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Abstract

Our research integrates graph data with Large
Language Models (LLMs), which, despite their
advancements in various fields using large text
corpora, face limitations in encoding entire
graphs due to context size constraints. This
paper introduces a new approach to encoding a
graph with diverse modalities, such as text, im-
age, and motif, coupled with prompts to approx-
imate a graph’s global connectivity, thereby en-
hancing LLMs’ efficiency in processing com-
plex graph structures. The study also presents
GRAPHTMI, a novel benchmark for evaluat-
ing LLMs in graph structure analysis, focusing
on homophily, motif presence, and graph dif-
ficulty. Key findings indicate that the image
modality, especially with vision-language mod-
els like GPT-4V, is superior to text in balancing
token limits and preserving essential informa-
tion and comes close to prior graph neural net
(GNN) encoders. Furthermore, the research
assesses how various factors affect the perfor-
mance of each encoding modality and outlines
the existing challenges and potential future de-
velopments for LLMs in graph understanding
and reasoning tasks. Our code and data are
publicly available on our project page.1

1 Introduction

Large Language Models (LLMs) are increasingly
utilized in areas with inherent graph structures like
social network analysis (Mislove et al., 2007), drug
discovery (Vishveshwara et al., 2002), and rec-
ommendation systems (Melville and Sindhwani,
2010), but they face limitations due to their re-
liance on unstructured text and challenges in in-
corporating new data post-training (Zhang et al.,
2023; Lewis et al., 2020; Pan et al., 2023). Graph-
structured data can address these issues, providing
a nuanced and flexible representation of real-world
relationships.

1https://minnesotanlp.github.io/GraphLLM
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Figure 1: Input modality encoding for graphs impacts
node classification, with text modality offering detailed
information from a local point of view but violating
the input context limitations for LLMs due to verbosity.
Motif modality provides local and global context, while
image modality gives a comprehensive global view, ef-
ficiently processed by GPT-4V, which integrates capa-
bilities from both vision and text.

While there has been progress in interpreting
multi-modal information (Yin et al., 2023), inte-
grating graph understanding into LLMs remains
a developing area. Current research typically em-
ploys limited setups with small real-world graphs
(Guo et al., 2023) or synthetic ones (Wang et al.,
2023), exposing a gap in effectively incorporat-
ing large real-world graphs into LLMs, owing to
their context window constraints. This suggests
that text-only encoding may not be optimal for
complex, large graph structures. Other challenges
include LLMs’ difficulty directly processing com-
plex graph-structured data, necessitating innovative
input encoding and prompt design (Fatemi et al.,
2023; Chen et al., 2023) for various graph tasks.
Designing effective text representations of graphs
requires extensive research from the human prac-
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titioner’s perspective, which raises the question of
alternative encoding modalities for graphs.

This paper investigates the impact of different
modalities for encoding global and local graph
structures, focusing on node classification tasks,
and compares three modalities: Text, Motif, and
Image (See Figure 1). Text modality offers detailed
local insights but becomes verbose for large graphs
(Bubeck et al., 2023), often exceeding the input
limits of models like GPT-4. The Motif modal-
ity is suggested to address this, capturing essential
patterns in a node’s vicinity for a balanced local-
global perspective. Additionally, Image modal-
ity is proposed, utilizing fewer tokens to convey a
more global view of the node’s neighborhood, a
method enhanced by the vision capabilities of the
newly released GPT-4V (OpenAI, 2023a). Find-
ing the optimal prompt input format is a notably
complex challenge, with text modality encoding
requiring extensive exploration compared to the
simpler, more human-readable image modality. In
our evaluations, we balance informativeness and
prompt conciseness across all modalities using a
combination of metrics.

Our main contributions are as follows:

• We conduct breadth-first analysis of various
modalities, such as text, image, and motif, in
graph-structure prompting, utilizing large lan-
guage and vision-language models for node clas-
sification tasks.

• We also perform a depth-first analysis of how
different factors influence the performance of
each encoding modality.

• We introduce GRAPHTMI, a novel graph bench-
mark featuring a hierarchy of graphs, associated
prompts, and encoding modalities designed to
further the community’s understanding of graph
structure effects using LLMs.

Some key findings: 1) When balancing the con-
straint of token limits while preserving crucial in-
formation, the image modality is more effective
than the text modality for graph-related tasks. 2)
The choice of encoding modality for graph task
classification depends on the task’s difficulty, as-
sessed by homophily and motif counts, with image
modality being optimal for medium-difficulty tasks
and motif modality for harder ones. 3) Factors
like edge encoding function, graph structure, and
graph sampling techniques impact the performance
of node classification using text modality. 4) Mo-
tif attachment information has a more significant

Properties CORA Citeseer Pubmed

Classes 7 6 3
Nodes 2,708 3,327 19,717
Edges 5,278 4,552 44,324
Density 0.0014 0.0008 0.0002
Avg deg 3.89 2.74 4.49
Clust coeff 0.24 0.14 0.06
Diameter ∞ ∞ 18
Components 78 438 1
2-hop nodes 36 15 60

Table 1: Comparison of network properties of popular
citation network datasets CORA, Citeseer and Pubmed.

impact on node classification than motif count in-
formation. 5) Image representation correlated with
human readability positively impacts node classifi-
cation performance.

2 Setups

2.1 Seed Datasets

We experiment with three citation network datasets,
which are popular node classification benchmarks,
CORA (McCallum et al., 2000) with seven cat-
egories : [0-Rule Learning, 1-Neural Networks,
2-Case-Based, 3-Genetic Algorithms, 4-Theory, 5-
Reinforcement Learning, and 6-Probabilistic Meth-
ods], CITESEER (Giles et al., 1998) with six cat-
egories of areas in Computer Science: [0-Agents,
1-ML, 2-IR, 3-DB, 4-HCI, 5-AI] and PUBMED
(Sen et al., 2008) that consists of scientific journals
collected from the PubMed database with the fol-
lowing three categories: [0-Diabetes Mellitus, Ex-
perimental, 1-Diabetes Mellitus Type 1, 2-Diabetes
Mellitus Type 2]. This paper focuses solely on the
structural information of graphs for node classifi-
cation. Hence, our experiments exclusively utilize
node and label IDs.

