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Abstract

In recent years, several interpretability meth-
ods have been proposed to interpret the inner
workings of Transformer models at different
levels of precision and complexity. In this
work, we propose a simple but effective tech-
nique to analyze encoder-decoder Transform-
ers. Our method, which we name DecoderLens,
allows the decoder to cross-attend representa-
tions of intermediate encoder activations in-
stead of using the default final encoder out-
put. The method thus maps uninterpretable
intermediate vector representations to human-
interpretable sequences of words or symbols,
shedding new light on the information flow in
this popular but understudied class of models.
We apply DecoderLens to question answering,
logical reasoning, speech recognition and ma-
chine translation models, finding that simpler
subtasks are solved with high precision by low
and intermediate encoder layers.

1 Introduction

Many methods for interpreting the internal states
of neural language models – and in particular
Transformer-based models – have been proposed in
the last few years (for a review, see Lyu et al., 2024).
Such methods operate at many different levels of
granularity, ranging from model-agnostic attribu-
tion methods that treat models as black-boxes, to
probing methods that assess whether specific infor-
mation is decodable from model representations,
to fine-grained techniques aiming to causally link
highly localized circuits to model behavior. These
latter techniques (often referred to as ‘mechanistic
interpretability’, Elhage et al., 2021, or ‘causal ab-
stractions’, Geiger et al., 2021) are often strongly
tied to model-specific components, and are likely to
provide more faithful insight into how these models
operate.

In this paper, we propose DecoderLens, a
method aimed at exploiting the decoder module
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Figure 1: Schematic overview of the DecoderLens. By
using the decoder to cross-attend intermediate encoder
activation, we can gain qualitative insights into how
representations evolve across encoder layers.

of encoder-decoder Transformers as a “lens” to ex-
plain the evolution of representations throughout
model layers in these model architectures. Our
method is directly inspired by the LogitLens (nos-
talgebraist, 2020), which leverages the residual
stream1 present in Transformer architectures. The
LogitLens, however, is defined only for decoder-
only Transformers, and is unable to explain how
representations evolve in the encoder of encoder-
decoder models.

Concretely, DecoderLens forces the decoder
module of an encoder-decoder model to cross-
attend intermediate encoder activations. As a conse-
quence, its generations can be seen as sequences of
vocabulary projections depending only on partially-
formed source-side representations. Such adapta-
tion is necessary as LogitLens requires the presence
of a residual stream, which is not found between en-
coder and decoder modules. Contrary to common
probing methods, DecoderLens operates without
any additional training, letting the model “explain
itself” by producing natural generations in a human-
interpretable vocabulary space. Figure 1 provides
a graphical overview of our approach.

We evaluate DecoderLens empirically on a wide
1The sequence of residual connections propagating input

information from token embeddings to final layers.
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range of tasks, models, and domains. First, we
demonstrate how representations evolve in Flan-T5
(Chung et al., 2022) by prompting the model to
predict country capitals. Next, we conduct an ex-
periment in a more controlled domain, examining
how Transformers are able to resolve variable as-
signment in propositional logic. The restricted out-
put space for this task allows us to closely inspect
the kinds of solutions intermediate layers produce.
Finally, we apply the DecoderLens to two common
applications of encoder-decoder models: neural
machine translation (NLLB Team et al., 2022) and
speech-to-text transcription and translation (Rad-
ford et al., 2022).

We find that intermediate outputs can be use-
ful to find hypotheses about the strategies a model
uses for solving (sub)tasks. One surprising finding,
for example, is that Flan-T5 encodes geographi-
cal information better in intermediate layers than
in the top layer. Additionally, our findings show
that the middle encoder layers approximate cor-
rect transcriptions and translations well for models
such as Whisper and NLLB. Experiments from
both logic and machine translation show that ear-
lier layers sometimes output local approximations
to their respective tasks. The DecoderLens thus
provides a useful tool that can be used in combina-
tion with other interpretability methods to gain a
more complete insight into the inner workings of
deep encoder-decoder language models.

2 Related Work

The current state of interpretability methods can be
categorized by the different levels of granularity at
which they explain model behavior. At the coarsest
level, model-agnostic methods such as feature attri-
butions (e.g., Sundararajan et al., 2017; Lundberg
and Lee, 2017) focus on explaining model output in
terms of the most important input features. A major
concern with this line of work is the faithfulness
of a method: whether the attributions the method
produces in fact correspond to the true, underlying
causes of the model’s output. The strong disagree-
ment between different attribution methods raises
doubts that the faithfulness requirement is met in
practice (Jacovi and Goldberg, 2020; Neely et al.,
2022; Lyu et al., 2024).

In response to these concerns, a novel line of
work that has received increasing attention in re-
cent years attempts to explain models at a more
fine-grained level, leveraging knowledge about a

model’s inner workings based on specific compo-
nents (e.g., Elhage et al., 2021; Meng et al., 2022;
Mohebbi et al., 2023; Wang et al., 2023).

Interpreting Language Models in Vocabulary
Space A common way of studying Transformers
in this line of work is to take advantage of the resid-
ual stream. In this view, each layer can be seen as
adding or removing information by reading from or
writing to the hidden states in the residual stream
(Elhage et al., 2021). LogitLens (nostalgebraist,
2020) uses this idea by directly applying the un-
embedding operation to the middle layers of GPT
to obtain a logit distribution for every intermediate
layer. As the method projects into the output (logit)
space, it can provide interpretable insights about
which information arises in which layers. This is
similar to the projections into vocabulary space
used to verbalize probing methods in earlier work
(Saphra and Lopez, 2019; Jumelet et al., 2021).

