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Abstract

Recently, various studies have leveraged Large
Language Models (LLMs) to help decision-
making and planning in environments and try
to align the LLMs’ knowledge with the world
conditions. Nonetheless, the capacity of LLMs
to continuously acquire environmental knowl-
edge and adapt in an open world remains un-
certain. In this paper, we propose an approach
to spur LLMs to explore the open world, gather
experiences, and learn to improve their task-
solving capabilities. In this approach, a multi-
round feedback-revision mechanism is utilized
to encourage LLMs to actively select appropri-
ate revision actions guided by feedback infor-
mation from the environment. This facilitates
exploration and enhances the model’s perfor-
mance. Besides, we integrate sub-task rela-
beling to assist LLMs in maintaining consis-
tency in sub-task planning and help the model
learn the combinatorial nature between tasks,
enabling it to complete a wider range of tasks
through training based on the acquired explo-
ration experiences. By evaluation in Minecraft,
an open-ended sandbox world, we demon-
strate that our approach LLaMA-Rider en-
hances the efficiency of the LLM in explor-
ing the environment, and effectively improves
the LLM’s ability to accomplish more tasks
through fine-tuning with merely 1.3k instances
of collected data, showing minimal training
costs compared to the baseline using reinforce-
ment learning. The code is available at https:
//github.com/PKU-RL/LLaMA-Rider.

1 Introduction

Recently, significant advancements and successes
have been achieved in the performance of Large
Language Models (LLMs) in attaining human-like
intelligence (OpenAI, 2023). Given the powerful
capability of LLMs, many research works have
started utilizing their abilities to assist intelligent
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Figure 1: Spurring LLaMA to explore the open world.

agents in decision-making (Yao et al., 2023; Huang
et al., 2022a; Li et al., 2022; Singh et al., 2023),
and have found that LLMs possess a certain level
of abilities for planning and accomplishing various
tasks (Wang et al., 2023b). However, the knowl-
edge that LLMs rely on comes from the language
corpus used during pre-training, and there may be
discrepancies between this knowledge and specific
environments (Ahn et al., 2022).

To ground LLMs to environments, some studies
design specific mechanisms through prompt engi-
neering to provide information from environments
for LLMs (Wang et al., 2023c; Yao et al., 2023;
Wu et al., 2023; Zhu et al., 2023; Liu et al., 2022).
However, LLMs do not improve or acquire new
knowledge in environments. Additionally, for more
complex tasks, more complicated mechanisms and
prompts are required, which results in high costs
of LLM generation and reliance on strong models
like GPT-4 (OpenAI, 2023) with enough knowl-
edge (Wang et al., 2023a). Some other studies
ground LLMs with finetuning (Yao et al., 2022;
Deng et al., 2023; Xiang et al., 2023), but they
usually require task-dependent datasets. Reinforce-
ment Learning (RL) methods are also studied in
the literature (Carta et al., 2023), but these methods
train LLMs as task-specific policies, and we found
that RL methods are difficult to scale up to larger
models or more complex tasks (see Section 5.2.2).
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In this paper, we aim to enhance LLMs through
their exploration in open-ended environments (Fig-
ure 1), like humans can adapt to new situations
through practice. Previous studies have tried to up-
date LLMs in embodied environments like BabyAI
(Chevalier-Boisvert et al., 2019) and VirtualHome
(Puig et al., 2018), but these world sizes are rather
limited. Whether LLMs can improve their knowl-
edge in more complicated open-ended worlds like
Minecraft is still unknown (Fan et al., 2022; Guss
et al., 2019). We think there are two major chal-
lenges here. First, in an environment like Minecraft,
tasks are often complex and may involve many sub-
tasks. At the same time, these long-horizon tasks
often require each step to be carried out precisely,
and a single error in the middle sometimes can
negate previous progress. Besides, due to the high
level of freedom, the action space can be large,
while many actions may be invalid in different
states. These reasons make it hard to collect suc-
cessful task trajectories in the environment using
random exploration as in previous works (Xiang
et al., 2023; Li et al., 2022). The second challenge
is that there can be a significant amount of tasks
in such an open world, so training policies for spe-
cific tasks are not applicable in these environments.
We hope that LLMs have the ability to perform
multiple tasks and generalize to new tasks.

In response to these challenges, we propose
LLaMA-Rider, a two-stage learning framework
consisting of an exploration stage and a learning
stage (Figure 2). We investigate how to spur LLMs
to explore the environment themselves and collect
experiences for learning. Compared to random ex-
ploration or search methods that can hardly work in
complex environments, allowing LLMs to explore
on their own can harness the inherent capabilities
of the models, thereby enabling more effective dis-
covery of successful experiences. We propose a
multi-round feedback mechanism, which allows
the LLM to revise its decisions with information
about failed actions. This feedback-revision ex-
ploration mechanism is more efficient due to the
capability of LLMs, as the draft decisions made are
often related to task completion at first, and LLMs
can understand feedback information effectively.
Additionally, we use sub-task relabeling to help
LLMs maintain consistency in sub-task planning.

In the learning stage, we process the collected
experiences into datasets and use supervised fine-
tuning (SFT) to train the LLM. In addition to the
experience gained from successful tasks, we also

collect experiences from partially completed sub-
tasks, as some tasks are too difficult to accomplish
in the exploration stage. Numerous tasks in open-
ended environments often have compositionality,
which means experiences from past tasks can fre-
quently assist in completing other tasks. We pro-
pose to use sub-task relabeling of the collected ex-
periences to improve data utilization while helping
LLMs learn the compositionality between tasks.

We evaluate our method in MineDojo (Fan et al.,
2022), a simulation platform for Minecraft. We use
the basic skills trained by Plan4MC (Yuan et al.,
2023) as the action space since the skills possess
more semantics compared with primitive actions
and are better aligned with LLMs. Our experi-
ments show that LLaMA-Rider can explore the
environment efficiently with our feedback-revision
mechanism, and can learn to complete tasks more
effectively by finetuning on a collected dataset of
only 1.3k skill execution steps in size, demonstrat-
ing much higher sample efficiency compared to RL
methods. We also show the generalization ability
of LLaMA-Rider in novel hard tasks.

2 Related Work

2.1 LLM-based Agents

There is a large body of recent studies on LLM-
based agents, which have delved into the capacities
of LLMs for decision-making and are well summa-
rized in the survey papers (Wang et al., 2023b; Xi
et al., 2023). There are basically three ways to inte-
grate LLMs into decision-making problems. First,
using the code generation capabilities of LLMs,
LLMs take in information from the environment
and produce code that can interact directly within
the environment (Liang et al., 2023; Singh et al.,
2023). The second way is to employ LLMs for
planning, following a concept similar to hierarchi-
cal RL (Ahn et al., 2022; Huang et al., 2022b; Wang
et al., 2023c; Dasgupta et al., 2023). The third ap-
proach involves continually prompting LLMs or
introducing memory modules to generate outputs
that can execute better strategies directly within a
textual environment (Wei et al., 2022; Yao et al.,
2023; Kim et al., 2023).

