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Abstract
Cybersecurity information is often technically
complex and relayed through unstructured text,
making automation of cyber threat intelligence
highly challenging. For such text domains that
involve high levels of expertise, pretraining on
in-domain corpora has been a popular method
for language models to obtain domain exper-
tise. However, cybersecurity texts often con-
tain non-linguistic elements (such as URLs and
hash values) that could be unsuitable with the
established pretraining methodologies. Previ-
ous work in other domains have removed or
filtered such text as noise, but the effectiveness
of this approach has not been investigated, es-
pecially in the cybersecurity domain. We exper-
iment with different pretraining methodologies
to account for non-linguistic elements (NLEs)
and evaluate their effectiveness through down-
stream tasks and probing tasks. Our proposed
strategy, a combination of selective MLM and
jointly training NLE token classification, out-
performs the commonly taken approach of re-
placing NLEs. We use our domain-customized
methodology to train CyBERTuned, a cyberse-
curity domain language model that outperforms
other cybersecurity PLMs on most tasks.

1 Introduction

Cybersecurity is a critical concern as the world
continues to grow reliant on technology. Modern
cybersecurity practice emphasizes the need for
preemptive defense utilizing Cyber Threat Intel-
ligence (CTI) — actionable information on pos-
sible cyber-threats (Farnham and Leune, 2013).
However, due to the unstructured and complex
nature of such information, leveraging CTI re-
quires extensive manual inspection by human ex-
perts (Husari et al., 2017). Although automating
cyber threat intelligence has been regarded as im-
portant (Fernández Vázquez et al., 2012; Kam-
panakis, 2014), it has been considered highly chal-
lenging (Wagner et al., 2019).

∗Work performed while at S2W Inc.

Figure 1: A threat report excerpt after tokenization and
masking with 15% probability. The tokens inside the
SHA hash and URL are highlighted. Masked tokens are
indicated by a gray bar.

Meanwhile, pretrained language models (PLMs)
have shown great potential for text comprehen-
sion (He et al., 2020). However, PLMs are un-
likely to have developed the necessary expertise
for domains that require significant domain knowl-
edge, such as the cybersecurity domain. This could
be somewhat addressed by extremely large mod-
els (Sergeev, 2023), but this option is costly to train
and run. A more common approach to teach do-
main expertise to PLMs has been to pretrain on a
domain-specific corpus. The effectiveness of such
domain-pretrained PLMs has been demonstrated in
the biomedical (Lee et al., 2019), scientific (Belt-
agy et al., 2019), and legal (Chalkidis et al., 2020)
domains to name a few. Several cybersecurity do-
main PLMs (Ranade et al., 2021; Aghaei et al.,
2022; Bayer et al., 2022) were also trained in a
similar manner.

However, cybersecurity texts often incorporate
non-linguistic elements (NLEs) that could be in-
appropriate for self-supervised pretraining. Self-
supervised objectives like masked language mod-
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eling (MLM) (Devlin et al., 2019) or de-noising
objectives (Lewis et al., 2020) learn by recover-
ing original texts from a masked or modified state.
While this is mostly beneficial for natural language,
such tasks might not be effective when trying to
recover tokens in non-linguistic parts of text. Fig-
ure 1 shows an excerpt from a malware threat re-
port containing a SHA hash and a URL. The SHA
hash tokens are linguistically random, and therefore
training a model to correctly recover these tokens
may not be beneficial. Similarly, the URL tokens
are less predictable compared to the natural lan-
guage text surrounding it, and therefore potentially
unsuitable for pretraining.

Outside of the cybersecurity domain, previous
works addressed such NLEs through replacement
(e.g. replace all URLs with “[URL]”) (Dai et al.,
2020; Caselli et al., 2021; Jin et al., 2023) or fil-
tering (Le et al., 2020; Raffel et al., 2020; Hung
et al., 2022). However, no attempt has been made
to verify whether these approaches actually benefit
pretraining. It is also unclear whether such prac-
tices would have similar benefits in the cybersecu-
rity domain, where it is more common for NLEs
to be used alongside natural language. Conversely,
pretraining with NLEs could be beneficial to utilize
the informational value of NLEs. For instance, a
model may learn to identify suspicious domains in
URLs or recognize familiar hash values in the way
human cybersecurity experts can.

We investigate different strategies of pretrain-
ing on the cybersecurity domain. We first identify
commonly occurring NLE types that can be ex-
tracted using regular expressions. We then pretrain
models using different MLM strategies, testing the
effectiveness of selective masking and NLE token
classification and comparing to the vanilla MLM
and replacement strategy. Our experiments suggest
that replacement benefits on downstream tasks but
harms performance on probing tasks, especially
near NLEs. Instead, we find that a strategy of se-
lective masking while jointly training with NLE
token classification generally outperforms the re-
placement strategy. Using this strategy, we train
CyBERTuned (Cybersecurity BERT-like Utilizing
Non-linguistic Elements of the Domain), a cyber-
security domain PLM trained with the domain-
customized pretraining methodology. We show
CyBERTuned outperforms comparable cybersecu-
rity domain PLMs in most tasks. CyBERTuned
model weights, training resources, and code are

publicly available at https://github.com/
genesith/CyBERTuned.

