% 100% 1% 10% 100% 1% 10% 100%

BERT 40.8 78.7 86.4 52.4 73.3 83.2 57.1 81.0 90.7
Roberta 50.0 81.6 85.8 58.2 82.5 88.7 60.7 85.4 91.3
ERICA 50.2 82.0 88.5 64.1 83.4 87.8 71.3 86.8 91.6
FineCL 50.8 82.7 88.6 62.8 83.2 87.1 72.7 86.9 91.6

FineCL + FreeLB 52.0 83.2 88.8 63.1 84.0 88.4 72.6 87.1 91.8
FineCL + TA-VAT 52.5 83.1 89.0 64.1 84.3 88.5 73.0 87.5 91.8

FineCL + Ours 53.2+4.7% 83.3+0.7% 89.2+0.7% 64.4+2.5% 85.0+2.2% 88.7+1.8% 73.3+0.8% 87.3+0.5% 92.0+0.4%

Table 6: Experiment results on clean samples of each dataset. We follow the previous works (Hogan et al., 2022;
Qin et al., 2021) and report the F1 score for SemEval and ReTACRED, and the accuracy score for Wiki80. We also
add the quantitative comparison results between our method and the FineCL baseline. For each experiment, we run
three times and report the average score.

brought by our Entity-Aware VAT method on three
datasets with 100% training data is 0.7%, 0.8% and
0.4%. However, it achieves a remarkable 4.7% of
performance improvement on SemEval with 1% of
training data. This notable improvement highlights
the immense potential of adversarial training meth-
ods for RE in scenarios with limited resources.

6 Further Analysis

In this section, we conduct further experiments to
give in-depth analyses of the mechanism of our
proposed method.

1% 10% 100%
Metrics F1 F1 F1 AUA Query
TA-VAT 52.5 83.1 89.0 16.5 71.97

Ours
w/o SPV 52.8 83.2 89.1 18.8 73.63

Ours
w/o CTL 53.1 83.0 89.2 16.3 72.51

Ours 53.2 83.3 89.2 18.8 74.77

Table 7: Ablation study on separate perturbation vo-
cabulary (SPV) and clean token leaving (CTL) strategy
using SemEval. The attacker used in 100% training data
availability is TextFooler. We include TA-VAT since it
is identical to our method when both SPV and CTL are
removed.

6.1 Ablation Study

The separate perturbation vocabulary (SPV) and
clean token leaving (CTL) strategy are the two
main methods we propose for adversarial training
in RE. In this section, we conduct an ablation study
on them to figure out each method’s effectiveness
in improving the robustness and accuracy of the
model. We conduct experiments on SemEval with
1%, 10% and 100% training data availability. We
report F1 in all three availability settings and AUA
and Query in 100% training data availability.

Table 7 shows the result of our ablation study.

We also report the model’s performance with TA-
VAT because our method degrades to be TA-VAT
without the two methods we propose. We find both
separate perturbation vocabulary and clean token
leaving are effective in improving the model’s ac-
curacy in clean samples. And clean token leaving
brings a significant improvement in robustness to
the model while the model with separate perturba-
tion vocabulary only does not. That indicates the
improvement in robustness of our method is mainly
from clean token leaving in the context.

Attack
Method Method Entity Freq Entity Ratio Entity AS

BAE

Normal-Train 89.0 51.1 38.2
FreeLB 91.0 53.2 36.1
TA-VAT 89.0 51.4 36.7

Ours 87.7 50.4 34.5

TextFooler

Normal-Train 90.7 36.4 84.2
FreeLB 89.0 36.7 85.2
TA-VAT 89.7 36.5 86.9

Ours 89.7 35.4 80.0

Table 8: Adversarial attack results of the entity on
Wiki80. BAE and TextFooler are used as attackers.

6.2 Improvement on Robustness of Entity
Our Entity-Aware VAT method is first introduced
to improve the robustness of entities against ad-
versarial attacks. To investigate its effectiveness
in improving entity robustness, we report Entity
Freq, Entity Ratio, and Entity AS as we defined in
Section 3. We choose to conduct experiments on
the Wiki80 dataset here since it suffers the most
from entity attacks, as indicated by the results of
our pilot experiments in Section 3.

According to the results presented in Table 8, our
method consistently reduces both the frequency of
entity attacks and the ratio of perturbed entities
compared to the normal-trained baseline and other
VAT methods. This indicates that our method suc-
cessfully reduces the model’s reliance on entities
for making predictions. Also, our method achieves
a better performance in terms of entity AS, high-
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(a) 1% and 10% training data (b) 100% training data

Figure 2: Different clean token leaving probability settings in SemEval. For 1% and 10% of the training data, we
report the F1 score. For the 100% training data, we report both the F1 score and AUA score

lighting its effectiveness in improving the model’s
robustness toward entities.