Minecraft, as a popular and challenging open-
world benchmark, has also attracted substantial
attention for the studies of LLM-based agents.
DEPS (Wang et al., 2023c) introduces the descrip-
tor, explainer, and selector for plan generation with
the help of LLM. Plan4MC (Yuan et al., 2023)
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constructs a skill graph with the help of LLM and
proposes a skill search algorithm for planning over
the basic skills pretrained by reinforcement learn-
ing (RL). Moreover, to build LLM-based agents in
Minecraft, Voyager (Wang et al., 2023a) leverages
the code generation of LLMs, while GITM (Zhu
et al., 2023) integrates LLMs with texted-based
knowledge and memory.

However, in the aforementioned studies, LLMs
do not update themselves from their environmen-
tal interactions, so they can neither learn from nor
adapt to the environment. Consequently, their po-
tential applicability in specific environments is lim-
ited, as they can solely depend on the knowledge
and capabilities gained during pre-training.

2.2 Finetuning LMs in Environments

There are studies that ground Language Models
(LMs) to environments with finetuning. PIGLeT
(Zellers et al., 2021) integrates a neural symbolic
dynamics model with an LM to learn natural lan-
guage meaning grounded in physical interactions.
Also focusing on the decision-making of LMs in
embodied environments, LID (Li et al., 2022) uses
expert trajectories to finetune a model that con-
catenates an LM with action decoders. They also
propose active data gathering to collect experiences
that mix random actions and policy-generated ac-
tions for exploration. Similarly, E2WM (Xiang
et al., 2023) uses supervised learning to finetune
LMs with the data collected by Monte Carlo Tree
Search and random exploration. Additionally,
GLAM (Carta et al., 2023) ground LMs in environ-
ments with online RL, but they train the LM into
a task-specific policy, and the RL method suffers
from low sample efficiency and high cost of train-
ing. Our work is different from existing work in
that we spur the LLM itself to explore with feed-
back from the environment, and we target multi-
task and generalization abilities in the open world.

3 Preliminaries

3.1 Large Language Models

LMs, which predict the probability of the ith token
given inputs and the previously generated tokens
Pi = P (si|inputs, s1, s2, · · · , si−1), are used to
generate a series of tokens by sampling from the
probability of the token sequences P (x) = Πn

i=1Pi,
where x can be considered as a random variable
representing n tokens in the token library. LLMs
often have billions of weights and are trained from

billions of tokens to enable them to achieve remark-
able performance on generative tasks.

To finetune LLMs with full parameters requires
remarkable compute resources. Fortunately, some
techniques can help with efficient finetuning. Low-
Rank Adaptation (LoRA) (Hu et al., 2022) keeps
the pretrained weights fixed while introducing train-
able rank decomposition matrices into every layer
of LLMs. Original pretrained weights W0 ∈ Rd×k

are augmented to W0 +∆W = W0 +BA, where
B ∈ Rd×r and A ∈ Rr×k. A and B are both
trainable, with A initialized to a normal distribu-
tion and B initialized to zero. Moreover, QLoRA
(Dettmers et al., 2023) adds quantization and paged
optimizers to further reduce training costs.

3.2 Problem Statement
We consider an environment that can be for-
malized as a Partially Observable Markov Deci-
sion Process (POMDP) defined by tuple M =
(S,O,A, T ,R, γ), where S is the environment
state, A is the action space, O is the observation
space, T is the transition function, R is the reward
function, and γ is the discount factor. Since we use
LLMs as embodied agents, we assume a language
vocabulary V and we can encode the observations
and actions from the environment into natural lan-
guage. Besides, we assume a goal space G and we
can sample a task τ = (g,K), g ∈ G, where g is
the goal of the task and K is the task information
including task-relevant knowledge. We can also
encode the task τ into task description τ text ∈ VN .

In this study, we explore the Minecraft simulator
provided by MineDojo (Fan et al., 2022), an open-
ended sandbox world. There is rich information in
the observation space, but a big portion of it cannot
be comprehended by LLMs such as game visuals.
We extract the items in the agent’s inventory and
field of view, along with their quantities, and encode
them into natural language sentences as the obser-
vations for LLMs: otext = (inv, fov) ∈ VN . Primi-
tive actions in the environment (e.g., move forward,
turn right, click) have insufficient semantics which
hampers the planning capability of LLMs. We use
skill descriptions as the action space of the LLM
agent noted with atext ∈ VN .

3.3 Skills and Tasks in Plan4MC
We use the basic skills and tasks in Plan4MC (Yuan
et al., 2023) in our experiments in MineDojo, since
the basic skills have more semantic meaning than
primitive actions. Plan4MC uses RL to train three
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Task Name: craft crafting table 
Inventory: 2 planks; 4 sticks
Surround:    1 log nearby
Past skills: craft planks; craft stick;

   find log nearby
Require:       4 planks

need 4 planks to craft table

“get planks”

Feedback
Revision

“find logs”

need 1 log to craft planks

Task Name: craft wooden pickaxe 
Inventory: 2 planks; 4 sticks
Surround:   Nothing
Past skills: harvest log; craft planks;

craft stick
Require:     3 planks, 2 sticks, 1 

crafting table nearby

Subtask Relabeling

Task Success

planks: need 1; sticks: satisfied
crafting table nearby: need 1

“get crafting table“

LLaMA-Rider

MC MC

LLaMA-RiderLLaMA-Rider
ARAR AR

t-1 t

… …

Exploration 
Stage

Env Execution

Action Retrieval

Minecraft Feedback
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Info: …
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Info: …
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Subtask
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COT
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AR

COT Chain of Thought

…
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Figure 2: Overview of LLaMA-Rider . The framework consists of two stages. In the exploration stage, the
LLM explores to accomplish tasks with the help of the feedback-revision mechanism and subtask relabeling. In the
learning stage, the collected trajectories are formatted into a supervised dataset to finetune the LLM.

types of basic skills: finding-skills, manipulation-
skills, and crafting-skills. They then define 40 dif-
ficult tasks that can be completed with the trained
skills. We define the action space of the LLM agent
Atext as the descriptions of these basic skills.

4 Methodology

Our method is illustrated in Figure 2, which is a
two-stage framework. We introduce the exploration
and learning stage respectively in the following.

4.1 Exploration with Feedback

Prompt mechanism. Unlike previous studies such
as Voyager (Wang et al., 2023a) and GITM (Zhu
et al., 2023) which use complex prompts to tweak
LLMs to accomplish various tasks in open-ended
worlds like Minecraft, we employ a straightforward
prompt that makes LLMs provide the next action
given input information about observation and task.
This brings two advantages. First, it makes fine-
tuning LLMs to learn from past experiences easy,
considering the context-length limit of LLMs. Sec-
ond, it reduces the cost of LLM generation.