Our contributions are as follows:

• We propose and test multiple strategies to deal
with NLEs when pretraining on a cybersecu-
rity corpus.

• Through experiments on a variety of domain
tasks, we find a strategy that is preferable to
the common practice of replacing NLEs.

• We use our methodology to train CyBER-
Tuned, a cybersecurity domain encoder model
that outperforms other cybersecurity models.

• We provide our model weights, training re-
sources, and code.

2 Related Work

Cybersecurity NLP Automating cyber threat intel-
ligence has been often discussed in literature (Kam-
panakis, 2014; Wagner et al., 2019; Jo et al., 2021).
Classical off-the-shelf NLP methods, such as regex
processing and dependency parsing, have been used
to extract attack patterns (Husari et al., 2017) or
malware behaviors (Zhu and Dumitraş, 2016) from
cybersecurity texts. Recent works explore the po-
tential of using BERT (Devlin et al., 2019) for
more complex tasks such as exploitability predic-
tion (Yin et al., 2020), malware detection (Rahali
and Akhloufi, 2021), and dark web analysis (Jin
et al., 2023).

Domain PLMs PLMs train with large text corpora
using self-supervision tasks (Devlin et al., 2019;
Lewis et al., 2020; He et al., 2020). Many domain
PLMs (Lee et al., 2019; Chalkidis et al., 2020; Belt-
agy et al., 2019) were able to outperform general
PLMs on domain-specific tasks by simply repli-
cating existing pretraining procedures on domain
corpora. PLMs for the cybersecurity domain us-
ing this approach have been suggested by several
works (Ranade et al., 2021; Aghaei et al., 2022;
Bayer et al., 2022). Our work differs in that we use
a domain-customized methodology after investigat-
ing the effectiveness of various strategies.

Pretraining Strategies Self-supervised tasks for
pretraining have been investigated by many
works (Lewis et al., 2020; Aroca-Ouellette and
Rudzicz, 2020; Yamaguchi et al., 2021). Some
works find improvements by modifying the mask-
ing procedure of the MLM task. Changing mask-
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Figure 2: The overall architecture of CyBERTuned. NLE spans from the original input is used in the masking step
and for NLE classification.

ing from token-level to word-level significantly im-
proved BERT pretraining for Chinese (Cui et al.,
2021). Works on selective masking suggested that
masking tokens important to tasks (Gu et al., 2020),
entities (Lin et al., 2021), or reasoning (Sanyal
et al., 2023) more frequently was effective. Con-
versely, our selective masking method skips mask-
ing tokens that are ineffective for MLM training.
Previously, dropping less important tokens mid-
training was suggested as a way to increase training
efficiency (Hou et al., 2022), but at the cost of los-
ing semantic sensitivity (Zhong et al., 2023). In our
work, ineffective tokens are identified beforehand
via NLE spans, and are skipped during masking
rather than dropped during training.

3 Method

In this section, we first discuss the types of NLEs
in cybersecurity texts and how to extract NLE in-
stances. We then propose some methods to utilize
the extracted NLE spans in pretraining with cyber-
security texts.

3.1 Non-linguistic Elements
Cybersecurity texts often feature non-linguistic text
alongside natural language. Among non-linguistic
texts, certain types of are extractable with regular
expressions (Husari et al., 2017). We narrow our
scope to non-linguistic elements that can be iden-
tified by regular expressions, since our aim is to
apply them into self-supervised tasks. After man-
ual inspection of cyber threat reports, we select
the NLE types that are both frequent and identi-
fiable with regular expressions. The following 7
types were selected: URLs, email addresses, IP

addresses, MD5 hashes, SHA hashes, Bitcoin ad-
dresses, and CVE IDs1. Note that we do not con-
sider NLE types that require significant effort to
extract precisely, such as filepaths or code blocks.
We also extend detection to defanged NLEs (e.g.,
hxxp://example.com, 192.168[.]1.192) by utilizing
the iocide Python library2.

3.2 Leveraging NLE Spans in Pretraining

We study two methods to leverage extracted NLE
spans to guide the pretraining. Figure 2 shows a
model utilizing both methods.

NLE Classification: The model is explicitly in-
structed to predict which tokens belong to NLEs
in the pretraining text. This can be modeled as a
simple token classification task and can be trained
alongside the MLM task. Each token is labeled
with its NLE type (0 if outside of NLE span), which
is predicted by a token classification head (linear
layer).

Since this task is a more semantically shal-
low task compared to the original MLM task, it
should not dominate the total loss function (Aroca-
Ouellette and Rudzicz, 2020). Therefore, we apply
a scaling factor (0.1) before adding with the MLM
loss to produce the total loss.