2.2 Evaluation Metrics

This paper assesses the performance of node
classification using four metrics chosen to
balance the tradeoff between the encoding’s
informativeness and verbosity. The metrics used
are Accuracy rate (which should increase ↑),
Denial rate (which should decrease ↓), Mismatch
rate (which should decrease ↓), indicating the
prompt’s informativeness, and Token limit fraction
(which should decrease ↓), reflecting the prompt’s
verbosity.
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Figure 2: Node Classification on a Graph using different input modality encodings like Text, Motif, and Image.

Accuracy Rate A: This metric indicates the LLM’s
performance on the task of node classification.

A =
No. of correct predictions

Total no. of samples
(1)

Mismatch Rate M : This metric indicates the de-
gree of misclassification by LLM (when the ground
truth value is not the same as the predicted value).

M =
No. of incorrect predictions

Total no. of samples
(2)

Denial Rate D: When we craft our prompt, we
instruct the LLM to return -1 if it cannot predict
the label of the ? node (node to be classified). The
denial rate metric describes the rate of failure of
the LLM (when the predicted value is -1).

D =
No. of predictions = -1

Total no. of samples
(3)

1−A = M +D (4)

Token Limit Fraction T : This metric evaluates
how effectively a Large Language Model’s encod-
ing modality uses its input context window, specif-
ically focusing on the constraints imposed by the
fixed-size attention window in transformer-based
models like GPT-4 and GPT-4V. These constraints,

dictated by the model’s neural network architecture,
limit the number of tokens that can be processed
simultaneously, impacting both computational cost
and performance.

T =
Number of usage tokens

Token limit constraint for the model
(5)

2.3 Graph Encoder Baselines
We compare our LLM models, which use dif-
ferent encoding modalities, to recognized stan-
dards in the node classification task like GCN(Kipf
and Welling, 2016), GRAPHSAGE(Hamilton et al.,
2017) and GAT (Veličković et al., 2017). We aim to
highlight LLMs’ potential in approaching these rec-
ognized baselines using different modalities, rather
than competing with state-of-the-art GNN mod-
els, emphasizing their evolving ability to process
complex graph structures. We provide the training
details for the GNN models in Appendix B.

3 Proposed Encoders with Different
Modalities

Graph encoding is crucial for converting graph-
structured data into a sequence format that lan-
guage models can process. As shown in Figure 2,
the experimental setup involves using a modality
encoder to input the graph structure and a graph
query, such as predicting a node’s label in node
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(a) Original NetworkX Graph (Hagberg
et al., 2008) - no image setting changes
made

(b) Node Size Increase - changing the
rendering using GraphViz (Ellson et al.,
2002) and increasing the size of each
node in the graph, increasing node and
label clarity

(c) Contrasting Text Color - contrasting
the textual labels with the node color will
make the labels more “human-readable”

(d) Distinctive Node Colors - choosing
distinct colors allows the VLM to distin-
guish differently labeled nodes better

(e) Node Size increase based on 1-Hop-
distance - increasing the size of nodes
near the vicinity of the un-labeled node
might allow the VLM to prioritize the
data of nodes of greater size as opposed
to nodes further away

(f) Aggregate all changes - all changes
from b) to e) are applied to maximize
image clarity

Figure 3: Image representation changes were applied sequentially on a graph, and we observed a distinct increase
from (a) to (f) in human readability and understanding of the graph structure.

classification tasks. The graph structure is encoded
according to the chosen modality (text and motif
using GPT-4 and image using GPT-4V) and then
passed as a prompt to the LLMs to generate the
required label.

3.1 Text Encoder

In encoding graphs as text, nodes are mapped to
labels using a dictionary format, and different edge-
encoding representations (Guo et al., 2023; Fatemi
et al., 2023) are experimented with (Table 6), pro-
viding local context through edge connections and
node labels to GPT-4 (OpenAI, 2023a). However,
larger graphs can lead to verbose text encodings,
which may exceed LLM input limits. We evalu-
ate the impact of graph structure on classification
(Yasir et al., 2023; Palowitch et al., 2022) by ana-
lyzing real-world citation datasets like PUBMED,
CITESEER, and CORA, each with distinct net-
work properties (definitions for these are provided

in Table 8 and distinguished through Table 1).
PUBMED is the largest and most connected but
has the lowest clustering coefficient, indicating less
local clustering. In contrast, CITESEER is highly
fragmented with many disconnected components,
while CORA, the smallest network, exhibits the
highest density and clustering coefficient, suggest-
ing strong local connectivity. Additionally, the
research examines graph sampling techniques like
ego graph (Stolz and Schlereth, 2021) and forest
fire sampling (Leskovec and Faloutsos, 2006), cru-
cial due to LLMs’ limited context window and
complex real-world graphs (Wei and Hu, 2022).
These methods vary in their effectiveness, with For-
est Fire sampling providing a broad network view,
suitable for large networks like PUBMED, and Ego
graph sampling excelling in revealing local commu-
nity structures in more clustered and locally dense
networks like CORA and CITESEER.
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(a) EASY - (#distinct labels < 3) and
(#motifs ≤ 10)

(b) MEDIUM - (3 ≤ # distinct labels
< 5) and (10 < # motifs ≤ 20)

(c) HARD - (#distinct labels ≥ 5) and
(# motifs ≥ 20)

Figure 4: Classifying graph task difficulty based on the criteria of Homophily and Number of Motifs yields a dataset
of EASY, MEDIUM, and HARD graph problems and their associated modality encodings and classifications. This
benchmark is called the GRAPHTMI dataset.