Formally, the LLM serves as the policy
π(atext

t |otext
t , τ text, ht). We provide the textual ob-

servation otext, the task description τ text and the
history information h in the input prompt to feed
the LLM at each time step t, and the output of the
LLM is the chosen action atext. We find that if there
are too many tokens of history information in the
prompt, it will affect the output of the LLM. There-
fore, in our experiments, we set h to be the last
three actions performed ht = (atext

t−3, a
text
t−2, a

text
t−1).

Feedback-revision mechanism. LLMs possess
rich knowledge of the real world, but there is often

a gap between the knowledge of LLMs and the spe-
cific environment to which they are applied. For
example, which actions can be performed and what
are their prerequisites? What conditions need to
be satisfied for the completion of different tasks?
What are the names of various items? LLMs often
lack understanding of these questions, leading to
decision-making errors. Previous studies ground
LLMs to environments by searching through the
action space (Xiang et al., 2023) or mix policy with
random actions (Li et al., 2022) to collect experi-
ences, or train LLMs with reinforcement learning
(Carta et al., 2023). But these methods can hardly
scale up to worlds with long-horizon tasks. They all
do not provide environmental knowledge to LLMs
but make LLMs explore through trial and error. We
propose to spur LLMs to explore the world them-
selves with their reasoning capabilities by feeding
them environmental feedback information and let-
ting LLMs revise their decisions. LLMs can access
environmental knowledge during this process, and
the method makes use of LLMs’ inherent ability to
enhance the efficiency of exploration.

Formally, after the LLM produces atext
t ∼

π(·|otext
t , τ text, ht), a feedback information is gen-

erated by the environment ft = E(st, at), where
E denotes the environment, st denotes the state,
and at denotes the actions corresponding to atext

t .
If ft ̸= 0, which means the action causes an er-
ror, the feedback is processed by a prompt into
f text
t and fed back to the LLM together with the

previous input information, and the LLM would
make a revision to produce a new action atext′

t ∼
π(·|otext

t , τ text, ht, f
text
t ). Then a new feedback is

generated ft = E(st, a
′
t). This feedback-revision

procedure is repeated until ft = 0 or the maximum
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number of allowed revisions T is reached which
means the exploration has failed and the episode
ends. The formalized approach of the feedback-
revision mechanism can be found in Appendix C.

Subtask relabeling. Long-horizon tasks in an
open world are often composed of many subtasks.
Since our input prompt is brief, limited information
is provided. So the LLM planner may forget what
subtask it is currently working on and opt to start
completing other subtasks, resulting in failure to
consistently complete one subtask. To solve this
problem, whenever the LLM’s output skill is ac-
complishing a subtask τs of the task τ , we replace
the task information τ text in the input prompt with
τ text
s and keep it until τs is completed. This sub-

task relabeling provides another important benefit:
some subtasks may have been met in the collected
experiences as a simpler task or as a subtask of an-
other task, so this method helps LLMs make use of
previously learned experiences to solve new tasks.

Action retrieval. To match the output of the
LLM with the action space, there are two major
ways: feed the action list to the LLM or retrieve the
action list based on the output. We find that feeding
a lengthy list of actions as input to the LLM would
affect its output to generate more unreasonable ac-
tions unrelated to the current task. Therefore, we
use action retrieval to select an action from the
action space that is closest to the output of the
LLM. Additionally, we find that querying with to-
ken embeddings could cause retrieval errors since
the action description often consists of only a few
words, e.g., “craft wooden planks" may be matched
to “craft wooden sword" instead of “craft planks".
We propose to use noun matching before embed-
ding matching to alleviate this problem. Details of
action retrieval can be found in Appendix D.

Chain-of-thought (CoT) prompting. In our
experiments in Minecraft, we find that the LLM
often makes decision mistakes due to insensitiv-
ity to the relationships between numbers. To en-
hance the efficiency of exploration, we integrate
in-context learning and chain-of-thought prompt-
ing (Wei et al., 2022) that make the LLM compare
the item numbers in the inventory and the require-
ments before making decisions. The prompt can
be seen in Appendix B.3, and we only use it in the
exploration stage for Minecraft.

4.2 Finetuning LLMs with Experiences
Dataset construction. We compile experiences
of all tasks collected by the LLM into a super-

vised dataset, while the inputs are the task in-
formation and observations x = (otext

t , τ text, ht),
and the labels are the actions y = atext

t . In addi-
tion to success trajectories, we also include partial
ones where a subtask is completed, since some
tasks are too hard to accomplish during explo-
ration, and the subtask experience may help the
LLM to accomplish the whole task more easily. Be-
sides, subtask experiences may also help the LLM
solve some other tasks due to the compositional-
ity. To better make use of the subtask information
and encourage combinatorial generalization, we
also use subtask relabeling to construct the dataset.
Namely, if the LLM is solving a subtask τs of task
τ at time step t in a trajectory, we add the data
(x = (otext

t , τ text
s , ht),y = atext

t ) into the dataset.
Training. With the constructed dataset, we train

the LLM with supervised fine-tuning (SFT). We use
QLoRA (Dettmers et al., 2023) to reduce memory
usage. More details can be found in Appendix A.

5 Experiments

5.1 Experimental Setup

MineDojo environment. We evaluate our pro-
posed method on Minecraft based on the MineDojo
(Fan et al., 2022) simulator. We use 30 difficult
tasks in Plan4MC (Yuan et al., 2023) including
three types: 10 log-based tasks, 10 cobblestone-
based tasks, and 10 mob-based tasks. The
minimum number of planning steps provided by
Plan4MC required for these tasks ranges from 2 to
30, with an average minimum of 11.5 steps. More
details about the tasks can be found in Appendix E.
We use 55 basic skills trained by Plan4MC and con-
vert them to skill descriptions in natural language
as the action space of the LLM. Note that the skill
policies do not guarantee success, and the success
rates of all the skills are provided in Appendix E.
For each task τ = (g,K), the goal g is the target
item of the task and the knowledge K is the re-
quirement to achieve target g in MineDojo. The
feedback information ft from the environment is
the requirements that are not met to execute skill at
in MineDojo. The prompt template for the LLM’s
input and the feedback can be found in Appendix B.

We define the subtasks of a task τ as the tasks
τs = (gs,Ks) whose goal gs is one of the require-
ments to achieve task τ . For example, the task
“craft bowl” has two subtasks “craft planks” and
“place crafting table nearby”.