Merullo et al. (2023) use the Logit Lens to iden-
tify different generic stages of processing through-
out GPT’s layers in a Question Answering task.
Halawi et al. (2023) instead use the Logit Lens to
study overthinking, identifying critical layers in
which the logit distribution suddenly shifts to an
incorrect prediction. Geva et al. (2022) use the idea
of the residual stream to study what kind of updates
happen in each feed-forward layer, by analyzing
the differences in logit outputs between layers. The
updates are in vocabulary space, making them eas-
ily interpretable to humans. Similarly, Dar et al.
(2023) also project other Transformer components
into vocabulary space, such as its attention weights,
and find that these can encode coherent concepts
and relations. Belrose et al. (2023) present the
Tuned Lens, extending the Logit Lens with an opti-
mized, affine transformation before the unembed-
ding operation, and report that it produces more
reliable and predictive results. Finally, Ghande-
harioun et al. (2024) present a general framework
for information lenses called Patchscopes, and
show that auxiliary models can be tuned to act as
expressive vocabulary projections.

Early Exiting in Language Models Early exit-
ing enables models to make early predictions by
skipping subsequent layers once the model reaches
sufficient confidence, improving model efficiency
by speeding up inference. This is usually achieved
by training intermediate classifiers on top of each
encoder layer in encoder-only models (Liu et al.,
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2020; Zhou et al., 2020; Schwartz et al., 2020; Liao
et al., 2021; Xin et al., 2020, 2021), or by training
intermediate unembedding heads for each decoder
layer in decoder-only or encoder-decoder models
(Schuster et al., 2022). Pal et al. (2023) find that
early-exiting from intermediate token representa-
tions can produce accurate next token predictions
for several generation steps ahead, exploiting the
parallel nature of Transformers outputs. Similar to
early exiting is the concept of encoder layer fusion,
in which a decoder can cross-attend to all encoder
layers instead of the final one. This allows the
decoder to use surface-level representations from
early layers in addition to abstract, highly contextu-
alized representations from later layers, which can
improve the final performance (Dou et al., 2018;
Liu et al., 2021; Feng et al., 2021; Charpentier and
Samuel, 2023).

3 DecoderLens

The DecoderLens approach is inspired by the Log-
itLens method of nostalgebraist (2020). The main
intuition behind this method is that the residual
stream in Transformer decoder-only models forces
representations across layers to gradually converge
towards the final representation, iteratively refin-
ing its guess (Jastrzebski et al., 2018; Dehghani
et al., 2019). This gradual change allows us to in-
spect how model predictions change across layers
by directly applying the final unembedding trans-
formation to intermediate hidden states.

For encoder-decoder models, the LogitLens can
only be applied to the decoder component since
there is no residual stream between encoder and de-
coder modules. To investigate how representations
in the encoder evolve across layers, we therefore
introduce the DecoderLens, which leverages the
entire decoder to verbalize the knowledge captured
by intermediate encoder layers. This is achieved by
early exiting the encoder at earlier layers, and using
the resulting representations for the decoder cross-
attention operation. The DecoderLens allows for
richer insights than the LogitLens, enabling the gen-
eration of full outputs from intermediate encoder
states. It also may help mitigate out-of-distribution
issues that can arise from using a single vocabulary
projection (e.g. Belrose et al., 2023; Yom Din et al.,
2023). The model outputs plausible strings that
adhere to the original training objective, allowing
us to see how the task is progressively addressed
throughout encoder layers.

We define the DecoderLens as follows. For an
encoder-decoder model M with n layers, the out-
put of the decoder is normally generated based on
the top-layer representations of the encoder, com-
bined with a decoding algorithm (e.g. beam search).
Often, the encoder layers are first passed through a
non-linear operation, such as layer normalization
(Ba et al., 2016). The DecoderLens operates simi-
larly, by first passing the ith encoder layer through
the non-linear operation f , and then feeding it as
input to the decoder:

M(w) = Dec (f(Enc(w)n))

DecoderLens(w, i) = Dec (f(Enc(w)i))

In the following sections, we investigate the effec-
tiveness of DecoderLens by applying it to a variety
of tasks, models, and domains.

4 Factual Trivia QA

We first apply the DecoderLens to investigate the
factual knowledge of a instruction-tuned encoder-
decoder LM, Flan-T5 (Chung et al., 2022)2. As a
case study, we consider country capital prediction,
using prompts of the form “What is the capital of
X?” and testing encoder layers’ ability to produce
correct outputs for all 193 United Nations member
states. We evaluate Flan-T5 models of three sizes
(large, xl, xxl, with 0.78B, 3.0B and 11.3B parame-
ters respectively), containing the same number of
layers (24) and hidden state size (1024), but differ-
ing in the feed-forward layer size and the number
of attention heads (Raffel et al., 2020).

Evaluation To investigate the types of responses
generated by the DecoderLens, we categorize
model answers as follows: 1) correct response,
based on a full string match, 2) incorrect response
in the form of a different city name, 3) country
name itself, 4) repetition of the question, 5) tautolo-
gies (The capital of X is the capital of X), 6) empty
responses containing no alphanumeric characters,
and 7) a miscellaneous category for anything that
doesn’t fall under these previous six categories.
These categories were defined after a manual in-
spection of the DecoderLens results: some exam-
ples of intermediate outputs can be seen in Table 1.
We conduct the experiment on lowercased and cap-
italized prompts to test the robustness of the model
to minimal variations in the provided inputs.

2All pre-trained models in the paper were evaluated via the
transformers library (Wolf et al., 2020)
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Figure 2: Distribution of response types for three Flan-T5 models on the country capital prediction task. Each
row indicates the encoder layer that was used for the DecoderLens. Capital prediction accuracy denotes the model
performance on the task for the two prompt types, including the best performing layers for the capitalized prompts.

Layer Output

L0 What
L3 What is the capital of Colombia?
L8 What is the capital of Colombia?
L12 The capital of Colombia is Bogotá.
L16 Colombians are a very friendly people.
L19 Buenos Aires
L21 colombia
L24 bogota

Table 1: DecoderLens predictions for “What is the capi-
tal of Colombia?" for various Flan-T5-xl encoder layers.
Correct outputs are italicized.