3.2 Motif Encoder

Network motifs, recurring patterns in social and
biological networks (Milo et al., 2002; Carring-
ton et al., 2005; Holland and Leinhardt, 1974), are
pivotal in understanding local structures and behav-
iors. In LLMs, motif modality encoding leverages
these motifs to provide local and global context,
aiding in classifying unlabeled nodes (Yang et al.,
2018). This process entails mapping nodes to labels
using a dictionary format and identifying key mo-
tifs around the unlabeled node, which are inputted
into GPT-4 as graph-motif information (detailed
in Table 9). Differentiating between the count and
specific members of motifs like stars, triangles,
and cliques in a graph, our approach posits that
a node’s connection to influential motifs, such as
being central in a star for network influence or part
of a triangle or clique for close community ties, can
significantly affect its classification by revealing
key aspects of the network structure.

3.3 Image Encoder

Adopting the idea that “a picture is worth a thou-
sand words”, the image modality in graph analysis
uses visual representations to outperform text in
depicting structures, networks, labels, and spatial
relationships using fewer tokens. Vision-language
models like GPT-4V (OpenAI, 2023b) interpret
these graph images, offering a global context of the
graph’s structure. GPT-4V, a multimodal model,
merges visual interpretation with language process-
ing, underscoring the importance of image repre-
sentation in enhancing node classification. Our ex-
periments involved using graph rendering methods
to generate images with color-coded nodes, with a

focus on improving human readability through vari-
ous image modifications (Figure 3). These changes
were evaluated for their impact on node classifica-
tion, highlighting the critical role of visual repre-
sentation in this modality.

4 GraphTMI Benchmark Creation

Our study reveals that the ease of node classifica-
tion in graphs varies across different modalities, de-
pending on the graph’s “difficulty,” determined by
motif count and homophily. Homophily (McPher-
son et al., 2001), based on network theory, suggests
that nodes are more likely to connect with similar
nodes; thus, graphs with higher homophily (more
nodes sharing the same label) are simpler to classify
than those with more heterophily (diverse labels).
This is illustrated through CORA dataset exam-
ples in Figure 4. Graphs are categorized as “easy,”
“medium,” or “hard” based on the diversity of labels.
Additionally, graphs with more network motifs are
considered more complex and challenging for clas-
sification (Tu et al., 2018). The "task difficulty" is
defined across eight categories (23 = 8), with the
final difficulty level determined by the higher of the
two criteria, homophily or motif count. This led
to the creation of GRAPHTMI, a new benchmark
dataset that includes various graph structures along
with their respective modalities (text, motif, and
image), prompts, and LLM classifications, thereby
providing deeper insights into how different graphs
affect LLM prompting. Specific statistics are given
in Appendix A.
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Model Cora Citeseer Pubmed

GNN
Baselines

GCN 0.7584 ±0.121 0.6102 ±0.087 0.7546 ±0.076
GAT 0.7989 ±0.092 0.6583 ±0.074 0.7490 ±0.060
GraphSage 0.7719 ±0.124 0.6017 ±0.103 0.7193 ±0.076

LLMs +
Encoding
Modality

Text 0.81 ±0.04 [0.07 ±0.03] 0.75 ±0.05 [0.07 ±0.01] 0.83 ±0.01 [0.08 ±0.01]*

Motif 0.73 ±0.06 [0.06 ±0.01] 0.59 ±0.01 [0.32 ±0.02] 0.77 ±0.006 [0.13 ±0.04]

Image 0.77 ±0.05 [0.04 ±0.02]* 0.71 ±0.09 [0.06 ±0.0]* 0.79 ±0.03 [0.19 ±0.01]

Table 2: We report test accuracy rates of node classification across different datasets and denial rates D in [brackets]
for LLM models. * indicates the lowest denial rate for each modality. The highest accuracy rate for the dataset is
in bold, while the second highest is underlined. The text modality in LLMS is comparable to GNN baselines with
image modality not far behind.

5 Results

5.1 Results Across All Modalities
Comparing Node Classification Accuracies be-
tween Graph baselines and LLM models : Table
2 compares node classification accuracies of tra-
ditional GNN methods and LLM baselines across
datasets, assessing if LLMs come close to conven-
tional techniques. Limited by GPT-V’s rate limit,
the study used 50 ego graphs, with more exten-
sive results in Appendix A. The text modality of
LLMs performs comparably to graph baselines in
all datasets, with the image modality close behind,
indicating LLMs’ potential in graph analysis. In
larger datasets like PUBMED, the image modal-
ity showed a higher denial rate, possibly due to
overcrowding in larger subgraphs, leading to more
frequent classification denials by the LLM.
Comparing Node Classification Performance
across Encoding Modalities: Figure 5 compares
node classification across encoding modalities, fo-
cusing on accuracy, mismatch, denial rates, and
token limit fraction. The text modality shows high
accuracy but struggles with a high denial rate and
token limit fraction, likely due to verbose inputs
that confuse the LLM. In contrast, the image modal-
ity offers similar accuracy but with lower denial
rates and token limit fractions, indicating the im-
age modality’s effectiveness in providing a concise,
global context that the LLM processes more effi-
ciently.
Qualitative analysis of denial of classification
in the Image Modality Figure 7 shows instances
from multiple datasets where GPT-4V, using im-
age modality, did not assign labels (returned −1)
to graph nodes, explaining the reasons for denial.
Key observations include: a) the LLM lacked ex-
plicit context on label assignments to nodes, as the

encoding only implicitly indicated labels through
node colors, with red reserved for unlabeled nodes.
b) For one image, the absence of a clear link be-
tween node colors and labels, exacerbated by high
heterophily, caused confusion. c) Another case
highlighted the need for few-shot learning, suggest-
ing that showing the LLM similar graph examples
could help it learn to identify unlabeled (red) nodes
more accurately.
Insights from GraphTMI In our evaluation of
node classification accuracy using the GRAPHTMI
benchmark across various modalities, we found
in Figure 6 that “easy” tasks (characterized by
high homophily and simpler structures) showed
comparable accuracy across text, image, and mo-
tif modalities. However, for “medium” or “hard”
tasks, marked by heterophyllous nature or com-
plex structures, the image modality outperformed
others, followed by the motif modality, underscor-
ing the importance of global information in LLM
processing. Notably, “hard” graphs achieved the
highest accuracy with the motif modality, indicat-
ing the value of balancing local and global infor-
mation. This suggests a growing effectiveness of
image and motif modalities in enhancing graph
reasoning tasks like node classification.