LLM agent. We use LLaMA-2-chat (Tou-
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Task
LR-13B

Exp
LR-70B

Exp
LR-13B

Base
LR-70B

Base
ChatGPT
planner

RL LR-13B
LR-70B
(ours) Plan4MC

based 0.13 0.61 0.09 0.41 0.26 0.00 0.20 0.54 0.42
based 0.00 0.09 0.00 0.01 0.07 - 0.03 0.14 0.30
based 0.19 0.13 0.11 0.18 0.25 - 0.24 0.18 0.32

Total average 0.11 0.28 0.07 0.20 0.19 - 0.16 0.29 0.34

Achieved tasks # 9 16 10 16 20 - 19 25 30

Table 1: Success rates in three types of tasks. LR is short for LLaMA-Rider, and Exp is short for Exploration.
Two exploration results are tested for 5 episodes in log-based tasks and 10 episodes in other tasks. All other
methods are tested for 30 episodes in all tasks. Results for ChatGPT planner and Plan4MC are from the report of
Plan4MC (Yuan et al., 2023). LR Base is LLaMA-Rider before finetuning. The bold results are the best among
non-exploration results, except for Plan4MC which ensures the planning correctness. We do not compare with LR
Exploration due to the different test episode numbers.

vron et al., 2023) as our LLM agent which has
question-answering and instruction-following abil-
ities. These abilities are important for the LLM
to actively explore in the environment, and con-
versely, our method can also make good use of its
strong abilities to do something beyond question
answering, namely exploring new environments.

Baselines. We compare with three baselines.
The first is ChatGPT planner (Ouyang et al.,
2022), the interactive LLM baseline in Plan4MC,
which uses a carefully designed prompt mechanism
to make ChatGPT (GPT-3.5) propose skill plans,
namely choosing skills trained in Plan4MC to ac-
complish tasks. Since ChatGPT possesses more
accurate knowledge about Minecraft than LLaMA-
2-70B-chat (see Appendix G) , by comparing with
this baseline, we show whether our exploration-
learning framework can enable an LLM to adapt
to an environment and outperform a stronger LLM.
The second is RL where we use the framework pro-
posed in GLAM (Carta et al., 2023) and use their
default language model T5 (Chung et al., 2022).
We try our best to fit GLAM into Minedojo but we
have to constrain the action space to include only
the necessary actions to reduce sample complex-
ity. The detailed implementation is described in
the Appendix F. The third is Plan4MC, where they
construct a skill graph and use depth-first search
(DFS) for planning over basic skills, ensuring that
the planning is correct. Thus, it can be seen as an
upper bound of our method. However, we note
that our method may outperform Plan4MC in some
tasks. We speculate this is because Plan4MC does
not always generate the optimal plan in terms of
planning steps, though the plan is correct.

5.2 Evaluation
We set the maximum number of revisions as T = 5
for which we find can best balance the efficiency
and success rate of the LLM’s exploration for all
tasks. Since the log-based tasks are easier, we
only perform 5 episodes of exploration, where we
make the LLaMA-Rider explore for 10 episodes
for the rest 20 tasks, so that the experience collected
from different tasks be in similar quantities. The
results are shown in Table 1, and detailed results for
all 30 tasks are presented in Appendix H. We focus
on LLaMA-Rider-70B which is based on LLaMA-
2-70B-chat in the analyses below, and we discuss
the effect of different model sizes in Section 5.2.5.

5.2.1 Exploration of LLaMA-Rider
Results of LLaMA-Rider-70B Exploration shows
the LLM’s ability to explore in Minecraft to ac-
complish different tasks with our designed prompt
combined with the feedback-revision mechanism.
Compared with LLaMA-Rider-70B Base, the CoT
prompting that mitigates the LLM’s numerical com-
parison issue helps the exploration performance,
especially in stone-based tasks where number of
collected cobblestones are important. The compa-
rable performance of LLaMA-Rider-70B Explo-
ration with ChatGPT planner, which is based on
a powerful LLM with more Minecraft knowledge,
shows the effectiveness of our feedback-revision
which can provide more environment information
for the LLM to acquire knowledge alignment. How-
ever, the results in stone-based tasks and mob-
based tasks still demonstrate that it is difficult
for LLMs to solve long-horizon complex tasks in
environments just rely on prompt engineering, re-
flecting the importance for LLMs to update with
environmental experiences to adapt.
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Figure 3: Success rates at each intermediate step on three long-horizon tasks. Following Plan4MC(Yuan et al.,
2023), the steps are skills necessary to accomplish the tasks, and the success rate of each skill is the probability that
the skill is successfully executed at least once in a test episode. The results for Plan4MC are from their paper.

5.2.2 Enhancing LLM with Experiences
Performance in explored tasks. We process tra-
jectories that the LLM achieves success in the
whole tasks or subtasks into a supervised dataset of
1.3k instances as described in Section 4.2. We train
LLaMA-2-70B-chat on the dataset for two epochs,
and test the resulting model LLaMA-Rider-70B
on 30 tasks without CoT prompting. From the re-
sults in Table 1, the trained LLaMA-Rider-70B
outperforms the base model on various tasks, show-
ing the effectiveness of the learning stage that en-
hances the multi-task planning capability of the
LLM agent. Besides, LLaMA-Rider-70B outper-
forms ChatGPT planner in 17 out of 30 tasks (see
Appendix H), demonstrating that our exploration-
learning framework allows an LLM to adapt to
a new environment and surpass a more advanced
LLM, even with a simple prompt mechanism.

Compared with the performance in the explo-
ration stage, LLaMA-Rider-70B can accomplish
more tasks (25 vs. 16) after training, proving that
the model can learn knowledge from the experi-
ences effectively and generalize well. The general-
ization ability is probably also due to subtask rela-
beling, which helps LLaMA-Rider-70B learn com-
positionality among different tasks. Without CoT
prompting at test time, LLaMA-Rider-70B can
still perform better, which reflects that the model ac-
quires stronger decision-making abilities. The phe-
nomenon that LLaMA-Rider-70B can achieve suc-
cess in tasks without any successful experiences in
the dataset (e.g. “craft sign ” and “craft wooden
shovel ”) proves that the model is not memoriz-
ing experiences but learning more knowledge for
planning. To further study the effect of the learning
stage, we present the success rate at each interme-
diate step of three long-horizon tasks in Figure 3.

From the results, we can find that in the explo-
ration stage, it is difficult for the LLM to explore
to the last few steps in long-horizon tasks. But
after the learning stage, LLaMA-Rider-70B can
achieve higher task completion degrees. The reason
may be two-fold. First, LLaMA-Rider-70B may
learn to finish the familiar parts of the tasks more
efficiently (e.g. crafting the wooden pickaxe in
the stone stair task), which can be attributed to
the experience from subtasks or other tasks (e.g.
the log-based crafting wooden pickaxe task).
Second, LLaMA-Rider-70B learns more knowl-
edge for planning. For example, it learns to craft
the crafting table after crafting the sticks in
the "craft sign " task. This may be due to the
knowledge gained through the experiences that in
crafting tasks, one should craft the crafting table

after all materials are get enough, which is a
critical planning step in multiple crafting tasks.