Selective MLM: In the masking stage, the NLE
spans are used to avoid masking tokens that are
inside NLEs. However, since informational con-
tent varies between NLE types it must be inves-
tigated whether all NLE types should be avoided.

1CVE (Common Vulnerabilities and Exposures) IDs are
unique identifiers assigned to publicly disclosed vulnerabili-
ties.

2https://pypi.org/project/iocide/
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Strategies
Masks

NLEC
Example
(MLM)

Example
(NLE Classification)SLE FNLE

Vanilla MLM ✓ ✓

The Dropper drops a zipped SysJoker
(53f1bb23f670d331c9041748e7e8e396
) from C2 https[://]github[.]url-mini[.]
com/msg.zip, copies it to

N/A

Replace All (replaced)
The Dropper drops a zipped SysJoker
(<MD5>) from C2 <URL>, copies it to

N/A

Vanilla + NLEC ✓ ✓ ✓

The Dropper drops a zipped SysJoker
(53f1bb23f670d331c9041748e7e8e396
) from C2 https[://]github[.]url-mini[.]
com/msg.zip, copies it to

The Dropper drops a zipped SysJoker
(53f1bb23f670d331c9041748e7e8e396
) from C2 https[://]github[.]url-mini[.]
com/msg.zip, copies it to

Mask-Semis ✓

The Dropper drops a zipped SysJoker
(53f1bb23f670d331c9041748e7e8e396
) from C2 https[://]github[.]url-mini[.]
com/msg.zip, copies it to

N/A

Mask-Semis + NLEC ✓ ✓

The Dropper drops a zipped SysJoker
(53f1bb23f670d331c9041748e7e8e396
) from C2 https[://]github[.]url-mini[.]
com/msg.zip, copies it to

The Dropper drops a zipped SysJoker
(53f1bb23f670d331c9041748e7e8e396
) from C2 https[://]github[.]url-mini[.]
com/msg.zip, copies it to

Mask-None + NLEC ✓

The Dropper drops a zipped SysJoker
(53f1bb23f670d331c9041748e7e8e396
) from C2 https[://]github[.]url-mini[.]
com/msg.zip, copies it to

The Dropper drops a zipped SysJoker
(53f1bb23f670d331c9041748e7e8e396
) from C2 https[://]github[.]url-mini[.]
com/msg.zip, copies it to

Table 1: Comparisons between how each text types are processed in different strategies. In the MLM examples,
highlighted sections indicate text that are considered for masking. In the NLE Classification examples, each token is
predicted for its NLE type (indicated by color).

We note that NLEs that involve human generated
text (URLs and emails), unlike protocol-generated
values (IP addresses, hash values, etc.), can contain
linguistically meaningful information. For instance,
a human expert may identify the URL github[.]url-
mini[.]com/msg.zip as a malicious file download
link from a fake domain masquerading as the legit-
imate GitHub domain.

To make a simple distinction between NLE
types, we group the NLEs based on whether they
are generated by humans or protocol. Specifically,
we group URLs and emails as semi-linguistic el-
ements (SLEs) and IP addresses, MD5 hashes,
SHA hashes, Bitcoin addresses, and CVE IDs
as fully non-linguistic elements (FNLEs). We
then test two settings of selective masking: Mask-
None: all NLE types are avoided during mask-
ing. Mask-Semis: fully non-linguistic elements are
avoided but semi-linguistic NLEs are allowed to be
masked.

4 Pretraining the Models

To evaluate our pretraining methodology on the
cybersecurity domain, we pretrain models on a cy-

bersecurity text corpus using a number of strategies.
We first describe the tested pretraining strategies, in-
cluding the vanilla MLM and ablation settings. We
also describe our cybersecurity corpus and show
statistics that suggest NLEs are more frequent in
cybersecurity texts.

4.1 Pretraining Strategies

We compare a total of 6 pretraining strategies. First
we include two commonly used strategies as base-
lines. As ablation studies, we also test two strate-
gies using only one method. Then two strategies
that utilize both NLE classification and selective
MLM are described. Examples of these strategies
can be seen in Table 1.

Vanilla MLM: The original masking strategy (De-
vlin et al., 2019). After tokenization, 15% of the
input tokens are selected for prediction. Following
the original implementation, 80% are converted
into the mask token, 10% are converted into a ran-
dom token, and 10% are unchanged.

Replace All: A commonly used strategy to reduce
the impact of NLEs in pretraining (Caselli et al.,
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Data Source Count Data Size

Full
Online security articles 150K 680.8 MB
Security paper abstracts 7.3K 9.1 MB
Wikipedia articles 3.4K 15.7 MB
CVE descriptions 185K 52.5 MB

Pretraining Subset
Online security articles 34K 170.4 MB

Table 2: Statistics of data sources used in the corpus.
The data used to pretrain the models is a subset of the
total data.