5.2 Modality Specific Results

Text modality results: Figure 16 shows that using
the Adjacency List as the mode of edge representa-
tion with node label mapping is the most informa-
tive encoding function, which balances the trade-off
between high accuracy and low token limit fraction.
Figure 9 shows how metrics vary across datasets
with different graph structures and sampling strate-
gies. For CORA, a small, dense, and clustered
graph, both sampling methods yield high accuracy,
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text motif image0.0

0.2

0.4

0.6

0.8
Mean Accuracy Rate

text motif image0.0
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text motif image0.000
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0.100
Mean Denial Rate

text motif image0.00
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Figure 5: We observe that while the text and image
modalities have similar accuracy rates, the motif
modality exhibits the highest mismatch rate, and the
image modality stands out with the lowest denial
rate and token limit fraction, as depicted along the
mean metrics (y-axis) against each modality type
(x-axis)

easy medium hard0.0

0.2

0.4

0.6

0.8

1.0 T
M
I

Figure 6: Modality encoder trends (T= Text, M=
Motif, I= Image) with graph task difficulty based on
homophily and no. of motifs, highlight the signifi-
cance of integrating local and global information in
LLM processing.

with forest fire (ff) sampling resulting in a lower
denial rate. CITESEER, with its local clustering
nature, struggles with ff sampling, showing the
highest denial rate and the lowest mean accuracy,
indicating difficulty in accurate predictions. In con-
trast, large and highly connected PUBMED gen-
erates larger samples through ego graph sampling,
leading to higher token limit fractions. CITESEER’s
fragmented, disconnected nature results in smaller
ego graph samples and lower token limit fractions.
Thus, we can see graph structure and sampling
strategy significantly impact performance metrics.
Motif modality results: Figure 17 shows GPT-4’s
improved performance by adding the “triangle and
star attached to ? node” motif in the motif modal-
ity encoder (detailed in Appendix Table 9). This
enhancement in mean accuracy and other metrics is
attributed to the effective combination of local and
global context provided to the LLM through node-
label mapping and the associations within triads or
star motifs.
Image modality results: Figure 3 shows differ-
ent tweaks to image representation, and Figure
8 demonstrates that optimal node classification
correlates with high accuracy and low denial and
mismatch rates. Interestingly, as human image
readability increases, metric performance also im-
proves, highlighting the easier use of images over
text for LLM prompts.

5.3 Qualitative Analysis on Combining
Modalities

We perform a qualitative analysis of the response
returned by LLMs by utilizing the text, image,
and text combined with image encoding modal-

ities. The intuition here is that the local context
provided by the text modality might not be enough
for some predictions and could be supplemented
through the global context provided by the image
modality. Table 3 illustrates that misclassifications
and denials by the LLM using text modality could
be rectified by using the image modality. For the
first two rows, −1 classifications or LLM denials
are changed to the correct classification on incor-
porating the global context of the image modal-
ity. We can see in the response that the notion of
“homophily” is clearer to the VLM in the image
modality. For the last two rows, we see that the
graph is originally misclassified, but then this is
corrected by incorporating the image modality. We
make similar observations on combining text and
motif modalities, and this could be because another
factor important to node classification is the pres-
ence of motifs, which is highlighted through the
motif modality.

6 Related Work

LLMs with Graphs: Graph Neural Networks
(GNNs) are renowned for their effectiveness in
node classification and link prediction (Dwivedi
et al., 2020), with applications in diverse fields
like social networks, computer vision, and biology
(Hou et al., 2022). GNNs struggle with processing
non-numeric data like text and images, necessi-
tating preprocessing such as feature engineering
(Wang et al., 2021). In contrast, recent studies have
explored using Large Language Models (LLMs)
for graph reasoning, demonstrating their potential
in complex tasks (Huang et al., 2022). This in-
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(a) (Ground = 0) Without addi-
tional context or rules for how
labels are assigned, it is not pos-
sible to accurately predict the la-
bel of the red node.

(b) (Ground = 4) The label can-
not be determined with certainty
due to the lack of a discernible
pattern or rule that associates a
node’s color or its connections
with its label.

(c) (Ground = 2) The label can-
not be determined with certainty
due to the lack of a clear pat-
tern in the graph and no previous
examples of red nodes to infer
from.

Figure 7: Examples of graphs where VLM (GPT-4V) returned -1 or denied to predict a label and the reason for
denial. The ground truth for this graph is given in brackets. This highlights the need to clarify labeling strategies
and few shot learning.
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Figure 8: Our comparison of image representations
(x-axis) with mean metrics (y-axis) shows that human
readability of images correlates with classification per-
formance, considering Accuracy Rate (A ↑), Mismatch
Rate (M ↓), and Denial Rate (D ↓), with desired trends
indicated in brackets.

CORA Citeseer Pubmed0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8   ego

  ff

CORA Citeseer Pubmed0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175   ego

  ff

CORA Citeseer Pubmed0.00

0.02

0.04

0.06

0.08

0.10   ego
  ff

CORA Citeseer Pubmed0.00

0.05

0.10

0.15

0.20
  ego
  ff

Figure 9: Each dataset and sampling type (x-axis) is
mapped against mean metrics (y-axis), with bar tex-
tures distinguishing between ego graph (ego) and forest
fire (ff) sampling; the metrics include accuracy rate (↑),
mismatch rate (↓), denial rate (↓), and token limit frac-
tion (↓), indicating the desired trends for each. Graph
structures of different datasets and sampling strategies
influence node classification performance.