Results We present the results for the experiment
in Figure 2. Capitalized and lowercased prompts
yield considerably different patterns across layers.
For capitalized prompts, we surprisingly find that
all models yield better performances for intermedi-
ate layers compared to the canonical top layer of the
model. For lowercased prompts, on the other hand,
the top layer always yields the highest accuracy of
all layers. The difference between the capitalized
and lowercase prompts suggests that geographical
knowledge is stored in different locations based
on capitalization. We speculate that this might be
due to the more frequent splitting of lowercased
country names into multiple subtokens (188 out
of 193 countries) compared to capitalized coun-
try names (only 87 out of 193 countries, including
multi-word country names). Hence, country names
split into multiple subtokens need to be composi-
tionally combined by the model before retrieving
their capital from encoded representations.

Finally, we note that Flan-T5-large has a long
phase in which the DecoderLens results in a repeti-
tion of the original query prompt. In the xl model
this occurs in lower layers, alongside repetitions of
the country name itself, while the xxl model is less
prone to these patterns, producing correct results
much earlier for the capitalized case.

5 Propositional Logic

Results from the previous section indicate that De-
coderLens can be useful for identifying the layers
in which factual information arises and can be read-
ily decoded in general pre-trained language models.
In this section, we go one step further and apply
DecoderLens to a model exclusively trained on a
downstream task. We believe it is advantageous
to test novel interpretability methods on models
that are trained to solve a simple, unambiguous
task within a carefully controlled setup (Hupkes
et al., 2018; Hao, 2020; Jumelet and Zuidema,
2023; Nanda et al., 2023a,b).

We apply the DecoderLens to a small Trans-
former model that is trained from scratch on a
synthetic (but non-trivial) task: predicting variable
assignments given a logical formula.

Task We study an encoder-decoder model that is
specifically trained on propositional logic, based
on the setup of Hahn et al. (2021). The model is
trained to output a partial satisfying assignment
given a satisfiable formula in propositional logic.
These inputs consist of logical operators (NOT/¬/!,
AND/∧/&, OR/∨/|, IFF/↔ and XOR/⊕) and at most
five propositional variables. Table 2 lists a few
examples.

Formula Input Output

¬a ∧ (b ∨ c) & ! a | b c a 0 b 1
a⊕ ¬e xor a ! e a 1 e 1

Table 2: Example datapoints for two formulas. Inputs
use prefix notation to avoid the use of parentheses. The
first assignment is partial: the value of c could be either
0 or 1, and may therefore be omitted.

The models are trained in a standard sequence-to-
sequence setup using teacher forcing and only have
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access to a single correct output, even when several
partial assignments would be semantically correct.
Nevertheless, this limited setup seems sufficient to
teach these models the semantics of propositional
logic (Hahn et al., 2021). At test time, the mod-
els are able to output novel assignments to unseen
formulas with 93% accuracy.

Experimental setup We test encoder-decoder
models using the standard transformer architecture.
Encoder and decoder modules have each six lay-
ers, with hidden sizes of 128 and 64 respectively.
Models are trained for 128 epochs on the PropRan-
dom35 training set of Hahn et al. (2021), which
consists of 800k randomly generated formulas con-
taining at most 35 symbols. The ground truth
output assignments are generated by a symbolic
SAT solver using pyaiger (Vazquez-Chanlatte and
Rabe, 2018). We train three different model seeds
and aggregate the results.

5.1 Evaluation on Controlled Data

We apply the DecoderLens to 1) randomly gener-
ated data and 2) handcrafted formulas using tem-
plates of varying difficulty. We hypothesize that
easier formulas can be solved in earlier layers.

First, we evaluate on the PropRandom35 valida-
tion set of 200k sentences, and an additional dataset
of 200k short sentences with a maximum length
of 12, PropRandom12.3 Second, to gain more in-
sight into the types of formulas layers can solve,
we generate a dataset according to four templates:

T1. Simple conjunction: formulas in the form of
l1 ∧ l2 ∧ l3 ∧ l4, where ln is a propositional
literal (p or ¬p). These formulas can be solved
“locally", simply by reading the truth value
from each variable separately.

T2. Local XOR: formulas in the form of (l1 ⊕
l2) ∧ (l3 ⊕ l4), where all literals are distinct.
Variables interact with their siblings via ⊕,
but the two parts of the formula can be solved
independent of one another.

T3. Non-local XOR: formulas in the form of (l1⊕
l2)∧(l3⊕l4), where l2 and l3 contain the same
variable. The two parts cannot necessarily be
solved independently.

T4. Non-local CNF: formulas in the form of (p1∨
¬p2) ∧ (p2 ∨ ¬p3) ∧ (p3 ∨ ¬p1), containing

3These shorter sentences are easier to automatically group
into varying levels of difficulty.

dependencies between the clauses: this means
the formulas cannot be solved locally.

For each template, we generate all possible non-
trivial variable combinations, for multiple order-
ings of the subformulas. We filter out formulas that
are not solved by the models. The total size of the
template dataset is 30k.4

Results We evaluate the DecoderLens on the vali-
dation set of PropRandom35: the results are shown
in Figure 3. We manually inspect some intermedi-
ate model outputs (Table 3 lists some examples).

We observe that nearly all incorrect outputs are
still in the correct format, although many contain
irrelevant variables that do not occur in the input
formula. This suggests a learned division of duties
between the encoder and decoder, with the decoder
being completely in charge of formatting and vari-
able ordering.5 Note that there are a limited number
of possible correctly formatted outputs (242 in to-
tal), of which, on average, 29% are semantically
correct. The total semantic accuracy of the embed-
ding layer and the first two layers is below 29%,
meaning they do not perform better than random
chance. Moreover, we find that initial layers of-
ten produce irrelevant variables, suggesting that
their representations are misaligned with the final
layer representations to an extent that makes them
uninformative for the decoder.