Compared with Plan4MC, our method can
achieve comparable performance in several tasks
and even better performance in relatively simpler
log-based tasks, showing that LLaMA-Rider-
70B already demonstrates strong abilities in plan-
ning and decision-making. Besides, as we show
in Appendix G, LLaMA-Rider-70B can also an-
swer task-relevant questions better, so the model is
indeed aligning with the environment.

On the other hand, RL, which also finetunes the
LLM in the environment, fails in all log-based
tasks. Thus, we do not conduct experiments in
the rest tasks to save resources. We find that the
LLM struggles to explore with trial and error in
long-horizon tasks with a large action space. In
addition to small models like T5-base, which we
think may have limited decision-making abilities,
we have also tried to train LLaMA-2-13B-chat with
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Tasks

LLaMA-Rider-70B Base 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LLaMA-Rider-70B (ours) 0.13 0.00 0.00 0.00 0.00 0.00 0.07 0.03 0.00 0.00

Table 2: Success rates in novel iron-based tasks. Methods are tested for 30 episodes. LLaMA-Rider-70B Base is
LLaMA-Rider-70B before finetuning.

Tasks

LLaMA-Rider-70B w/o subtask 0.00 0.00 0.00 0.00 0.00 0.30 0.00 0.03 0.03 0.07
LLaMA-Rider-70B (ours) 0.17 0.57 0.40 0.10 0.00 0.07 0.03 0.03 0.00 0.07

Table 3: Success rates in stone-based tasks. Methods are tested for 30 episodes. LLaMA-Rider-70B w/o subtask
is the method without subtask relabeling at training and testing time.

RL, but we found the training unaffordable. So the
RL method is difficult to scale up. In contrast, our
method only requires the LLM to explore for 5 or
10 episodes in the environment and trains the LLM
on a small dataset, showing significantly lower cost
and higher sample efficiency. We attribute it to
the LLM’s efficient use of environmental informa-
tion during its exploration, compare to RL method
which only use reward signals.

Overall, we conclude that our method LLaMA-
Rider adapts to the environment efficiently and
effectively and shows good multi-task ability.

5.2.3 Generalization to Novel Hard Tasks
Since LLaMA-Rider-70B can complete tasks
without successful experiences at training time, we
also test its performance on novel tasks that it has
not explored and not been trained on. We conduct
the experiment on 10 iron-based tasks, which
are more difficult than the previous 30 tasks, with
the planning steps of Plan4MC ranging from 30
to 121, on average 68.9. The results are shown in
Table 2.

We find that LLaMA-Rider-70B Base has very
poor performance in the iron-based tasks, but
after finetuned with experiences in the previous 30
tasks, LLaMA-Rider-70B can now achieve 3 of
them. This shows that the LLM can learn to make
use of past experiences to solve novel tasks, which
demonstrates the generalization of the planning
ability learned by our method. Additionally, since
the experiences can help LLaMA-Rider-70B solve
more complex tasks, it is promising that LLaMA-
Rider-70B can repeat the exploration and learn-
ing procedure and explore for more challenging
tasks continuously in the open world. We show
results where we use new experiences collected by

LLaMA-Rider-70B to finetune itself for LLaMA-
Rider-70B-2nd in Appendix J.

5.2.4 Ablation Study

We first test the LLaMA-Rider-70B Exploration’s
performance in the exploration stage without CoT
prompting and feedback-revision mechanism in the
30 tasks. We find that it can only achieve success in
“craft stick ” with a success rate of 0.5 and fails
in all other tasks (thus omitted in Table 1). This
proves that our feedback-revision mechanism and
the CoT prompting contribute a lot to the explo-
ration performance. Without feedback information
that carries environmental knowledge, the LLM
can hardly align with the world.

Then we study the contribution of subtask rela-
beling. We train LLaMA-2-70B-chat with a dataset
without subtask relabeled data. At test time we
also do not use subtask relabeling. We test on 10
stone-based tasks which contain more subtasks.
The results are shown in Table 3. The model per-
forms poorly in the long-horizon stone-based
tasks without subtask relabeling, while LLaMA-
Rider-70B can achieve even more tasks than those
in training data, proving that subtask relabeling is
critical for both achievement (and thus exploration)
of tasks and generalization to new tasks.

5.2.5 Effect of Model Sizes

To study the effect of different model sizes, we also
provide the results of LLaMA-Rider-13B based
on LLaMA-2-13B-chat in Table 1. It is clear that
our framework can still perform well when based
on a smaller model, improving the task planning
ability of the LLM. Meanwhile, a larger model can
indeed achieve better overall results.
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6 Conclusion

In this paper, we introduce LLaMA-Rider, a learn-
ing framework that spurs the LLM to explore the
open world with a feedback-revision mechanism
and then use the collected experiences to update
itself for task planning. We also propose to use sub-
task relabeling for long-horizon tasks. Experiments
in the open world Minecraft show the effectiveness
and efficiency of our method which helps the LLM
to adapt to the embodied environment and improve
the capability to solve multiple tasks. We also find
that LLaMA-Rider can use past experiences to
solve novel hard tasks, showing a life-long explo-
ration and learning potential.

Limitations

In this section, we discuss the limitations of our
method and our current paper.

One limitation of our method is its relatively in-
sufficient utilization of environmental information.
Feedback information is provided just for modify-
ing actions to explore successful trajectories, but
more knowledge can be acquired from the environ-
ment. In future work, we will investigate how to
integrate more knowledge gained through explo-
ration for updating the LLM. Besides, only textual
information from the environment can be used now.
The extension of our method to Large Multimodal
Models that can make use of visual information
should be studied in the future.

Another limitation is that we only use Minecraft
as our testbed in the experiments. However, we
argue that LLaMA-Rider is a general learning
framework that can be applied to other open worlds.
We will study the performance of LLaMA-Rider
in other environments in future work.

Compared to previous methods that also finetune
LMs in environments, LLaMA-Rider requires
feedback information from the environment for
active exploration. It is a trade-off for eliminating
the reliance on expert datasets and better scalability
compared with search-based methods or RL meth-
ods. Besides, LLaMA-Rider requires the LM to
have certain instruction-following abilities.

Ethical Considerations

There are no direct concerns of the ethical impact
of LLaMA-Rider within the context of the current
paper, since we focus on the abilities of LLMs
to make plans to accomplish tasks in simulated

environments. However, as LLaMA-Rider is a gen-
eral exploration-learning framework and may be
applied in other open-world or even real-world en-
vironments, there may be potential risks that the
LLM learns harmful information and generate in-
appropriate content. To avoid this problem, one
can make use of the feedback-revision to restrict
or guide the exploration scope of LLaMA-Rider,
and process the acquired experiences to prevent
LLaMA-Rider from learning harmful content.
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A Training and Experimental Details

In the learning stage, we perform supervised finetuing (SFT) on LLaMA-2-70B-chat with our collected
dataset with QLoRA (Dettmers et al., 2023). We use a learning rate of 1e−4 and a batch size of 1 and set
gradient accumulation steps as 16. We set LoRA R dimension to 64 and LoRA alpha to 16, and we use
0.05 LoRA dropout. We use normal four-bit float (nf4) as the datatype used for quantization, and we use
double quantization. We use paged optimizers. Training is conducted on 4 NVIDIA Tesla A100 GPUs,
and costs around 2 hours.