2021; Jin et al., 2023). The MLM method is un-
changed, but the NLEs in the input corpus is con-
verted to an identifier of the NLE type (e.g., all
CVE IDs are replaced with “<CVE>”). However,
comes with a risk of reducing informational content
in the pretraining corpus.

Vanilla + NLEC: The MLM method is unchanged,
but the joint task of token-level NLE classifica-
tion (NLEC) is also performed. While MLM is
still done on NLE tokens, NLEC could instruct the
model to understand the different role the tokens
have.

Mask-Semis: A selective MLM method that avoids
masking of FNLEs (hash values, IP addresses,
etc.) while allowing masking of SLEs (URLs and
emails).

Mask-Semis + NLEC: A strategy using both the
selective masking and NLEC. In this setting, tokens
in SNLEs are allowed to be masked and tokens in
FNLEs are avoided.

Mask-None + NLEC: A strategy using both the
selective masking and NLEC. In this setting, tokens
in all NLEs are avoided during masking.

4.2 Cybersecurity Corpus

We collect and curate a large amount of text from
publicly available online sources. Like other cyber-
security PLMs, we construct our corpus with data
from a variety of sources: Online Security Articles,
Security Paper Abstracts, Wikipedia Articles, and
CVE Descriptions. A detailed description of the
components and collection of the corpus can be
found in Appendix A and D.

Pretraining subset. We further identify a subset
of the corpus focused on threat reports to pretrain
on. This is because the full corpus covers a vari-
ety of styles, including news articles written for

NLE Ours
(PS)

Ours
(Full) Wiki C4

URL 16,272 5,172 62 404
EMAIL 3,282 901 < 1 33
IP 2,503 780 3 15
MD5 2,651 754 < 1 1
SHA 550 161 < 1 < 1
BTC 1,024 273 < 1 < 1
CVE 1,225 550 < 1 3

Table 3: Distribution of non-linguistic elements (per
million words) in our pretraining subset (PS) corpus,
full corpus, Wikipedia, and C4.

non-expert audiences. Such articles contain little
technical information and few NLEs. Since our
goal is to compare pretraining strategies of teach-
ing technical expertise of analysts to models, we
filter to find sources that publish for expert audi-
ences. From 60 total online source sites, we select
30 sites that more often feature technical informa-
tion to make up the pretraining subset. The data
size of our sources used for constructing the corpus
and the pretraining subset is listed in Table 2.

NLE Statistics. To demonstrate the frequency of
non-linguistic elements in our cybersecurity text
corpus, we compare our corpus with two general
domain text corpora: the Wikipedia corpus and
the C4 corpus (Raffel et al., 2020). The Wikipedia
corpus, used in pretraining BERT and other models,
consists of text content from Wikipedia articles.
The C4 corpus, first used for pretraining T5 (Raffel
et al., 2020), is a collection of crawled web pages.
Unlike our corpus, the C4 corpus aims to include
only natural language text and use heuristics to
filter text with non-natural language. Due to the
large size of this dataset, we sample 0.1% of the
total size (365,234 documents) for our analysis.

To compare between corpora, we calculate the
frequency of NLEs. We first count the number of
instances of each NLE type, using our detection
methodology (discussed in Section 3.1) on each
corpus. We use the NLTK (Bird and Loper, 2004)
tokenizer to count the number of words in each
corpus. Table 3 shows the frequencies of each non-
linguistic element per million words. We observe
that the frequency of NLEs in our corpus is signifi-
cantly higher compared to the two general domain
corpora.
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Strategies
Downstream Tasks Probing Tasks

CyNER CySecED MTDB All Near-FNLEs

RoBERTa 0.637 0.504 0.802 0.278 0.270
Vanilla MLM 0.648 0.510 0.822† 0.382 0.460
Replace All 0.664†* 0.544 0.827† 0.381 0.438
Vanilla + NLEC 0.652 0.526 0.820 0.380 0.455
Mask-Semis 0.638 0.538 0.817 0.386 0.463
Mask-Semis + NLEC 0.667†* 0.544† 0.825† 0.383 0.464
Mask-None + NLEC 0.643 0.533† 0.829† 0.382 0.452

Table 4: Experimental results on multiple pretraining strategies. Downstream tasks show median values over 10
runs. Boldface represents the best score and underlined values represents the second best score. The † symbols
indicates statistically significant distributions from the RoBERTa-base baseline. The * symbols indicates statistically
significant distributions from the Vanilla MLM baseline.