Layers three and four prune these irrelevant vari-
ables and perform well above chance level. Exam-
ples of formulas that are already solved by these
layers are the first two formulas in Table 3.

We observe that another function of the final two
layers is to prune contingent variables, refining an
already correct solution. E.g., in the first example
in Table 3, layer five refines the layer four solution
by removing the unnecessary “c 1". Around 20%
of outputs of layers 5 and 6 are strict sub-outputs
of the previous layer, removing 1.3 variables from
the previous output on average. In a small number
of cases (2.6%), layer five outputs a correct assign-
ment but layer six does not: this could be seen as
the model overthinking the output (Halawi et al.,
2023). Only a minority of these cases (20% of
the 2.6%) are due to layer six pruning a necessary
variable.

4All datasets used for evaluation are available at
github.com/annaproxy/decoderlens-data

5Even when random noise is passed to the decoder, it still
outputs variables and their truth values in the correct order.
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Figure 3: Performance of DecoderLens using interme-
diate encoder layers on the PropRandom35 validation
set. Layer 0 denotes the embedding layer. The cate-
gory correct (semantics) denotes outputs are correct,
but deviate from ground truth sequences. All outputs
in the correct (syntax) category are also semantically
correct. We define variables as irrelevant when they did
not occur in the input, but appear in the prediction.

The examples in Table 3 also demonstrate that
solutions are more local in earlier layers. For in-
stance, in the second example, layer three assigns
false to both a and d, as they both occur negated
in the sentence. The operator XOR, which requires
communication between the two variables, is not
taken in consideration yet.

Layer ¬b ∧ (c ∨ a) ¬d⊕ ¬a b⊕ (b ∧ a)

L0 a 0 b 1 e 0 a 1 b 1 c 1 e 1 a 1 b 1 c 0 e 0
L1 a 1 b 1 e 0 a 1 b 1 d 1 e 1 a 1 b 1 e 1
L2 a 1 b 0 c 1 a 0 d 0 e 0 a 1 b 1 c 0 e 1
L3 a 1 b 0 c 1 a 0 b 0 d 0 a 1 b 1 e 0
L4 a 1 b 0 c 1 a 0 d 1 a 1 b 1
L5 a 1 b 0 a 0 d 1 a 0 b 1
L6 b 0 c 1 a 0 d 1 a 0 b 1

Table 3: DecoderLens predictions on three simple log-
ical formulas across encoder layers. L0: embedding
layer. Semantically correct outputs are italicized.

5.2 Locality of Intermediate Outputs

To further investigate the locality of model out-
puts across encoder layers, we apply the model to
multiple sets of sentences based around the XOR-
operator and its logical opposite, IFF. We group the
short formulas from PropRandom12 into three cat-
egories: one where neither operator is present, one
where either operator is present but is not the direct
parent of another XOR/IFF (e.g. (a ↔ b)∧ (b⊕ c)),
and one having at least one nested instance of these
two operators (e.g. (a ⊕ b) ↔ (c ∧ b)). These
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Figure 4: Performance on different kinds of formulas
for the middle encoder layers.

patterns can be indicators of the formula’s diffi-
culty, but random formulas are not guaranteed to
be (non)local. We therefore also analyze the per-
formance of earlier layers on the handcrafted sen-
tences described in §5.1.

Results DecoderLens results for the formula
types detailed above are presented in Figure 4. We
observe large jumps in performance across layers
for the different sets of formulas. In particular,
we note that simple conjunctions (pattern T1) can
already be solved in layer three. However, the
same layer cannot solve formulas including XOR.
Instead, the layer outputs a local solution as in ex-
ample 2 in Table 3, by simply assigning 0 to each
variable that occurs in the negated inputs, and 1 in
the non-negated ones.

Overall, a local solution is produced for at least
one of the subformulas in 87% of cases, and for
both formulas in 53% of cases. Other layers output
local solutions as a much lower rate: more details
can be seen in Figure 8 in Appendix A. Layer four
sees the largest improvement for all other types of
formulas, but still lags behind in solving non-local
formulas, especially those containing nested XOR

or IFF-operators.
These results supports the intuition that the

model gradually refines its prediction by contex-
tualizing its representations: first, variables col-
lect local information about their possible truth
value. These variables can only exchange informa-
tion with other variables in the later layers to reach
a coherent solution.

6 Machine Translation

We apply DecoderLens to NLLB-600M (NLLB
Team et al., 2022), a state-of-the-art multilingual
model trained in over 200 languages, to quantify
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Figure 5: Performance of NLLB across encoder lay-
ers. Scores are averaged across into-English (XX →
EN) and from-English directions (EN → XX) for low-
resource and high-resource languages.

encoder influence on translation quality and proper-
ties. We use 1012 sentences from the dev/test split
of Flores-101 (Goyal et al., 2022), using English ↔
{Italian, French, Dutch} as high-resource pairs and
English ↔ {Xhosa, Zulu} as low-resource pairs to
evaluate differences in intermediate encoder layers’
performances for these two settings.

Metrics We evaluate the translation qual-
ity of DecoderLens outputs using BLEU and
COMET (Papineni et al., 2002; Rei et al., 2022).
Moreover, we define two ad-hoc metrics to esti-
mate additional output properties. To quantify
repetition we compute the difference in counts
between most common tokens in the output and
reference translation (∆REP). To measure syn-
tactic reordering, we compute tree edit distance
(TED) between source and target syntax trees, for
both the output (TEDOUT) and reference translations
(TEDREF). We then take their difference: ∆TED

= TEDOUT−TEDREF. Positive scores for this met-
ric reflect more syntactic reordering in the output
compared to the reference translation. A negative
∆TED indicates that the model translation adheres
more closely to the source sentence word order-
ing than the reference translation does. We limit
our TED evaluation to layers with BLEU > 10 and
high-resource pairs, using the Stanza, FastAlign
and ASTrED libraries (Qi et al., 2020; Dyer et al.,
2013; Vanroy et al., 2021) for parsing, alignment
and TED computations respectively.