6.3 Impact of Clean Token Leaving
Probability

As we demonstrate in Section 6, the clean token
leaving strategy is a very important design for im-
proving model performance in both clean and ad-
versarial samples. In this section, we train models
with different clean token leaving probabilities to
observe their influence on the model performance.
We conduct the analysis on SemEval.

As Figure 2 shows, we add the model without
any adversarial training as “Baseline” to have a
comparison. It is notable that models with differ-
ent clean token leaving probabilities consistently
outperform baselines. Additionally, we notice mod-
els with different data availability usually achieve
the best performance with a relatively small clean
token leaving probability (0.05 – 0.15).

Method SemEval ReTACRED Wiki80
Normal-Train 51.6 62.8 72.7

w/ DA 54.1 63.1 72.0
w/ Ours 53.9 64.3 73.3

w/ DA + Ours 55.0 64.0 73.5

Table 9: Experiment results with data augmentation on
1% training data of three datasets. For a fair compari-
son, we show the result of the optimal model from the
development set of our approach.

6.4 Comparison and Compatibility with Data
Augmentation

An important finding observed in Section 5.4 is
adversarial training is especially effective in RE
when the training data is limited. Data augmenta-
tion (Teru, 2023; Hu et al., 2023) is another widely

used technique in low-resource RE. In this section,
we conduct experiments using data augmentation
to have a comparison and explore our method’s
compatibility with data augmentation. Currently,
large language models (LLMs) (Brown et al., 2020;
Zhang et al., 2022; Anil et al., 2023; Touvron et al.,
2023) with well-designed prompt (Wei et al., 2022;
Wang et al., 2022a; Li et al., 2023a; Tong et al.,
2023) show promising performance in generating
diverse and high-quality content (Li et al., 2024;
Tan et al., 2024). To benchmark current LLMs’
ability in augmenting RE samples, we prompt
ChatGPT5 to do data augmentation. We put de-
tails about the data augmentation method in Ap-
pendix H.

Table 9 shows the experiment results with 1%
training data. While data augmentation brings
improvement to SemEval and ReTACRED, it
also leads to a non-trivial performance drop on
Wiki80. Compared with that, our method consis-
tently improves the model’s performance in the
three datasets. Also, combining data augmenta-
tion with our method achieves two best results over
three datasets, showing our method’s compatibility
with data augmentation methods.

7 Conclusion

In this work, we present READ, a novel method
that leverages an adversarial perspective for ana-
lyzing and enhancing RE models. Our adversarial
attacks experiment on current SOTA RE models
reveals their excessive reliance on entities for re-
lation prediction. Through our analysis, this over-
dependency is the underlying cause of the models’
non-robustness to adversarial attacks and can limit

5https://platform.openai.com/docs/mode
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the model’s generalization. To tackle this issue, we
propose an Entity-Aware Virtual Adversarial Train-
ing method. Experiment results show our method’s
effectiveness in improving the performance in both
adversarial and clean samples.

8 Limitations

This work introduces an Entity-Aware Virtual Ad-
versarial Training method. Similar to other vir-
tual adversarial training algorithms, our method in-
corporates search perturbation in each mini-batch,
leading to a relatively longer training time com-
pared to other normal-trained models. Due to
limitations in computing resources, we evaluate
our method on four RE datasets, while disregard-
ing scenarios such as continual relation extrac-
tion (Han et al., 2020b), few-shot relation extrac-
tion (Gao et al., 2019) and open-world relation ex-
traction (Hogan et al., 2023). In future research, we
plan to investigate the effectiveness of our method
in border scenarios.
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A Text Substitution Method

In this section, we conduct an experiment using the text substitution method. Specifically, we follow (Li
et al., 2020) and utilize a BERT model to replace the critical token which can mislead the model most to
produce the adversarial samples. We conduct evaluation using FineCL, on SemEval and ReTACRED with
1% and 10% training data. As Table 10 shows, while BERT-Attack improves the model’s performance on
SemEval, it also leads to a non-trivial performance drop on ReTACRED. This finding aligns with some
previous works that point out the traditional text substitution method could cause a performance drop in
the clean test set (Yoo and Qi, 2021; Xu et al., 2022b).

SemEval ReTACRED
1% 10% 1% 10%

FineCL 50.8 82.7 62.8 83.2
FineCL
+BERT-Attack 53.1 83.6 62.7 82.7

Table 10: Experiment result using BERT-Attack (Li et al., 2020) on FineCL.