For experiments of LLaMA-Rider on Minecraft tasks, we use 4 NVIDIA Tesla A100 GPUs to test
LLaMA-Rider-70B and 2 NVIDIA Tesla A100 GPUs to test LLaMA-Rider-13B. To test 30 episodes for
one type of tasks (including 10 tasks), LLaMA-Rider-70B takes roughly 20 hours and LLaMA-Rider-13B
takes roughly 10 hours (the exact time is affected by the number of environmental steps of different tasks).
Experiments of the RL method are conducted on 2 NVIDIA Tesla A100 GPUs, and more details can be
found in Appendix F.

B Prompt Design

B.1 Decision-Making Prompt

Template:

Your goal is to complete a task in Minecraft.
Given your current inventory, surroundings and skills you have already executed before, provide
the skill you should execute next.
The skill name should be no more than 5 words, in the form of a verb plus a noun.
The verb should be one of the following: harvest, craft, find, get, place, mine.
Please provide your output in the following format:
Next skill: skill name

Now the information:
Task: {{task}}
Inventory: {{inventory}}
Surroundings: {{surrounding}}
Last three skills you have just already executed: {{past skills}}
Recipe: The requirements to {{task}} in Minecraft is: {{requirement}}
Your output:

Key Example

task craft_wooden_pickaxe
inventory 4.0 planks
surrounding 1.0 log_nearby

past skills
harvest log; craft planks;
find log nearby

requirement
3 planks, 2 stick,
1 crafting_table_nearby

B.2 Feedback-Revision Prompt

Template:
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...
Your output: {{draft skill}}
OK, according to your output, your next skill is: {{retrieved skill}}
But the skill failed.
Please find out the reason why the skill failed, and make a revision.
Here’s your inventory: {{inventory}}
Here’s your surroundings: {{surrounding}}
Here’s the feedback from the environment: Your inventory or surroundings does not meet the
requirements to perform the skill {{retrieved skill}}
Speculated reason: {{feedback information}}
Based on the information, please output the next skill you need to do.
Revised skill:

Key Example

draft skill get sticks
retrieved skill craft stick
inventory 1.0 planks
surrounding 1.0 log_nearby

feedback
information

craft stick need to
consume 2 planks but
not enough now.
You should get enough
planks to craft stick.

B.3 Chain-of-Thought Prompting

Template:

Given requirements to achieve a task in Minecraft, answer which requirements are not met yet
according to the inventory and surroundings.
Think step by step and object by object. Note that objects ending with ‘_nearby’ are required to be
in the surroundings while other objects are required to be in the inventory. Here’s an example:

Task: craft furnace
The requirements to craft furnace in Minecraft is: 8.0 cobblestone; 1.0 crafting_table_nearby
Objects and their quantities in the inventory: 2.0 log; 3.0 dirt; 4.0 cobblestone
Objects and their quantities in the surroundings: 1.0 cobblestone_nearby
Which requirements are not met yet?
Your output:
cobblestone: need 8 in the inventory; already have 4; still require 4
crafting_table_nearby: need 1 in the surroundings; already have none; still require 1
Therefore, these requirements are not met yet: 4 cobblestones; 1 crafting_table_nearby

Here’s another example:

Task: craft furnace
The requirements to craft furnace in Minecraft is: 8.0 cobblestone; 1.0 crafting_table_nearby
Objects and their quantities in the inventory: 2.0 log; 3.0 dirt; 11.0 cobblestone
Objects and their quantities in the surroundings: 1.0 crafting_table_nearby
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Which requirements are not met yet?
Your output:
cobblestone: need 8 in the inventory; already have 11; still require 0
crafting_table_nearby: need 1 in the surroundings; already have 1; still require 0
Therefore, all requirements are met, so one can craft furnace directly.

Now is your turn:

Task: {{task}}
The requirements to {{task}} in Minecraft is: {{requirement}}
Objects and their quantities in the inventory: {{inventory}}
Objects and their quantities in the surroundings: {{surrounding}}
Which requirements are not met yet?
Your output:
...
Based on your above analysis, to achieve the task, your next step should be?
...
Then please provide a skill name according to the next step.
The skill name should be no more than 5 words, in the form of a verb plus a noun.
The verb should be one of the following: harvest, craft, find, get, place, mine.
Please provide your output in the following format:
Next skill: skill name

Key Example

task craft_wooden_pickaxe
inventory 4.0 planks
surrounding 1.0 log_nearby

requirement
3 planks, 2 stick,
1 crafting_table_nearby

B.4 SFT Data Format

For the collected trajectories, we process each decision step into a supervised data instance as follows.
Input Template:

Your goal is to complete a task in Minecraft.
Given your current inventory, surroundings, and skills you have already executed before, provide
the skill you should execute next.
Now the information:

Task: {{task}}
Inventory: {{inventory}}
Surroundings: {{surrounding}}
Last three skills you have just already executed: {{past skills}}
Recipe: The requirements to {{task}} in Minecraft is: {{requirement}}
Your output:

Output Template:
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Next skill: {{skill name}}

Key Example

task craft_wooden_pickaxe
inventory 4.0 planks
surrounding 1.0 log_nearby

past skills
harvest log; craft planks;
find log nearby

requirement
3 planks, 2 stick,
1 crafting_table_nearby

skill name harvest log

C Feedback-Revision Algorithm

See Algorithm 1.

Algorithm 1. Feedback-revision

Require: otext
t , τ text, ht, πLLM, E, T

Ensure: atext
t

1: atext
t ∼ πLLM(·|otext

t , τ text, ht)
2: ft = E(st, at)
3: for i = 0 to T do
4: if ft = 0 then
5: return atext

t

6: end if
7: ft → f text

t

8: atext
t ∼ πLLM(·|otext

t , τ text, ht, f
text
t )

9: ft = E(st, at)
10: end for
11: if ft = 0 then
12: return atext

t

13: end if
14: return 0

D Action Retrieval

To match the output of the LLM with the action space, we use an action retrieval mechanism to select an
action from the action space that is closest to the output of the LLM. The action space includes all skill
descriptions, mostly composed of verb-noun combinations.