Quantitative results Figure 5 presents the results
of our evaluation. We remark a stark difference
in quality between translation into low-resource

Source: In late 2017, Siminoff appeared on shopping television channel QVC.
Reference: Fin 2017, Siminoff est apparu sur la chaîne de télé-achat QVC.

L1: Dans la télévision, il est possible de faire une pause dans la conversation.
L2: Dans le cas de la télévision, il est possible de faire une demande de renseignement.
L3: En 2017, le téléviseur a été mis au défi de la télévision.
L4: En 2017, le canal de télévision de la télévision a été mis en vente.
L5: En 2017, Siminoff est apparu sur la chaîne de télévision QVC.
L6: En 2017, Siminoff est apparu sur la chaîne de télévision QVC.
L7: En 2017, Siminoff est apparu sur la chaîne de télévision de shopping QVC.
L8: En 2017, Siminoff est apparu sur la chaîne de télévision de shopping QVC.
L9: En 2017, Siminoff est apparu sur la chaîne de shopping TV QVC.
L10: En 2017, Siminoff est apparu sur la chaîne de télévision de shopping QVC.
L11: Fin 2017, Siminoff est apparu sur la chaîne de télévision de shopping QVC.
L12: Fin 2017, Siminoff est apparu sur la chaîne de télévision de shopping QVC.

Table 4: Example DecoderLens translations for an En-
glish → French sentence of Flores-101.

languages and other settings, with performance in-
creasing rapidly halfway through encoder layers
only in the latter case. All language directions
exhibit a large number of repetitions for the first
half of the encoder, suggesting that initial encoder
layers are generally tasked to model n-gram co-
occurrences, as also noted by Voita et al. (2021)
for initial phases of neural MT training. Repeti-
tions decline to match reference frequency around
models’ intermediate layers, coinciding with the
largest increase in translation quality. Regarding
reordering, syntax in translations stabilizes early
in the encoder layers: in line with previous find-
ings (Vanroy, Bram, 2021), outputs show a lower
degree of syntactic reordering relative to source
texts when compared to human references, provid-
ing additional evidence about the locality of inter-
mediate layers’ predictions shown in Section 5.2.
The lack of spikes in translation quality for in-
termediate encoder layers in low-resource direc-
tions using DecoderLens can be connected to the
low source context usage shown in Ferrando et al.
(2022), suggesting that poor intermediate outputs
for these directions might be due to the out-of-
distribution behavior of the decoder component.

Qualitative results We manually examine a sub-
set of 50 DecoderLens translations through encoder
layers (Table 4, more examples in Appendix B.1).
For high-resource pairs, translations in the first
few layers are fluent and contain keywords from
the original sentence, but are completely detached
from the source (see for example the L1 output in
Table 4, which contains the word “television" but
is otherwise detached from the English source. ).
Intermediate layers often output examples with in-
correct word sense disambiguation (e.g. “shopping
TV channel” interpreted as “TV channel being sold”
in L4). Finally, more granular information is often
added at later stages (e.g. “shopping” added in L7
and “Fin” in L11).
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Figure 6: Average Word Error Rate (wer) of Whisper-
medium for transcription and translation w.r.t number
of encoder layer used at inference. Shaded areas show
one standard deviation.

Input utterance: turning off gadgets that are not in use can save a lot of energy

L1-7:
L8: “of the world”
L9: “tornado”
L10: “i am going to talk about the new technology that we have”
L11: “tornado”
L12: “i am going to go ahead and say that i am a little bit more of a fan of the channel...”
L13: “i am going to go ahead and turn it over to you and i am going to turn it over to you and...”
L14: “tony i am glad you are here”
L15: “turning off gadgets that are not news can save a lot of energy”
L16: “turning off gadgets that are not news can save a lot of energy”
L17: “turning off gadgets that are not news can save a lot of energy”
L18: “turning off gadgets that are not news can save a lot of energy”
L19: “turning off gadgets that are not news can save a lot of energy”
L20: “turning off gadgets that are not used can save a lot of energy”
L21: “turning off gadgets that are not in use can save a lot of energy”
L22: “turning off gadgets that are not in use can save a lot of energy”
L23: “turning off gadgets that are not in use can save a lot of energy”
L24: “turning off gadgets that are not in use can save a lot of energy”

Table 5: Whisper-medium intermediate transcription
outputs for an English utterance. Words that are cor-
rectly generated for the first time are underlined.

7 Speech-to-Text

We next apply DecoderLens to Whisper (Radford
et al., 2022), a state-of-the-art multilingual speech
model trained on a set of supervised audio-to-text
tasks, including multilingual speech transcription
and speech translation to English. We use Whisper
in three different sizes (base, small, and medium)
which differ in their number of layers (6, 12, and
24, respectively).

Data We use CoVoST 2 (Wang et al., 2020),
a multilingual speech-to-text translation dataset
based on Common Voice corpus (Ardila et al.,
2019). We sample 100 sentences for nine lan-
guages: English (en), French (fr), Spanish (es),
Portuguese (pt), Dutch (nl), Japanese (ja), Arabic
(ar), Persian (fa), and Turkish (tr). Since the dataset
includes both source and translation references for
each utterance, we can inspect Whisper’s behavior
for both transcription and translation tasks on the
same examples, providing an unbiased comparison
between the tasks.
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Figure 7: Distribution of Whisper-medium output types
when transcribing, for each encoder layer.