cludes using LLMs for feature enhancement (Chen
et al., 2023), node classification (Chen et al., 2023),
and training neural networks in graph-based tasks
(He et al., 2023), with benchmarks like NLGraph
(Wang et al., 2023) assessing LLMs in traditional
graph challenges. These studies typically employ
LLMs as sub-components within graph learning
frameworks. Our research examines LLMs’ ability
to process graph modalities directly, aiming to un-
derstand LLMs’ intrinsic graph-handling capabili-
ties, thus presenting a novel direction in the field.
Prompt Design for Graphs: Prompting strategies

for querying large language models (LLMs) aim
to optimize the prompt text for enhanced task per-
formance. Few-shot in-context learning (Brown
et al., 2020) provides examples with desired out-
puts for the model to learn and generalize. Chain-
of-thought (CoT) prompting (Wei et al., 2022) of-
fers step-by-step problem-solving examples, lead-
ing the model to develop reasoning paths, while its
zero-shot variant (Kojima et al., 2022) initiates rea-
soning with a starter phrase. Bag prompting (Wang
et al., 2023) focuses on graph tasks, recommending
graph construction before the task. Format expla-
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Image Ground Truth Text_Response Text + Image_Reponse Image_Response
Label of Node =
5

The label of a node can often be predicted based
on the labels of its neighboring nodes. In this
case, the node in question is ’1677’, and its
neighbors are ’88’, ’415’, ’1309’, and ’191’,
’1908’. There is no clear majority label among
these neighbors. Therefore, it is not possible to
predict the label of node ’1677’ based on this
information. Label of Node = -1

From the adjacency list, we can determine
that the neighbors of node "1677". Given
that node "1677" is connected to two nodes
with label 0, two nodes with label 5, and
one node with label 4, we can attempt to
predict its label based on the labels of its
neighbors. Since nodes "1309" and "191"
both have the label 5 and are each directly
connected to "1677," it’s reasonable to re-
fer to the homophily in networks concept
where nodes are likely to be of the same
type (label) as their neighbors. Based on
this information, it seems plausible that the
red node "1677" would also have the la-
bel that appears most frequently among its
neighboring nodes, which is label 5. Label
of Node = 5

Label of Node =
0

Label of Node =
3

The node 1329 is connected to nodes 733, 994,
and 78. The labels of these nodes are 0, 3, and
4 respectively. Since there is no majority label
among these, the label of node 1329 cannot be
determined. Label of Node = -1

Label of Node = 3 Label of Node =
3

Label of Node =
6

The node 702 is connected to nodes 777, 779,
2069, 2070, 2101, 822, 993, 1368, and 1637.
The labels of these nodes are 0, 6, 0, 0, 5, 5, 6,
5, and 0 respectively. The most common label
among these is 0. Therefore, we can predict that
the label of node 702 is also 0.Label of Node =
0

Label of Node = 6 Label of Node =
6

Label of Node =
3

The node 141 is connected to nodes 1002, 2034,
and 740. The labels of these nodes are 3, 4, and 4
respectively. Since the majority of the connected
nodes have the label 4, we can predict that the
label of node 141 is also 4. Label of Node = 4

Label of Node = 3 Label of Node =
3

Table 3: The table shows the GPT-4 and GPT4-V responses with the text modality, text+image modality, and image
modality. We observe that on combining modalities, the label originally classified as -1 is correctly classified (first
two rows), or the original misclassification is rectified (last two rows).

nations and role prompting (Guo et al., 2023) are
proposed for better task clarity and strategic input
organization to leverage LLMs’ learning capabil-
ities. Self-prompting involves the LLM refining
prompts via context summarization, tackling issues
with complex or insufficient graph data. Our study
employs zero-shot prompting, providing only a task
description to the LLM, to concentrate on the im-
pact of modalities without the influence of varied
prompt designs.

7 Conclusion and Future Work

This study explores the application of LLMs in
graph-structured data, evaluating their strengths

and weaknesses in node classification using various
input modalities like motif and image for effective
data representation. Introducing the GRAPHTMI
benchmark highlights the image modality’s effi-
ciency in token limit management, and the poten-
tial of motif modality in complex graphs. Although
LLMs have progressed in graph data processing,
they still don’t match the performance of GNNs
in practical settings. The research advocates for
future work combining different modalities to im-
prove node classification, combining LLM-based
methods with GNNs, applying these techniques to
complex, text-dense graphs, and delving into link
prediction and community detection to broaden
applications and insights across multiple domains.
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Limitations

LLMs offer powerful capabilities for processing
complex graph-structured data but come with high
financial costs, particularly when using APIs like
GPT-4, which can significantly increase operational
expenses in real-time applications. GNNs with
their cost-effectiveness and capability to be trained
and deployed on conventional hardware sans on-
going costs, are a pragmatic choice for graph anal-
ysis tasks such as node classification and commu-
nity detection. Nevertheless, the combination of
LLMs’ semantic processing with GNNs’ structural
prowess presents a promising hybrid strategy for so-
phisticated graph analyses. Through comparative
studies involving established GNN architectures
like GAT, GraphSage, and GCN, our aim is not to
rival but to comprehend how LLMs can approx-
imate these benchmarks, with a commitment to
incorporating cutting-edge GNN models in future
explorations.

Our study faces constraints from GPT-V’s rate
limitations, impacting data processing scalabil-
ity. Moreover, the representation challenges of
large graphs via image modalities, demanding high-
resolution imagery beyond LLMs’ capabilities, sig-
nify a crucial area for future investigation. Address-
ing these limitations is vital for enhancing LLM
applications in graph analysis, and our future plan
is to explore the balance between image resolution,
token efficiency, and graph representation fidelity.