4.3 Pretraining Setup

For our experiments, we pretrain further on the pre-
trained RoBERTa-base model (Liu et al., 2019). We
choose the RoBERTa model as the base architec-
ture because its minimal pre-tokenization scheme
and coverage is suitable to our corpus3. For effi-
ciency, we choose to pretrain further on the pre-
trained model, following findings that suggest that
this method is as effective as training a model from
scratch (Chalkidis et al., 2020; El Boukkouri et al.,
2022). We mostly follow RoBERTa’s training hy-
perparameters, with few modifications to account
for our smaller corpus size (details can be found
in Appendix C). Note that the Replace All strategy
modifies the pretraining corpus size. For fair com-
parison, all models were trained for 500 steps (∼12
epochs for the Replace All model, ∼10 epochs for
other models).

5 Experiments

We evaluate the models trained by each pretrained
strategy with both downstream tasks and probing
tasks. For comparison, we also experiment with the
base RoBERTa model.

5.1 Downstream Tasks

We compare the ability of each model to fine-tune
onto downstream tasks using challenging cyberse-
curity datasets.

3The BERT pretokenizer assumes there are spaces between
the ‘:’, ‘/’, ‘.’ characters common in URLs. The corpus also
contains obscure characters that aren’t considered by other
tokenizers(the T5 tokenizer does not have the ‘\’ character in
its vocabulary.

CyNER (Alam et al., 2022): A named entity recog-
nition dataset of annotated malware threat reports.
The reports are annotated for five entity types: Mal-
ware, System, Organization, Indicator, and Vulner-
ability.

CySecED (Man Duc Trong et al., 2020): An event
detection dataset of annotated articles from The
Hacker News. The articles are annotated for 30
fine-grained events types describing cyber-attacks
or vulnerabilities.

MalwareTextDB (MTDB) (Lim et al., 2017;
Phandi et al., 2018): A dataset of malware reports
annotated for four types of attributes ActionName,
Capability, StrategicObjectives and TacticalObjec-
tives. The labels are cast into a multiple choice
question format, where the objective is to identify
the correct attribute given a passage, attribute type,
and answer choices.

5.2 Probing Tasks

A disadvantage of comparing performance with
downstream tasks is that fine-tuning modifies the
model weights learned from pretraining. In or-
der to evaluate the model weights themselves,
we probe the model’s ability to produce correct
MLM answers for relevant tokens similar to the
LAMA (Petroni et al., 2019) framework. We fol-
low the domain-specific version by Chalkidis et al.
(2023), in which a list of legal terminology was
used to find instances of the terms from a target
corpus. Models are then evaluated by its ability to
recover the correct terminology after it is masked.

Our implementation tests model ability to cor-
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rectly identify cybersecurity terminology in text
context. We first construct a list of relevant termi-
nology by taking words used in MITRE’s database
of enterprise attack techniques4. After processing
and filtering, we identify 226 tokens to be used for
probing (see Appendix B). To probe the ability of
each model, we evaluate the MLM performance on
the validation split of the full corpus after mask-
ing all target tokens. A total of 77,983 tokens were
masked. We also mark tokens in the vicinity (within
20 tokens away) of FNLEs, to see if the presence
of FNLEs affects the probing performance. A total
of 4,906 tokens were near FNLEs.

5.3 Results

The results of the experiments are presented in
Table 4. For downstream tasks, we report the me-
dian values over 10 seeds. We mark statistical sig-
nificance of p < 0.05 compared with the base
RoBERTa and Vanilla MLM baselines. F1 scores
are shown for the CyNER and CySecED tasks and
accuracy is shown for the MTDB task and probing
tasks.
NLEC. Comparing the Vanilla MLM with the
Vanilla + NLEC model suggests that the classifi-
cation task, on its own, does not provide meaning-
ful benefits. However, when comparing the Mask-
Semis and Mask-Semis + NLEC settings, the addi-
tion of the NLEC task provides a noticeable benefit
in downstream tasks. In both comparisons, NLEC
caused a slight decrease in the probing tasks.
Selective Masking. Comparing the Vanilla MLM
with the Mask-Semis model suggest that selective
masking does not produce consistent gains in down-
stream tasks, although it benefits probing tasks.
Comparing Mask-Semis + NLEC and Mask-None
+ NLEC settings, the strategy of masking SLEs
seems to benefit more consistently across down-
stream tasks and the probing tasks. This results
suggests that there is value in performing masking
on URLs and emails.
Best performers. While different pretraining meth-
ods suit different tasks (Lewis et al., 2020), the
Mask-Semis + NLEC model performed consistently
well across all tasks. The Replace All model was
also very capable in downstreaming tasks, but was
weaker in probing tasks. Especially, the model prob-
ing performance was worst of all the pretrained
models when the probed token was near an FNLE.

4https://attack.mitre.org/techniques/
enterprise/

This is an undesirable characteristic of the model,
since the model is expected to encounter multi-
ple FNLEs in the domain. We argue Mask-Semis
+ NLEC is the best strategy because it allows the
model to utilize NLEs while achieving high down-
stream performance.