Results Figure 6 shows the overall results of
Word Error Rate (WER) across various source lan-
guages when applying DecoderLens to Whisper-
medium for transcription and translation tasks.
While the overall pattern of WER is decreasing, we
can discern that fundamental information emerges
from the intermediate layers. Comparing the trend
of WER for transcription and translation, it appears
that the essential information required for transcrip-
tion is encoded in earlier encoder layers compared
to translation.6 Table 5 shows a more fine-grained
view of the changes in model output transcription.
The first 7 layers of the encoder produce empty
outputs, indicating that the information is not yet
ready for transcribing. Next, layers 8-11 gener-
ate a limited number of irrelevant words (notably,
generating single words in layers 9 and 11), while
layers 12-13 produce long sequences of repeating
irrelevant words. The main part of the true tran-
scription can be constructed starting from layer 15
(with some minor errors; the word ‘news’ is gen-
erated instead of ‘in use’ in this example). The
error in this running example is then corrected in
layer 21, and this information is carried to the final
encoder layer. Figure 7 quantifies this to show that
the pattern holds for the majority of examples in
all languages. This pattern holds for both tasks and
different model sizes, except for the early encoder
layers of Whisper-small, which generates single
irrelevant words instead of empty sequences.7

8 Conclusion

Our work contributes to a growing body of research
on the interpretability of language models. By in-

6The same pattern is observed for the other model sizes,
reported in Appendix C.1.

7We report these results to Appendix C.2.
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troducing the DecoderLens, we provide insights
into how intermediate encoder representations of
encoder-decoder Transformers influence decoder
predictions. We apply our method to various mod-
els and tasks, finding that intermediate outputs can
provide valuable insights into the model’s decision-
making process. In particular, our findings reveal
how “simpler” subtasks (e.g., simple conjunctive
logic formulas, high-resource MT, speech transcrip-
tion) are captured by early encoder layers with
high precision and persist up to the final model
output through the residual stream, while more
challenging tasks (e.g., complex logic formulas,
low-resource MT, speech translation) are only ad-
dressed by final encoder layers. We also find some
evidence that early layer outputs are more local
solutions. Errors in variable assignments in the
middle layer of the Transformer trained on propo-
sitional logic are due to the model solving subparts
of the sentence independently. Additionally, trans-
lations from earlier layers of NLLB adhere more
closely to the word order of the input.

These observations are in line with previous
work on probing, which showed that linguis-
tic subtasks in LMs are performed at different
stages in Transformers (Tenney et al., 2019; Pe-
ters et al., 2018). Moreover, it provides evidence
that model predictions are refined iteratively also
across encoder layers, complementing previous
work on decoder-only models. By verbalizing
the knowledge encoded in intermediate model lay-
ers, DecoderLens can provide useful and human-
interpretable insights into the evolution of model
predictions, complementing other interpretability
techniques for the study of neural language models.

Future work could explore the application of De-
coderLens to the Universal Transformer (Dehghani
et al., 2018), especially for algorithmic tasks (Csor-
dás et al., 2021) where its intermediate representa-
tion might be more interpretable and compositional
thanks to weight sharing. Moreover, the tendency
of earlier layers to produce simpler generations
can be connected to outputs produced during early
stages of model training (Voita et al., 2021). In this
context, DecoderLens might be used to investigate
the relation between training dynamics and infor-
mation geometry across model layers (Choshen
et al., 2022; Belrose et al., 2023). Lastly, Decoder-
Lens could be used as diagnostic tool to investigate
where wrong model predictions emerge, which is
useful for both interpretability purposes and model

improvement through early exiting strategies.

9 Limitations

One important concern regarding the direct use of
intermediate representations to make predictions
is that of representational drift: features may be
represented differently in earlier encoder layers,
reducing the ability of the decoder to use this infor-
mation. This manifested in particular in the form of
hallucinated or empty DecoderLens predictions for
early encoder layers. While this representational
misalignment could be mitigated by tuning repre-
sentations to match the space of final layers (Bel-
rose et al., 2023; Yom Din et al., 2023), we limit our
analysis to the direct application of DecoderLens
without any additional training.

We note that DecoderLens does not reveal where
within a layer a specific subtask is solved (i.e.,
which heads or MLP-units within the layer are
responsible), nor does it reveal how subtasks are
solved. For this reason, while we consider our
method promising to provide a more intuitive
overview of encoder capabilities, we also believe it
should be complemented with other approaches to
obtain fine-grained insights into model predictions.

Finally, although our experiments span several
encoder-decoder models and tasks, our evaluation
is limited to small model sizes (<700M parame-
ters) due to limited computational resources. It
remains to assess whether our findings using the
DecoderLens method still apply to larger models.
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Figure 8: Distribution of the types of predictions on
three small datasets. A local solution means the layer
assigns false (0) to a variable if it occurs in the input
negated, and true (1) if the variable appears non-negated.
We therefore consider only the subset of data for which
each variable either only occurs negated or only occurs
non-negated. Layer 3 produces the largest number of
local solutions in all cases.

B Machine Translation

B.1 Additional Examples of DecoderLens
Translations

Tables 6 and 7 showcase some additional examples
for some of the selected translation directions.
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Source: Dr. Ehud Ur, professor of medicine at Dalhousie University in Halifax, Nova Scotia and chair of the clinical and
scientific division of the Canadian Diabetes Association cautioned that the research is still in its early days.
Reference: Le Dr Ehud Ur, professeur de médecine à l’Université Dalhousie de Halifax (Nouvelle-Écosse) et président de la
division clinique et scientifique de l’Association canadienne du diabète, a averti que la recherche en était encore à ses débuts.