B A Detailed Survey of Adversarial Attack & Training

In the computer vision field, adversarial attacks (Goodfellow et al., 2014; Carlini and Wagner, 2017) have
been widely explored since it is easy to implement over the continual space of images. Based on the
gradient-based adversarial attacks, various adversarial training (Goodfellow et al., 2014; Madry et al.,
2018) are proposed. They add the adversarial sample for the training set to make the model more robust
under adversarial attacks. One major problem of directly applying this gradient-based adversarial training
method in NLP is the discrete text prevents the gradient from propagating.

To introduce adversarial training into NLP, some works adopt text substitution as an alternative method
to generate adversarial samples (Li et al., 2018; Jin et al., 2020; Garg and Ramakrishnan, 2020). This
method always involves replacing the original word with its synonym based on certain criteria like word
embedding similarity (Zang et al., 2020; Ren et al., 2019; Jin et al., 2020) or model infilling (Garg and
Ramakrishnan, 2020; Li et al., 2020). Another commonly used approach to produce adversarial samples
is to generate them with a sequence-to-sequence model (Kang et al., 2018; Han et al., 2020a; La Malfa
and Kwiatkowska, 2022).

In contrast, virtual adversarial training (VAT) methods generate adversarial samples by applying
perturbations to the embedding space (Miyato et al., 2018). That helps VAT become more efficient than
traditional text substitution methods. VAT makes the model more robust under adversarial attacks while
also improving the model’s performance in clean test samples (Miyato et al., 2016; Cheng et al., 2019).
To make VAT more effective, Zhu et al. (2019) accumulate perturbation in multiple searching steps to
craft adversarial examples. Li and Qiu (2021) devise a Token-Aware VAT (TA-VAT) method to allocate
more attack budget to the important tokens in the sequence. Following them, Xu et al. (2022a) combines
weight perturbation with embedding perturbation in training to make the model more robust against text
adversarial attacks. While there are some works that apply virtual adversarial training methods to RE for
different purpose (Wu et al., 2017; Chen et al., 2021), we propose an Entity-Aware VAT method explicitly
designed for RE to mitigate over-dependency and non-generalization on entities.

Beyond (virtual) adversarial training, there are also many other techniques proposed as defense mecha-
nisms to adversarial attacks. For example, some works focus on detecting the adversarial samples and
correcting them before inputting them into the language model (Wang et al., 2021; Yang et al., 2022; Li
et al., 2023b). However, our goal in this paper is to improve the RE models’ robustness during training.
Such plug-in methods outside the models are not within the scope of our consideration.

C Attack Result on ERICA

We also conduct adversarial attacks on ERICA and put the results in Table 11. ERICA exhibited a
significant decrease in performance across all attack methods, particularly with TextFooler. Our analysis
of learning preference and entity generalization in ERICA is presented in Table 12 and Table 13. The
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high frequency of successful attacks and their success rate on entities indicates that over-dependency and
poor-generalization on entities are ubiquitous in RE models.

Dataset Clean PGD TextBugger BAE TextFooler
AUA Query AUA Query AUA Query AUA Query

SemEval 93.3 46.1 7.44 38.1 40.47 25.3 99.74 9.1 83.19
Retacred 89.5 56.8 7.87 27.0 83.90 37.2 124.21 25.2 221.05
Wiki80 96.1 68.0 8.56 27.7 53.95 15.7 74.61 12.1 118.96

Table 11: Adversarial attack results with ERICA. The attack settings and metrics align with the ones used in 3.1.

Entity Freq Entity Ratio Entity %
SemEval 72.7 30.8 12.0

ReTACRED 55.7 13.8 9.2
Wiki80 85.3 31.6 17.4

Table 12: Analysis of ERICA’s learning preference with TextFooler.

Entity-AS Context-AS
SemEval 86.0 81.8

ReTACRED 56.0 45.5
Wiki80 79.5 71.6

Table 13: Attack success (AS) rate of entity and context on ERICA with TextFooler.

D Details of Entity-aware Virtual Adversarial Training

We give a detailed algorithm for our Entity-aware Virtual Adversarial Training in Algorithm 1.

E Our Method on ERICA

The performance of our method with ERICA is presented in Table 14. It is evident that with our method,
ERICA also demonstrates a non-trivial improvement in each data availability across three RE datasets.

Dataset SemEval ReTACRED Wiki80
Size 1% 10% 100% 1% 10% 100% 1% 10% 100%

ERICA 50.2 82.0 88.5 64.1 83.4 87.8 71.3 86.8 91.6
ERICA
+Ours 51.8 82.6 89.1 64.6 84.8 88.8 71.6 87.0 91.8

Table 14: Experiment results of ERICA on clean samples of each dataset.