6 CyBERTuned Experiments

6.1 Pretraining CyBERTuned

With our findings, we train our final model CyBER-
Tuned. We train on a larger scale with the Mask-
Semis + NLEC strategy. We compare our model
with other language models on a larger array of
downstream tasks in the cybersecurity domain. The
CyBERTuned model is trained on our full cyber-
security corpus using a similar setup. Compared
to the previous experiments, we train longer for a
total of 200 epochs on a larger corpus.

6.2 Downstream Tasks

We conduct downstream tasks5 on a wider variety
of cybersecurity tasks. The new tasks are described
below.

CASIE (Satyapanich et al., 2020): An event de-
tection dataset of annotated news articles for non-
expert audiences. The articles are annotated for
five event types: data breach, phishing, ransom, dis-
cover, and patch.

TwitterThreats (TT) (Zong et al., 2019): A binary
sequence classification dataset of annotated tweets
that mention threat keywords. Each tweet is anno-
tated on whether the tweet describes a threat to the
mentioned entity.

CYDEC (Yagcioglu et al., 2019): A binary se-
quence classification dataset of annotated tweets
that mention cybersecurity keywords. Each tweet
annotated on whether the tweet describes a
cybersecurity-related event.

6.3 Baselines

We compare CyBERTuned with the base RoBERTa
model and other cybersecurity domain PLMs. All
models follow the 12-layer Transformer encoder
architecture.

RoBERTa-base (Liu et al., 2019): The RoBERTa-
base model that was used to initialize CyBER-
Tuned.

5Note that we do not do the probing tasks, since only
our model was trained on the same sources of text with the
validation corpora.
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Token Class. Sequence Class. MCQA

CASIE CyNER CySecED CYDEC TT MTDB

RoBERTa-base 0.748 0.637 0.504 0.829 0.831 0.802

CyBERT 0.711† 0.462† 0.361† 0.798 0.832 0.731†

CySecBERT 0.734 0.572† 0.491 0.814 0.845† 0.808

SecureBERT 0.753 0.638 0.529† 0.816 0.828 0.825

CyBERTuned (Ours) 0.750 0.654 0.585† 0.844 0.857† 0.861†

Table 5: Experimental results of CyBERTuned and baselines on downstream cybersecurity tasks, showing median
F1 scores across 10 seeds. Boldface values represents the best score and underlined values represents the second
best score. The symbols † (positive) and † (negative) indicates statistically significant distributions from the baseline
(RoBERTa-base).

CyBERT (Ranade et al., 2021): A cybersecurity
BERT-based model, further pretrained on the base
BERT model. The BERT vocabulary is extended
by 1,000 tokens from the training corpus identified
by TF-IDF.

CySecBERT (Bayer et al., 2022): A cybersecurity
BERT-based model, further pretrained on the base
BERT model. The model uses the BERT vocabu-
lary.

SecureBERT (Aghaei et al., 2022): A cybersecu-
rity RoBERTa-based model, further pretrained on
the base RoBERTa model. The model uses a cus-
tom vocabulary with adjusted token weights.

6.4 Results

The experiment results are presented in the Table 5.
As before, we conduct each experiment over 10
seed values and report median values.

The base RoBERTa model, despite being pre-
trained on the general domain, performed bet-
ter than some domain PLMs in several tasks. Of
the two BERT-based models, CyBERT performed
poorly on most tasks while CySecBERT generally
showed competitive performance. However, even
CySecBERT performed poorly in the CyNER task.
This is possibly due to its usage of the uncased
BERT tokenizer, which not only distorts texts with
special characters but is case-insensitive (possibly
important for NER).

SecureBERT was the only model that beat Cy-
BERTuned in a task. It showed high performance
in the token-level tasks, suggesting some benefit
of their custom tokenizer. On the other hand, Cy-
BERTuned performed consistently, achieving best
or second-best performance in all tasks.

7 Discussion

RoBERTa’s performance. The base RoBERTa
model achieved good performance on certain tasks
after fine-tuning, often outperforming domain-
pretrained models. A possible interpretation is that
previously challenging cybersecurity tasks, such as
binary sequence classification of threat tweets, do
not require extensive domain knowledge to achieve
high performance. It should be noted that the CY-
DEC dataset reports a human F1-score of 0.59 and
the TwitterThreats dataset reports a Cohen’s κ of
0.66, suggesting these models have possibly al-
ready exceeded human and annotator performance
on these tasks. This underscores the need for more
challenging datasets for benchmarking models in
the cybersecurity domain.

NLE Classification as auxiliary task. Although
MLM loss takes long to plateau, NLE classifica-
tion loss plateaus quite early during pretraining.
We note that the NLE classification overhead is
not large, training with and without NLE classifica-
tions only had a 0.6% difference in training time.
One possible method to increase training efficiency
might be to drop NLE classification task after the
loss plateaus. Whether this would achieve compa-
rable performance could be investigated in further
work.