L1: Le professeur de la médecine, le professeur de la médecine, le professeur de la médecine, le professeur de la médecine, le
professeur de la médecine, le professeur de la médecine, le professeur de la médecine, le professeur de la médecine, le [...]
L2: Le Dr. Ehud, le professeur de la médecine, a déclaré: "La recherche de la médecine est une expérience de la médecine de la
médecine, mais je suis en train de me dire que je suis en train de me lancer dans la recherche.
L3: Le professeur de la médecine de l’Université de Halifax et de la division scientifique de l’Association canadienne de la
recherche est toujours dans la recherche de la recherche de la recherche de [...]
L4: Le Dr. Ehud, professeur de l’Université de Halifax, a présenté la recherche de la division scientifique de l’Académie
canadienne de la recherche et de la recherche.
L5: Le Dr. Ehud, professeur de médecine à l’Université de Halifax, et le président de la division scientifique du Diabetes
Association canadien, ont fait état de la recherche qui se déroule dans ses premières années.
L6: Le professeur de médecine de l’Université de Halifax, le professeur d’Eud Ur, et le président de la division scientifique du
Diabète canadien, ont fait remarquer que la recherche est toujours en cours.
L7: Le professeur de médecine Ehud Ur, professeur de médecine à l’Université de Halifax, en Nouvelle-Écosse, et président de
la division clinique et scientifique de l’Association canadienne du Diabète a mis en garde que la recherche est toujours dans ses
premiers jours.
L8: Le professeur de médecine de l’Université de Dalhousie, en Nouvelle-Écosse, et président de la division clinique et
scientifique de l’Association canadienne du diabète, a souligné que la recherche est encore à ses débuts.
L9: Le professeur de médecine de l’Université de Dalhousie, en Nouvelle-Écosse, et président de la division clinique et
scientifique de l’Association canadienne du diabète, Dr. Ehud Ur, a souligné que la recherche est encore en début de phase.
L10: Le Dr Ehud Ur, professeur de médecine à l’Université Dalhousie à Halifax, en Nouvelle-Écosse, et président de la division
clinique et scientifique de l’Association canadienne du diabète, a averti que la recherche est encore dans ses premiers jours.
L11: Le professeur de médecine de l’université Dalhousie à Halifax, en Nouvelle-Écosse, et président de la division clinique et
scientifique de l’Association canadienne du diabète, Dr Ehud Ur, a averti que la recherche était encore à ses débuts.
L12: Le Dr Ehud Ur, professeur de médecine à l’Université Dalhousie à Halifax, en Nouvelle-Écosse, et président de la division
clinique et scientifique de l’Association canadienne du diabète, a averti que la recherche est encore à ses débuts.

Source: "We now have 4-month-old mice that are non-diabetic that used to be diabetic," he added.
Reference: "Abbiamo topi di quattro mesi che prima erano diabetici e ora non lo sono più", ha aggiunto.

L1: "Ci sono due problemi che hanno portato a questo problema, ma non ci sono problemi che possono essere risolti.
L2: "Abbiamo 4-month-diabetic che sono utilizzati per essere, che sono utilizzati per il diabete.
L3: "Abbiamo 4-month-that sono i non-diabetic che sono utilizzati, che sono aggiunti".
L4: "Abbiamo ora 4 mesi che sono i non-diabetic che sono utilizzati per essere diabetico," ha aggiunto.
L5: "Abbiamo ora 4 mesi di cicli che sono non-diabetic che hanno usato per essere diabetico, "ha aggiunto.
L6: "Abbiamo ora 4 mesi di topi che sono non-diabetico che hanno usato per essere diabetico", ha aggiunto.
L7: "Abbiamo ora topi di 4 mesi che sono non diabetici che erano diabetici", aggiunge.
L8: "Abbiamo ora topi di 4 mesi che non sono diabetici e che erano diabetici", aggiunge.
L9: "Abbiamo ora i topi di 4 mesi che non sono diabetici e che erano diabetici", ha aggiunto.
L10: "Abbiamo ora topi di 4 mesi che non hanno il diabete e che erano diabetici", ha aggiunto.
L11: "Ora abbiamo topi di 4 mesi che non hanno il diabete e che erano diabetici", ha aggiunto.
L12: "Ora abbiamo topi non diabetici di 4 mesi che erano diabetici", ha aggiunto.

Source: Plus de 4 000 000 personnes sont se sont rendues à Rome pour l’enterrement.
Reference: Over four million people went to Rome to attend the funeral.

L1: 4 people are in the process of getting their hands on the car.
L2: 4 000 people are in the city.
L3: More than 4 000 people are being sent to Rome for their own country.
L4: More than 4 000 people are being made to Rome for the entertainment.
L5: More than 4 000 people have been to Rome for the entertainment.
L6: More than 4 000 000 people have gone to Rome for the funeral.
L7: More than 4,000,000 people have gone to Rome for the funeral.
L8: More than 4 000 000 people have gone to Rome for the funeral.
L9: More than 4,000,000 people have come to Rome for the funeral.
L10: More than 4 million people attended the funeral in Rome.
L11: More than four million people have come to Rome for the funeral.
L12: More than four million people went to Rome for the funeral.

Table 6: Examples for English → French, English → Italian and French → English translation using DecoderLens
on NLLB.
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Source: While one experimental vaccine appears able to reduce Ebola mortality, up until now, no drugs have been clearly
demonstrated suitable for treating existing infection.
Reference: Eén experimenteel vaccin lijkt in staat te zijn de ebola-sterfte terug te dringen, maar tot nu toe zijn nog geen
medicijnen duidelijk geschikt voor de behandeling van bestaande infecties.