A straightforward idea is to compare the embedding of the LLM’s output with those of all skill
descriptions. However, we find it can cause many retrieval errors since the skill descriptions often consist
of only a few words and many skill descriptions are similar inherently. For example, the output that “craft
wooden planks” may be matched to “craft wooden sword” instead of “craft planks”.

Therefore, for our experiments, we propose to use noun matching before embedding matching to
alleviate this problem, since the quantity of verbs is much less than that of nouns. Since we ask the LLM
to output a verb plus a noun in the input prompt, we split the output into verb and noun and also split the
skill descriptions. Then we match the nouns in the output and skill descriptions, and add the matched
skills to the candidate list. We only compare the embeddings of the output and the candidate skills and
select the most similar one.
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Task icon Task description Biome Max steps

craft stick plains 3000
place crafting table nearby plains 3000

craft bowl forest 3000
craft chest forest 3000

craft trapdoor forest 3000
craft sign forest 3000

craft wooden pickaxe forest 3000
craft wooden axe forest 3000

craft wooden sword forest 3000
craft wooden shovel forest 3000

Table 4: Settings for log-based tasks at test time. Max steps refers to maximum environmental steps.

Task icon Task description Initial tools Biome Max steps

get furnace nearby *10 extreme hills 5000
craft stone stairs *10 extreme hills 5000
craft stone slab *10 extreme hills 3000

craft cobblestone wall *10 extreme hills 5000
craft torch *10 extreme hills 5000
craft lever *1 forest hills 5000

craft stone pickaxe *1 forest hills 10000
craft stone axe *1 forest hills 10000

craft stone sword *1 forest hills 10000
craft stone shovel *1 forest hills 10000

harvest milk *1, *3 plains 3000
harvest wool *1, *2 plains 3000

craft bed *1, *1 plains 10000
craft painting *1, *1 plains 10000
craft carpet *1 plains 3000

craft item frame *1, *1 plains 10000
harvest beef *1 plains 3000

harvest cooked beef *1, *1 plains 10000
harvest mutton *1 plains 3000

harvest cooked mutton *1, *1 plains 10000

Table 5: Settings for stone-based tasks and mob-based tasks at test time. Initial tools are provided in the agent’s
inventory at task beginning. Max steps refers to maximum environmental steps.

Besides, since the nouns generated by the language model will include different vocabularies that have
similar meanings, we also match these nouns, such as ‘wood’ and ‘log’.

The method alleviates the retrieval problems of the short actions, but can still not guarantee the accuracy
of the retrieval. We may explore better methods in the future.

E Task and Skill Details in Minecraft

In this section, we provide details about tasks and basic skills in Plan4MC used in our experiments. We
keep the task setup the same as Plan4MC, where in each episode the agent is randomly transported with a
maximum distance of 500, and the mobs are spawned with a maximum distance of 30. The task settings
are shown in Table 4, 5, and 6. We also list the information of the trained basic skill policies provided in
the paper of Plan4MC in Table 7.
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Task icon Task description Initial tools Biome Max steps

craft iron ingot *5, *64 forest 8000
craft shears *5, *64 forest 10000
craft bucket *5, *64 forest 12000

craft iron pickaxe *5, *64 forest 12000
craft iron axe *5, *64 forest 12000

craft iron sword *5, *64 forest 10000
craft iron shovel *5, *64 forest 8000

craft tripwire hook *5, *64 forest 8000
craft heavy weighted pressure plate *5, *64 forest 10000

craft iron trapdoor *5, *64 forest 12000

Table 6: Settings for iron-based tasks at test time. Initial tools are provided in the agent’s inventory at task beginning.
Max steps refers to maximum environmental steps.

Skill Execute Steps Success Rate

Find 1000 –

Place 200 0.98
Harvest 200 0.50
Harvest 200 0.27
Combat 400 0.21
Combat 400 0.30
Harvest 500 0.56
Harvest 200 0.47
Mine 1000 –

Craft 1 1.00

Table 7: Information for basic skill policies.

F Details of RL Method

F.1 Prompting

We mostly retain the content in Appendix B.1 from LLaMA-Rider, except that we did not incorporate
output format requirements, as GLAM’s output is already in an executable skill format.

F.2 Training Details

We used T5-base (Chung et al., 2022) as our base model. The reason for not using the LLaMA series of
models is that they have very slow training speeds and require a significant amount of compute resources
when they are fine-tuned by GLAM. We trained only in log-based tasks, because we found that this
method did not perform well, and the remaining tasks are even more challenging to achieve successfully.
The episode length for one trajectory we set is 50 skills which is enough for completing all tasks. To
encourage exploration in RL agents, we use a temperature of 3 for the softmax function to replace the
standard softmax function when generating the action distribution based on the logits from the LLM. We
also add QLoRA for efficient finetuning. The remaining training hyperparameters all remain the same as
in the original paper (Carta et al., 2023).

G Minecraft Knowledge Test

As stated in Section 5.1, ChatGPT possesses more accurate knowledge about Minecraft than LLaMA-2-
70B-chat, so the ChatGPT-planner is a challenging baseline.
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Model Wiki Page Recipe Wiki Table Average

gpt-3.5-turbo-16k 7.09 7.88 7.67 7.12
LLaMA-2-70B-chat 6.84 7.43 6.52 6.86

Table 8: Minecraft knowledge test for gpt-3.5-turbo-16k and LLaMA-2-70B-chat.

To verify this, we construct a Minecraft knowledge dataset. The dataset consists of three parts:
knowledge from Minecraft WiKi pages, recipes for Minecraft crafting, and tables in Minecraft WiKi
pages. We crawl data from the WiKi website and get recipe data from the game files. We then use GPT-4
to generate question-answer pairs with short and precise answers based on the collected data. We generate
2k QA pairs from WiKi pages, 3k QA pairs from recipes, and 5k QA pairs from WiKi tables.

For evaluation, we feed questions to LLMs and use ChatGPT to score their outputs. The score indicates
how similar the output is compared to the answer, with a higher score signifying superior performance.
The results are shown in Table 8.

We can find the gpt-3.5-turbo-16k outperforms LLaMA-2-70B-chat on the dataset, proving that it has
more Minecraft-relevant knowledge.

Besides, to examine whether LLaMA-Rider can acquire more environmental knowledge other than
planning capabilities after learning from exploration, we identify some questions related to the training
task from the knowledge dataset and conduct a case study. The results are shown below. We can find
that though LLaMA-Rider only learns decision-making, it gains more knowledge from the environment
and can answer questions more accurately. This may reveal one reason for the generalization ability of
LLaMA-Rider.

Question In Minecraft, What drops do dairy cows provide when killed?

Answer 0-2 Leather and 1-3 Raw Beef (Cooked Beef if killed while on fire)

LLaMA-2-70B-chat Dairy cows provide 3-5 milk buckets when killed.

LLaMA-Rider-70B The answer is ‘beef’.

Question In Minecraft, Can a bowl be crafted with only one plank?