NLEs of other domains. While it is common prac-
tice to remove NLEs in other domains, our inves-
tigation suggests proper modifications to training
may be preferable. However, our experiments were
conducted in the cybersecurity domain, where cer-
tain NLE types can contain informative content.
The optimal pretraining strategy is likely different
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across text domains, and dependent on informa-
tional content of NLEs.

8 Conclusion

We investigate methods to modify pretraining to
suit the cybersecurity domain. We find that a strat-
egy of selective MLM that allows for masking of
semi-linguistic elements but not fully-linguistic el-
ements with an auxiliary NLE classification task
showed best performance. With these findings, we
present CyBERTuned, a cybersecurity PLM with
our modified pretraining methodology. The final
CyBERTuned model shows strong performance
across all cybersecurity downstream tasks. Our
findings support the importance of adapting pre-
training methodologies to suit target domains.

Limitations

Non-linguistic Element Types. The types of non-
linguistic element discussed in this work represent
a subset of a large set of textual data that are atypi-
cal to natural language. While there are more text
types that fall under this category, our scope was
limited to types that are easily identifiable to be
practical for self-supervision. We note the exis-
tence of more complex types of text that are rel-
evant to understanding cybersecurity text such as
code blocks, filepaths, or log entries. We leave the
detection and effective utilization of such text types
for future work.

Another limitation is that the strategies tested uti-
lized broad distinctions between SLEs and FNLEs.
Due to computational restraints, it was not possible
to pretrain while treating each NLE type uniquely.
Therefore, even with our method that utilizes mask-
ing SLEs to improve performance, it is difficult to
attribute the performance gains to specific individ-
ual NLE types. For now we focus discussions on
our empirical results, and leave fine-grained analy-
sis to future work.
Downstream tasks. There are many factors to con-
sider when fine-tuning downstream tasks across
multiple models. We attempt to find stable settings
that allow all runs to be successful, but there are in-
consistent runs. To mitigate this, we report median
values of 10 seed values and suggest the probing
task as an alternative. Since our experiments are run
across multiple models, multiple tasks, and multi-
ple hyperparameters, there may be cases of novel
untested hyperparameter combinations on model-
task combinations that have not been explored.

NLEs in different domains. As stated in Section 7,
the findings in this work were investigated only in
the cybersecurity domain. For example, the URL
NLE type also occurs frequently in other domains,
but might not have the similar information value
of performing MLM as the cybersecurity domain.
Therefore, the decision to do MLM on URL to-
kens could depend on the domain. An example of
a domain where MLM of URL tokens might be
inappropriate is in the Twitter text domain, where
links are randomized by the Twitter URL shortener.
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A Corpus

We construct our corpus with data from the follow-
ing sources:

• Online Security Articles: Following work
in CTI (Zhao et al., 2020) we identify news
outlets, corporate blogs, and personal blogs
that discuss cybersecurity content. We find a
total of 60 online sources (see Appendix D).
We extract text using Scrapy6 and Selenium7.

• Security Paper Abstracts: We identify se-
curity conferences that make the abstracts of
accepted papers publicly available. In total,
we collect 7,301 abstracts from 8 different
security conferences.

• Wikipedia Articles: We start with the cyber-
crime category8, recursively visiting its sub-
categories one by one and collecting all the
pages under each category while discarding
irrelevant pages through manual inspection.
We collect a total of 3,411 pages.

• CVE Descriptions: The CVE database9 is a
database of publicly disclosed vulnerabilities.
Each vulnerability is assigned an ID and given
a short description. We process the database
to remove duplicate descriptions, incomplete
(reserved or unused CVEs) descriptions, and
descriptions that are too short (less than 10
words). We retain a total of 184,956 CVE en-
tries of unique and informative descriptions.

B Tokens for Probing Task

We collect a total of 556 phrases from the attack
techniques and subtechniques listed in the MITRE
database. For simplification, we only select single-
token target words. From the phrases, we seperate
into words and check if the word is in the RoBERTa
tokenizer. This way we find a total of 871 target
tokens. Since many common tokens such as “ and"
or “ to" are selected in this way, we apply a simple
filter by token IDs to remove common tokens (ID
< 25,000). This results in a target token list of 226
tokens including “ Unix" and “ runtime".

6https://scrapy.org
7https://www.selenium.dev
8https://en.wikipedia.org/wiki/

Category:Cybercrime
9https://cve.mitre.org/

C Experiment settings

C.1 Pretraining
To pretrain the models for Section 4, we train on
2 NVIDIA A100 80GB GPUs. We use a slightly
lowered effective batch size of 2024 to accomo-
date the smaller corpus size, and a warmup ratio
of 0.048 following RoBERTa (which uses fixed
steps). Other hyperparameters regarding including
learning weights, weight decay, and adam hyperpa-
rameters are kept the same as RoBERTa’s.

To pretrain the full CyBERTuned model de-
scribed in Section 6.1, we train on 4 NVIDIA A100
80GB GPUs on our full corpus. The hyperparam-
eter settings are kept the same as above with the
exception of the maximum epochs, which is set to
200.