F Our method in Document-level RE

To demonstrate the compatibility of our proposed entity-aware VAT method across various RE scenarios,
we conduct an experiment in a document-level RE dataset, Re-DocRED (Tan et al., 2022) and report the
results in Table 15.

G Training Details

In our method, we have set the clean token leaving probability to 10% for SemEval and 15% for
ReTACRED and Wiki80 datasets. Following the approach of Hogan et al. (2022), the compared models
employ the following settings: a batch size of 64, a maximum sequence length of 100, a learning rate of
5e-5, an Adam epsilon of 1e-8, a weight decay of 1e-5, a maximum gradient norm of 1.0, 500 warm-up
steps, and a hidden size of 768. To account for different data availability scenarios, we utilize dropout
rates of 0.2/0.1/0.35 and set the maximum number of training epochs to 80/20/8 for training proportions
of 0.01/0.1/1.0, respectively.

546



Algorithm 1 Detailed process of our Entity-Aware Virtual Adversarial Training. We use // to highlight
the important steps.

Require: Training Samples S = (X = [w0, ...wi, ...] , y), perturbation bound ϵ, initialize bound σ,
adversarial steps K, adversarial step size α, model parameter θ, clean token leaving probability n

1: Ve ∈ RN×D ← 1√
D
U(−σ, σ), Vc ∈ RN×D ← 1√

D
U(−σ, σ) // Separate Vocabulary Initialization

2: for epoch = 1, ..., do
3: for batch B ∈ S do

4: ηi
0 =

{
Ve [wi], wi ∈ Entity

Vc [wi], wi ∈ Context
// Separate Token-level Perturbation Initialization

5: δ0 ← 1√
D
U(−σ, σ), g0 ← 0

6: Wc = RandomlySelect(Context, n) // Clean Token Leaving in Context
7: for t = 1, ...,K do

8: Xi
adv =

{
Xi, wi ∈Wc,

Xi + δt + ηi
t, Otherwise

9: gt ← gt−1 +
1
KE(X,y)∈B [∇θL(fθ(Xadv), y)]

10: gi
η ← ∇ηiL(fθ(Xadv), y)

11: ηi
t ← ni ∗ (ηi

t−1 + α · gi
η)/||gi

η||F )
12: ηt ←

∏
||η||F<ϵ(ηt)

13: gδ ← ∇δL(fθ(Xadv), y)
14: δt ←

∏
||δ||F<ϵ(δt−1 + α · gδ)/||gδ||F )

15: end for
16: Ve [wi]← ηiK , wi ∈ Entity // Entity Vocabulary Update
17: Vc [wi]← ηiK , wi ∈ Context // Context Vocabulary Update
18: θ ← θ − gK
19: end for
20: end for

For all the adversarial training methods, we search adversarial learning rate in [2e-2, 5e-2, 1e-1], attack
budget in [2e-1, 4e-1, 6e-1], and perturbation searching steps in [1,2,3]. For each experiment, we employ
grid search6 to discover the above hyperparameters, and we report the average results of the top three
configurations based on their scores in the development set.

We train all models on a single A6000 GPU with CUDA version 11.1. The training time for a RE model
ranges from approximately 20 to 60 minutes, depending on the specific dataset and availability settings.

H Data Augmentation with ChatGPT

We use the model ‘GPT-3.5-turbo-0301’ to generate augmented data for 1% training data availability
of each dataset. For each sample, we randomly choose other two samples with the same relation labels
and input them into the model as demonstrations. After getting output from ChatGPT, we verify that
the sentence includes both entities mentioned. If not, we discard the generated output. We provide an
example of the prompt we use in Table 16.

6https://wandb.ai/
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Ign-F1 F1
ATLOP* 76.94 77.73
DocuNet* 77.27 77.92
KD-DocRE* 77.63 78.35
DREEAM* 79.66 80.73
PEMSCL* 79.01 79.86
AA 80.39 81.34
AA + Ours 81.21 82.22

Table 15: Experimental results on Re-DocRED dataset. We apply our entity-aware VAT method on AA (Lu et al.,
2023) and * denote the results we take from Lu et al. (2023).

Prompt

Read the following examples of the relation ’Component-Whole(e2,e1)’ between the head and tail and write
another new example following the same format. Note that the sentence must contain both head and tail:
head: kangaroo, tail: legs, sentence: the kangaroo moves by hopping on its hind legs using its tail for steering
and balancing while hopping at speed up to 40mph/60kmh.
head: cottage, tail: kitchen, sentence: the cottage kitchen is on the first floor and is fully fitted with fridge,
dishwasher, microwave and all the standard self catering facilities.
head: armature, tail: coil, sentence: the armature has a coil of wire wrapped around an iron core.

Table 16: An example of the prompt we use to generate augmented samples.
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