L1: Een vaccinatie is een goede manier om de ziekte te voorkomen.
L2: Een Ebola-infectie is een gevaarlijk risico. Het is een gevaarlijk risico dat de ziekte van de ziekte van de ziekte van de ziekte
van de ziekte van de ziekte kan voorkomen.
L3: Terwijl de Ebola-vaccinatie wordt verminderd, is de aanwezigheid van een Ebola-vaccinatie niet mogelijk.
L4: Hoewel de ebola-vaccinatie in de praktijk wordt beperkt, wordt de ebola-vaccinatie niet meer gebruikt.
L5: Terwijl een experimentele vaccine lijkt te verminderen Ebola-taligheid, is er tot nu toe geen drugs die geschikt zijn voor het
behandelen van bestaande infectie.
L6: Terwijl een experimentele vaccine de Ebola-sterfte kan verminderen, zijn er tot nu toe geen geneesmiddelen die geschikt
zijn voor de behandeling van bestaande infectie.
L7: Hoewel een experimentele vaccine de Ebola-sterfte kan verminderen, is er tot nu toe geen enkele geneesmiddel die geschikt
is voor de behandeling van bestaande infectie.
L8: Hoewel één experimentele vaccine de Ebola-sterfte kan verminderen, is er tot nu toe geen enkele geneesmiddel geschikt
voor de behandeling van bestaande infectie.
L9: Hoewel een experimental vaccin de sterfte van Ebola kan verminderen, is er tot nu toe geen enkel geneesmiddel geschikt
voor de behandeling van bestaande infecties.
L10: Hoewel een experimentele vaccine de sterfte van Ebola lijkt te verminderen, is tot nu toe geen enkele geneesmiddel
duidelijk geschikt voor de behandeling van bestaande infectie.
L11: Hoewel één proefvaccin de sterfte van Ebola lijkt te verminderen, is tot nu toe geen enkel geneesmiddel duidelijk
aangetoond dat het geschikt is voor de behandeling van bestaande infectie.
L12: Hoewel één experimentele vaccin de sterfte van ebola lijkt te kunnen verminderen, is tot nu toe geen enkel geneesmiddel
duidelijk aangetoond dat geschikt is voor de behandeling van bestaande infectie.

Source: Volgens wetenschappers was het verenkleed van dit dier kastanjebruin met een bleke of carotenoïdekleurige onderzijde.
Reference: Scientists say this animal’s plumage was chestnut-brown on top with a pale or carotenoid-colored underside.

L1: According to the Bible, the dead were not born, and the dead were not born, and [...] the dead were not yet alive.
L2: According to the Bible, the animal was not a good animal, but a good animal.
L3: According to the scientists, this was a very dangerous disease.
L4: According to the scientists, this was a kind of animal that was not a carotenoid.
L5: .....................................................................................................................................................................................................
L6: According to scientists, the crest of this animal was a brown or carotenoid-coloured crest.
L7: According to scientists, the embroidery of this animal was chestnut with a pale or carotenoid-coloured underside.
L8: According to scientists, the animal was a brownish-brown animal with a pale or carotenoid undercoat.
L9: According to scientists, the animal was a brownish-brown, with a pale or carotenoid undercoat.
L10: According to scientists, the animal’s undercoat was brown with a pale or carotenoid underside.
L11: According to scientists, the animal’s embroidery was chestnut with a pale or carotenoid undercoat.
L12: Scientists say the animal’s disguise was chestnut brown with a pale or carotenoid undercoat.

Source: L’annuncio è stato fatto a seguito di un colloquio telefonico tra Trump e il presidente turco Recep Tayyip Erdoğan.
Reference: The announcement was made after Trump had a phone conversation with Turkish President Recep Tayyip Erdoğan.

L1: A phone call from the president of the United States of America was made.
L2: The president’s speech was broadcast on the Internet.
L3: The president of the Republic of Turkey, President Tayyip Erdogan, is a member of the Turkish parliament.
L4: The announcement was made at a meeting of the President of the Republic of Turkey, President of the Republic of Turkey,
and the President of the [...]
L5: The announcement was made following a phone call between the President of Turkey, President Tayyip Erdogan.
L6: The announcement was made following a phone call between Trump and the Turkish President, Recep Tayyip Erdoğan.
L7: The announcement was made following a phone conversation between Trump and the Turkish President Recep Tayyip
Erdoğan.
L8: The announcement was made following a phone conversation between Trump and Turkish President Recep Tayyip Erdoğan.
L9: The announcement was made following a phone conversation between Trump and Turkish President Recep Tayyip Erdoğan.
L10: The announcement was made following a phone conversation between Trump and Turkish President Recep Tayyip Erdoğan.
L11: The announcement was made following a phone conversation between Trump and Turkish President Recep Tayyip Erdoğan.
L12: The announcement was made following a phone conversation between Trump and Turkish President Recep Tayyip Erdoğan.

Table 7: Examples for English → Dutch, Dutch → English and Italian → English translation using DecoderLens on
NLLB.
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C Speech to Text

C.1 WER results for other model sizes
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Figure 9: The change in Word Error Rate (wer) of
Whisper-base for transcription and translation, averaged
over our test examples, w.r.t number of encoder layer
used at inference. Shaded areas show std.
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Figure 10: The change in Word Error Rate (wer) of
Whisper-small for transcription and translation, aver-
aged over our test examples, w.r.t number of encoder
layer used at inference. Shaded areas show std.

C.2 Distribution of output types for other
model sizes

0
25
50
75

100
en fr es

0
25
50
75

100
pt nl ja

2 4 6
0

25
50
75

100
ar

2 4 6

fa

2 4 6

tr

Encoder Layer

Response Type
Empty
Single

Repeating
WER 0.5

WER < 0.5
WER = 0

Figure 11: Distribution of Whisper-base output types
when transcribing w.r.t number of encoder layer used at
inference.
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Figure 12: Distribution of Whisper-small output types
when transcribing w.r.t number of encoder layer used at
inference.
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Figure 13: Distribution of Whisper-base output types
when translating to English w.r.t number of encoder
layer used at inference.
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Figure 14: Distribution of Whisper-small output types
when translating to English w.r.t number of encoder
layer used at inference.
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Figure 15: Distribution of Whisper-medium output
types when translating to English w.r.t number of en-
coder layer used at inference.
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