C.2 Fine-tuning
For all tasks, fine-tuning is done with 20 max
epochs, warmup ratio of 0.06, and an early stopping
patience of 4 based on evaluation loss on the dev
set. For the token classification tasks, evaluation
is done every epoch. For sequence classification
tasks, evaluation is done every 200 steps. For the
multi-choice QA task, evaluation is done every 200
steps.

To best compare the models themselves, we keep
implementations simple for downstream tasks. We
use the Hugging Face (Wolf et al., 2020) imple-
mentations of each task. For token classification,
sequence classification, and multichoice QA tasks,
we use the AutoModelForTokenClassification, Au-
toModelForSequenceClassification, and AutoMod-
elForMultipleChoice, respectively.

To simplify hyperparameter selection, we select
a batch size for each task following observations
that input types varied heavily on the task (such as
sentences and documents). First we conducted a
grid search of learning rates ∈ {2e5, 3e5, 5e5, 1e-4}
and batch sizes ∈ {1, 2, 4, 8, 32} for the CyNER
task. We identified learning rate of 5e-5 and batch
size 32 worked best. This combination worked well
with all tasks involving single-sentence inputs. CY-
DEC and TwitterThreats use this setting. For Cy-
SecED (document), we did grid search of batch
sizes ∈ {1, 2, 4, 8, 32} and find that batch size
of 1 works best. CASIE also uses this setting. For
MTDB (QA), we did grid search of batch sizes ∈
{1, 2, 4, 8, 32} and find that batch size of 8 works
best.

We use the train/eval/test given in the datasets
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if possible (CyNER, CySecED, MTDB). If the
dataset does not have splits (CASIE, Twit-
terThreats, CyDEC), we split randomly at a 8:1:1
ratio. Since CyNER deals with identifying exact
spans while CySecED and CASIE deals with iden-
tifying event triggers, we use a stricter matching for
CyNER (with seqeval10) but use a loose matching
scheme for CySecED and CASIE.

D Article Sources

In Table 6, we list detailed online data sources from
which we collect cybersecurity domain text.

10https://github.com/chakki-works/
seqeval

Source Type # Pages Collected

InfoSecurity News 23,217
ThreatPost News 15,742
The Hacker News News 10,049
Bleeping Computer* News 8,852
Infosec Institute News 6,086
Security Intelligence News 1,824
The Record News 1,471
Cyber Security Hub News 902

Schneier on Security Personal Blog 8,008
TaoSecurity Blog* Personal Blog 3,044
Krebs on Security Personal Blog 2,151
Darknet Personal Blog 2,081
Ddanchev Blog* Personal Blog 1,575
hpHosts Blog* Personal Blog 1,057
Hexacorn Blog Personal Blog 784
Garwarner Blog* Personal Blog 570
Kahu Security* Personal Blog 194
SkullSecurity* Personal Blog 144
Carnal0wnage* Personal Blog 124
SecNiche* Personal Blog 94
DeepEnd Research* Personal Blog 23

Naked Security Corporate Blog 13,233
State of Security* Corporate Blog 5,233
WeLiveSecurity Corporate Blog 5,186
Palo Alto Networks Corporate Blog 3,482
Malwarebytes Corporate Blog 3,359
Securosis Corporate Blog 3,302
Microsoft Corporate Blog 2,902
Securelist Corporate Blog 2,897
Sophos* Corporate Blog 1,987
Sucuri* Corporate Blog 1,718
MSRC Corporate Blog 1,473
Spider Labs* Corporate Blog 1,463
Webroot* Corporate Blog 1,429
Recorded Future Corporate Blog 1,280
Zscaler* Corporate Blog 782
Unit42* Corporate Blog 771
NETSCOUT Corporate Blog 731
Radware Corporate Blog 720
Trustwave Blog Corporate Blog 676
Forcepoint* Corporate Blog 665
SecureAuth Corporate Blog 583
Trend Micro (News)* Corporate Blog 494
Cloudflare Corporate Blog 449
Infoblox* Corporate Blog 403
BitDefender Corporate Blog 400
Honeynet Project* Corporate Blog 395
Mandiant* Corporate Blog 355
CoreSecurity Corporate Blog 257
Intezer* Corporate Blog 236
Symantec Enterprise Blogs* Corporate Blog 219
LookingGlass Corporate Blog 214
Veracode Corporate Blog 203
SEI (CERT/CC)* Corporate Blog 174
FireEye* Corporate Blog 148
CrowdStrike* Corporate Blog 144
Trend Micro (Research)* Corporate Blog 141
Juniper* Corporate Blog 122
Fox IT* Corporate Blog 109
Verisign Blog Corporate Blog 100

Table 6: Full list of security news articles and security
blogs used for corpus collection. The sources included
in our pretraining subset are marked by *.
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