The computational demands of detecting network
motifs, essential for understanding complex net-
work dynamics require extensive computational
power and advanced algorithms, limiting scalabil-
ity and efficiency. We subvert these challenges by
restricting our subgraph sample size to 3 hops of an
ego graph. A further limitation lies in the study’s
simplistic approach to estimating homophily, rely-
ing merely on label count and neglecting the impor-
tance of hop distance. This overlooks critical net-
work structure and node similarity aspects, leading
to a potentially oversimplified analysis. Incorpo-
rating hop distance could provide a more accurate
representation of network homophily. These limita-
tions underscore the need for further advancements
in computational techniques, model capabilities,
and more nuanced theoretical methods in network
analysis.
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A LLM Experiments

A.1 Comparing encoding modalities for
different datasets and sampling

Our study evaluates various encoding modalities
— text, motif, and image — with ego graphs from
CORA detailed in the main manuscript. Figure
15 extends this analysis to the other datasets and
sampling techniques. The findings corroborate our
assertion that graph structure and the chosen sam-
pling method significantly influence node classi-
fication outcomes. Particularly, samples derived
from the forest fire method, which emphasize the
global configuration while being sparser and less
connected than ego graphs, exhibit increased mis-
classification rates when using the image modality
due to limited information for accurate inference
and greater instances of non-committal predictions
with the motif modality due to the absence of a
discernible overarching structure.

A.2 Graph TMI Benchmark
We decide on graph “difficulty” based on the dual
criteria of 1) count of motifs and 2) homophily in
the graph. We apply a naive heuristic to decide
homophily, i.e., the count of the distinct labels in
the graph. If the count of distinct labels < 3, the
graph is considered easy. If the count is ≥ 3 and
< 5, it is considered medium, and if the count is
≥ 5, it is considered hard. To decide the motif cri-
teria, we count the total number of motifs( focusing
on just triads, star motifs, and cliques) in a graph.
For example, if this count of motifs ≤ 10 for the

CORA dataset, the graph is considered easy. If the
count is > 10 and ≤ 20, it is regarded as medium;
if the count is > 20, it is considered hard. Some
graphs can have both the homophily and motif cri-
teria applicable to them; for instance, Figure 4 (b)
can be classified as medium based on homophily,
hard based on the count of motifs. This leads us
to combine the homophily and the count of motif
criteria to define the “task difficulty”. Thus, we
can have 23 = 8 categories of difficulty, and the
final difficulty label is decided by choosing the
higher annotation between homophily and count
of motif classification). So, a graph with criteria
{easy, hard} will be assigned the final task diffi-
culty, hard. Thus, we can classify graphs based
on our “task difficulty” heuristic, and we introduce
GRAPHTMI (Graph Text-Motif-Image), a novel
benchmark dataset of input graph structures paired
with their associated modality encodings.

homophily motif count

0 easy easy 7
1 easy hard 4
2 easy medium 6
3 hard easy 1
4 hard hard 8
5 hard medium 2
6 medium easy 5
7 medium hard 5
8 medium medium 12

Table 4: Statistics about the number of graphs classified
as easy, medium, or hard through the homophily and the
number of motifs criteria. All possible combinations
are covered in our benchmark (32 = 9).

difficulty count

0 easy 7
1 hard 20
2 medium 23

Table 5: Statistics about the number of problems finally
classified as easy, medium, or hard based on task diffi-
culty, a function of homophily, and number of motifs.

A.3 Modality Specific Experiment Details
Token limits for each modality Due to their archi-
tecture, transformer-based models like GPT-3 and
GPT-4 have a fixed-size attention window. This
determines how many tokens the model can “re-
member” or pay attention to at once. This limit
also manages the computational cost of running
the model and the model’s performance. The token
limit constraint for GPT-4 is 8192 tokens, while for
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Figure 10: Citeseer with ego graph sampling
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Figure 11: Citeseer with forest fire sampling
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Figure 12: Cora with forest fire sampling
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Figure 13: Pubmed with ego graph sampling
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Figure 14: Pubmed with forest fire sampling

Figure 15: Modality comparison (text, motif, and image) with the graph structure and sampling type shows the
clear dependency of graph structure and sampling on node classification performance.

GPT-4V(vision), the limit is claimed to be 128000
tokens, but currently, only the preview version has
been released, and the actual limit is 10000 tokens.

Rate limits for each LLM The rate limit for GPT-4
is 10K RPM (requests per minute), and for GPT-4V,
the rate limit is 100 RPD (requests per day).

Modality Experiment Parameters For all modal-
ity types, we sample 50 graphs for all datasets, the
number of hops considered = 3, no of runs = 2, and
perform ego graph and forest fire sampling. We
report the mean and standard deviation directly or
through error bars in the visualization for all met-
rics. In the paper, we report the results from ego
graph sampling because node classification typi-
cally needs a localized view around specific nodes,
best provided by ego graph sampling.