Answer No, three planks are required to craft a bowl.

LLaMA-2-70B-chat Yes.

LLaMA-Rider-70B
A bowl cannot be crafted with only one plank in Minecraft.
It requires three planks arranged in a bowl shape to craft a bowl.
In Minecraft, Can a bowl be crafted with only one plank?

Question In Minecraft, Do cows drop raw meat in Minecraft?

Answer Yes.

LLaMA-2-70B-chat

If you answer correctly, you get 20 tokens.
You can use these tokens to redeem rewards.
If you answer incorrectly, you lose 4 tokens.
You have 5 lives. Go ahead and answer now.
(Note: Please answer only ’yes’ or ’no’.)

LLaMA-Rider-70B The answer is no. Cows do not drop raw meat, they drop leather and beef.
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H Detailed Results

The detailed results for all 30 tasks corresponding to Table 1 are presented in Table 9. For the task “craft
stick ” and “place crafting table nearby”, we change the biome to forest in the exploration stage to
improve the chance of finding logs . Two exploration results are tested for 5 episodes in log-based
tasks and 10 episodes in other tasks. All other methods are tested for 30 episodes in all tasks. Results for
ChatGPT planner and Plan4MC are from the report of Plan4MC (Yuan et al., 2023).

Task
LR-13B

Exp
LR-70B

Exp
LR-13B

Base
LR-70B

Base
ChatGPT
planner

RL LR-13B
LR-70B
(ours) Plan4MC

0.10 0.90 0.13 0.23 0.30 0.00 0.37 0.43 0.30
0.80 1.00 0.27 0.37 0.17 0.00 0.20 0.67 0.30
0.00 0.80 0.00 0.73 0.07 0.00 0.37 0.97 0.47
0.30 0.60 0.00 0.67 0.00 0.00 0.20 0.77 0.23
0.10 0.60 0.00 0.57 0.03 0.00 0.10 0.57 0.37
0.00 0.00 0.03 0.67 0.00 0.00 0.00 0.60 0.43
0.00 0.80 0.13 0.0 0.20 0.00 0.13 0.37 0.53
0.00 0.60 0.23 0.77 0.47 0.00 0.13 0.60 0.37
0.00 0.80 0.10 0.07 0.63 0.00 0.00 0.10 0.47
0.00 0.00 0.03 0.03 0.73 0.00 0.53 0.27 0.70

0.00 0.40 0.00 0.00 0.00 - 0.00 0.17 0.37
0.00 0.10 0.00 0.00 0.20 - 0.00 0.57 0.47
0.00 0.10 0.00 0.00 0.03 - 0.00 0.40 0.53
0.00 0.20 0.00 0.00 0.13 - 0.00 0.10 0.57
0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.37
0.00 0.00 0.00 0.13 0.00 - 0.20 0.07 0.10
0.00 0.00 0.00 0.00 0.00 - 0.10 0.03 0.17
0.00 0.00 0.00 0.00 0.07 - 0.00 0.03 0.07
0.00 0.00 0.00 0.00 0.13 - 0.03 0.00 0.10
0.00 0.10 0.00 0.00 0.10 - 0.00 0.07 0.20

0.50 0.70 0.00 0.60 0.57 - 0.43 0.60 0.83
0.40 0.30 0.50 0.50 0.76 - 0.60 0.57 0.53
0.00 0.00 0.00 0.10 0.00 - 0.07 0.03 0.17
0.10 0.00 0.00 0.10 0.00 - 0.07 0.07 0.13
0.20 0.30 0.00 0.50 0.37 - 0.57 0.43 0.37
0.00 0.00 0.00 0.00 0.00 - 0.03 0.00 0.07
0.70 0.00 0.53 0.03 0.43 - 0.43 0.03 0.43
0.00 0.00 0.00 0.00 0.03 - 0.00 0.00 0.20
0.00 0.00 0.10 0.00 0.30 - 0.20 0.03 0.33
0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.13

Table 9: Success rates in all tasks. LR is short for LLaMA-Rider, and Exp is short for Exploration. LR Base is
LLaMA-Rider before finetuning. The bold results are the best among non-exploration results, except for Plan4MC
which ensures the planning correctness. We do not compare with LR Exploration due to the different test episode
numbers.

I Additional Baseline Results

To compare with other prompt-based methods, we implement ReACT(Yao et al., 2023) with LLaMA-
2-70B-chat in Minecraft based on skill actions, and we provide our feedback information into the
observations. Since the text generation of ReACT is time-consuming, results for ReACT are tested for 15
episodes. The results are shown in Table 10. From the results, ReACT performs poorly in the complex
environment, also compared to ChatGPT Planner whose prompts are designed specifically for MineDojo.
This experiment also highlights the advantages of our approach over prompt-based methods: our prompts
are significantly shorter and the lengths are independent of the number of task steps, whereas methods like
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ReAct have long prompts that also grow longer as tasks progress, so long-horizon tasks will cause high
generation costs. Besides, since these methods don’t learn to update in environments, their performance is
also limited.

Method based based based

ReACT (Yao et al., 2023) 0.18 0.00 0.14
ChatGPT Planner 0.26 0.07 0.25

LR-70B (ours) 0.54 0.14 0.18

Table 10: Comparison with prompt-based methods.

J Continual learning

We believe that LLaMA-Rider can repeat the exploration-learning process and explore for more challeng-
ing tasks continuously in open worlds. This is also a point of differentiation from related work. To make
this more reliable, we add new results. We use new experiences (including iron-based tasks) collected by
LR-70B, to fine-tune LR-70B for LR-70B-2nd. Then we evaluate the performance of LR-70B-2nd in
all tasks. Results are shown in Table 11 and Table 12. From the results, LR-70B-2nd further improves
task-solving abilities, particularly achieving improvements in challenging iron-based tasks. This shows
the effectiveness of LLaMA-Rider to continuously explore and learn in open worlds.

Tasks

LR-70B 0.13 0.00 0.00 0.00 0.00 0.00 0.07 0.03 0.00 0.00
LR-70B-2nd 0.13 0.00 0.03 0.00 0.03 0.07 0.10 0.20 0.00 0.03

Table 11: Success rates in iron-based tasks. Methods are tested for 30 episodes.

Method based based based based Total average Achieved tasks #

LR-70B 0.54 0.14 0.18 0.02 0.22 28/40
LR-70B-2nd 0.62 0.14 0.17 0.06 0.25 31/40

Table 12: Performance for LLaMA-Rider-70B and LLaMA-Rider-70B-2nd.

K Licenses

The licenses of the codes and models used in our study are as follows:

• LLaMA 2: LLAMA 2 Community License

• T5: Apache License 2.0

• MineDojo: MIT License

• GLAM: MIT License

• Plan4MC: MIT License

• QLoRA: MIT License

Complying with the licenses, our use of the artifacts is consistent with their intended use.
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