A.3.1 Text Modality

Task: Node Label Prediction (Predict the label of the node
marked with a ?) given the adjacency list information
as a dictionary of type “node: neighborhood” and node-
label mapping in the text enclosed in triple backticks. The
response should be in the format “Label of Node = <pre-
dicted label>”. If the predicted label cannot be determined,
return “Label of Node = -1”.
```AdjList: {1: [2,3], 2: [3,4], 3: [1,2]}
Node-Label Mapping: {1: A, 2: B, 3: ?} ```

Encoding graphs as text can be separated into
two key parts: First, the mapping of nodes to their
corresponding labels in the graph, and second, the
encoding of edges between the nodes. We encode
the node-to-label mapping as a dictionary of type
{node ID: node label}. Finding a concise yet in-
formative representation of the graph structure and
edge representation is essential. An example of a
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Edge Representation Text Encoding Description of Edge Representation

Edgelist Node to Label Mapping : Node 69025: Label 34| Node 17585: Label 10|...
Edge list: [(69025, 96211), (69025, 17585), (17585, 104598), (17585,
18844), (17585, 96211), (96211, 34515)]

An Edgelist is a graph data structure that represents a graph by
listing the edge connections between two nodes. (A, B) indicates
an connection between nodes A and B.

Edgetext Node to Label Mapping : Node 85328: Label 16| Node 158122: Label ?|...
Edge connections (source node - target node): Node 85328 is connected to
Node 158122. Node 158122 is connected to Node 167226.

An Edgetext explicitly lists the connections between two nodes;
for example, Node A is connected to Node B or Node A - Node B

Adjacency List Node to Label Mapping : Node 2339: Label 3| Node 2340: Label ?|...
Adjacency list: 1558: [2339, 2340], 2339: [1558, 2340], 2340: [2339,
1558]

An adjacency list represents a graph as an array of linked lists.
The index of the array represents a vertex, and each element in its
linked list represents the other vertices that form an edge with the
vertex. For example, A: [B, C] shows that A is connected to B and
C. This gives an idea of node-neighborhood

GML GraphML: graph [
node [

id 2339
label 3

]
node [

id 2340
label ?

]
node [

id 1558
label 3

]
edge [

source 2339
target 1558

]
edge [

source 2339
target 2340

]
]

A GraphML format consists of an unordered sequence of node
and edge elements enclosed within []. Each node element has
a distinct id and label attribute contained within []. Each edge
element has source and target attributes contained within [] that
identify the endpoints of an edge by having the same value as the
node id attributes of those endpoints. The node label information
is embedded within the structure, meaning no node-label mapping
is notneeded.

GraphML GraphML: <graphml xmlns=http://graphml.graphdrawing.org/xmlns
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:schemaLocation=http://graphml.graphdrawing.org/xmlns
http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd> <graph edgede-
fault=undirected>

<node id=2339 label=3 />
<node id=2340 label=? />
<node id=1558 label=3 />
<edge source=2339 target=1558 />
<edge source=2339 target=2340 />

</graph>
</graphml>

A GraphML file consists of an XML file containing a graph ele-
ment, within which is an unordered sequence of node and edge
elements. Each node element should have a distinct id attribute
as well as its label, and each edge element has source and target
attributes that identify the endpoints of an edge by having the same
value as the id attributes of those endpoints. The node label infor-
mation is embedded within the structure meaning no node-label
mapping is needed.

Table 6: Summary of edge representation passed as a part of the text modality encoder with their associated examples
and explanations. We find that the Adjacency list representation provides a granular yet not too verbose view of the
graph being passed to the LLM.

prompt using text modality is given above.

CORA Citeseer Pub.med

Avg edges 2-hop 62.70 ± 94.77 26.35 ± 61.70 129.36 ± 287.61

Avg nodes 2-hop 36.78 ± 48.12 15.11 ± 24.73 60.05 ± 85.12

Table 7: Subgraph Sampling Statistics about average
number of nodes and edges in a 2-hop subgraph from
each dataset.

Impact of Edge encoding function: Motivated
by recent works (Fatemi et al., 2023; Guo et al.,
2023) describing the importance of selecting the
appropriate text encoding for a graph, we experi-
ment with different edge representations (Appendix
Table 6) on real-world datasets and evaluate the
metrics for node classification and the results of

this are illustrated in Figure 16. “Adjacency list”
is the best-performing edge representation for the
text modality.

Impact of Graph Structure: We selected diverse
real-world citation datasets with unique network
characteristics, as shown in Table 1. These network
properties are defined in Table 8. The average
number of nodes and edges in a 2-hop subgraph
is also reported for CORA, Citeseer, and Pubmed
datasets.

Impact of Sampling Strategy: Graph sampling
techniques are essential for applying LLMs in
graph reasoning, particularly due to the limited
context window of LLMs and the intricacy of real-
world graphs (Wei and Hu, 2022). Ego graph sam-
pling centers on a specific node and its direct con-
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Table 8: Graph Properties and Their Descriptions

Name of Property Description

Density Measures how connected the graph is. It’s the ratio of actual edges to possible edges.

Degree Distribution The distribution of node degrees. The histogram might follow a specific pattern (e.g.,
power-law distribution, Gaussian distribution).

Average Degree The average degree of nodes in the graph.

Connected Components A subgraph in which a path connects any two nodes.

Clustering Coefficient Measures the degree to which nodes tend to cluster together.

Graph Diameter The longest shortest path between any two nodes. It provides insight into the graph’s
overall size.

2hop nodes Average number of nodes present in the subgraph at 2 hop distance from any node
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Figure 16: We compare the edge representation type
(x-axis) with the value of the mean metrics (y-axis).
The desired trend is given in brackets for each metric.
The highest performing edge representation is the “adja-
cency list” representation with the highest accuracy (A
↑) and low mismatch rate (M ↓)), denial rate (D ↓), and
token limit fraction (T ↓).

nections, forming a subgraph that mirrors these
immediate relationships. In contrast, Forest Fire
sampling randomly selects a node and expands
from there, producing varying subgraphs in size
and structure, influenced by factors like ’burning’
probabilities. However, both methods have limita-
tions and can potentially distort the overall struc-
ture of complex and extensive networks.

A.3.2 Motif Modality

Task: Node Label Prediction (Predict the label of the node
marked with a ?) given the node-label mapping and graph
motif information in the text enclosed in triple backticks.
The response should be in the format “Label of Node
= <predicted label>”. If the predicted label cannot be
determined, return “Label of Node = -1”.
```Node-Label Mapping: {1: A, 2: A, 3: ?}
Graph-motif information: No of triangles: 1| Triangles
attached to ? Node : [1,2,3]| ```
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Figure 17: We compare the motif information (x-axis)
to the mean metrics (y-axis). Desired trends are denoted
in brackets. Metrics considered are Accuracy Rate (A
↑), Mismatch Rate (M ↓), and Denial Rate (D ↓). The
highest performing motif information change “triangle
and star attached to ?” has higher accuracy and lower
mismatch and denial rate.

Encoding graphs as motifs can be separated into
two key parts: First, the encoding of nodes to their
corresponding labels in the graph, and second, the
motifs present around the ? (unlabeled) node. We
encode the node-to-label mapping as a dictionary
of type {node ID: node label}. We calculate mo-
tifs in the neighborhood of the ? nodes and pass
this information to GPT-4 (OpenAI, 2023a) as the
graph-motif information. Connections of an unla-
beled node to significant nodes or groups (like stars
or cliques) are more indicative of its label than just
the count of graph motifs, with central nodes in star
motifs or members of cliques heavily influenced by
their neighbors’ labels. We experiment with differ-
ent network motifs as input to the modality encoder.
Table 9 describes the different types of motifs con-
sidered, a description of the motif, and an example
of the encoding generated as input to GPT-4. An
example prompt generated after applying the motif
encoding modality is given above.
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Type of Motif Motif Encoding Description of Motif

Node-Label Mapping Node to Label Mapping : Node 1889: Label 4 | ... Node 1893:
Label ?|...

Only the node-label mapping is provided (this gives no connectiv-
ity information to LLM)

No. of Star Motifs Node to Label Mapping : Node 1889: Label 4 | ... Node 1893:
Label ?| ... Graph motif information: Number of star motifs: 0|

Star motifs signify centralized networks with influential central
nodes, where a central node is connected to others that aren’t
interlinked. We pass the count of the star motifs present in the
graph.

No. of Triangle Motifs Node to Label Mapping : Node 1889: Label 4 | ... Node 1893:
Label ?| ... Graph motif information: Number of triangle motifs:
6|

Triangle motifs (triads connecting three nodes) are foundational
in social networks, indicating transitive relationships, community
structures, and strong social ties. We pass the count of the triads
present in the graph.

No. of Triangle Motifs
Attached

Node to Label Mapping : Node 1889: Label 4 | ... Node 1893:
Label ?|... Graph motif information: Triangle motifs attached to ?
node: [1893,2034,1531], [1893,1531,429]|

We pass the triangle motifs attached to the ? label, which gives an
idea of the influential triads connected to the ? node.

No. of Star Motifs At-
tached

Node to Label Mapping : Node 1889: Label 4 | ... Node 1893:
Label ?|... Graph motif information: Star motifs connected to ?
node: []|

We pass the star motifs attached to the ? label, which gives an idea
of the influential nodes connected to the ? node.

No. of Star and Triangle
Motifs

Node to Label Mapping : Node 1889: Label 4 | ... Node 1893:
Label ?|... Graph motif information: Number of star motifs: 0|
Number of triangle motifs: 6|

We pass the count of the triads and star motifs present in the graph,
to give the LLM an idea of the graph structure.

Star and Triangle Motifs
attached

Node to Label Mapping : Node 1889: Label 4 | ... Node 1893:
Label ?|... Graph motif information: Triangle motifs attached to ?
node: [1893,2034,1531], [1893,1531,429]| Star motifs connected
to ? node: []|

We pass the star motifs and triads attached to the ? label, which
gives an idea of the influential nodes and triads connected to the ?
node.

No of cliques ? Node is
part of

Node to Label Mapping : Node 1889: Label 4 | ... Node 1893:
Label ?|... Graph motif information: Number of cliques in graph:
0| ? Node is a part of these cliques: []|

We pass the number of cliques in the network, which gives an idea
of its clustered nature. We also pass the cliques the ? label is a
part of, which gives an idea of the immediate community of the
unlabelled node.

No of cliques ? Node is
attached to

Node to Label Mapping : Node 1889: Label 4 | ... Node 1893:
Label ?|...Graph motif information: ? Node is attached to these
cliques: []|

We pass the cliques the ? label is attached to, which gives an idea
of the neighboring influential community of the unlabelled node.

Table 9: Summary of motif information passed as a part of the motif modality encoder with their associated examples
and explanations. The Aggregate of all changes setup combines all of the above motif information to give the LLM
a local and global view of the graph being passed.

A.3.3 Image Modality

Task: Node Label Prediction (Predict the label of the
red node marked with a ?, given the graph structure
information in the image). The response should be in
the format "Label of Node = <predicted label>." If the
predicted label cannot be determined, return "Label of
Node = -1."

We use GPT-4V (OpenAI, 2023b) to process
graph images to give LLMs a global perspective of
graph structural information. An example prompt
generated after applying the image encoding modal-
ity is shown above.

Details GCN GAT GraphSAGE

Epochs 100 100 100
Learning Rate 0.005 0.005 0.005
Weight Decay 5e-4 5e-4 5e-4

Table 11: List of GNN training hyperparameters

Dataset Cora Citeseer Pubmed

Training Set 140 120 60
Testing Set 1000 1000 1000
GCN Params 23063 59366 8067
GAT Params 92373 237586 32393
GraphSage Params 46103 118710 16115

Table 12: GNN Train-Test split and Parameters

B GNN Experiments

Our GNN model training utilized optimal hyperpa-
rameters as detailed in Table 11. We followed the
standard train-test splits of the Planetoid dataset
from PyTorch Geometric, adhering to the conven-
tional approach in semi-supervised learning re-
search within graph-based studies. This approach
allows for learning from minimal labeled data
alongside a larger pool of unlabeled data, ensur-
ing consistency with prior research. Due to GPT-4
API constraints limiting us to 50 test samples, our
main paper could not compare results directly with
those obtained from 1000 test samples (shown in
Table 10).

518



Model Cora Citeseer Pubmed

GNN
Baselines

GCN 0.7820 ±0.133 0.6540 ±0.083 0.7480 ±0.077
GAT 0.8200 ±0.084 0.6680 ±0.069 0.7510 ±0.050
GraphSage 0.7570 ±0.137 0.6300 ±0.098 0.7430 ±0.078

LLMs +
Encoding
Modality

Text 0.81 ±0.04 [0.07 ±0.03] 0.75 ±0.05 [0.07 ±0.01] 0.83 ±0.01 [0.08 ±0.01]*

Motif 0.73 ±0.06 [0.06 ±0.01] 0.59 ±0.01 [0.32 ±0.02] 0.77 ±0.006 [0.13 ±0.04]

Image 0.77 ±0.05 [0.04 ±0.02]* 0.71 ±0.09 [0.06 ±0.0]* 0.79 ±0.03 [0.19 ±0.01]

Table 10: Test accuracy rates of node classification across different datasets using the entire 1000 test data and denial
rates D in [brackets] for LLM models. For LLMs, we chose a test sample of 50 graphs. * indicates the lowest denial
rate for each modality. The highest accuracy rate for the dataset is in bold, while the second highest is underlined.
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