
Findings of the Association for Computational Linguistics: NAACL 2024, pages 4597–4612
June 16-21, 2024 ©2024 Association for Computational Linguistics

Personalized Federated Learning for Text Classification
with Gradient-Free Prompt Tuning

Rui Wang1 Tong Yu2† Ruiyi Zhang2 Sungchul Kim2 Ryan Rossi2
Handong Zhao2 Junda Wu3 Subrata Mitra2 Lina Yao4,5 Ricardo Henao1,6

1Duke University 2Adobe Research 3University of California San Diego
4University of New South Wales 5CSIRO’s Data61 6KAUST

raywangwr@outlook.com juw069@ucsd.edu
lina.yao@data61.csiro.au ricardo.henao@duke.edu

{tyu,ruizhang,sukim,ryrossi,hazhao,sumitra}@adobe.com

Abstract

In this paper, we study personalized federated
learning for text classification with Pretrained
Language Models (PLMs). We identify two
challenges in efficiently leveraging PLMs for
personalized federated learning: 1) Communi-
cation. PLMs are usually large in size, inducing
huge communication cost in a federated setting.
2) Local Training. Training with PLMs gener-
ally requires back-propagation, during which
memory consumption can be several times that
of the forward-propagation. This may not be af-
fordable when the PLMs are trained locally on
the clients that are resource constrained, e.g.,
mobile devices with limited access to mem-
ory resources. In solving these, we propose a
training framework that includes an approach
of discrete local search for gradient-free lo-
cal training, along with a compression mech-
anism inspired from the linear word analogy
that allows communicating with discretely in-
dexed tokens, thus significantly reducing the
communication cost. Experiments show that
our gradient-free framework achieves superior
performance compared with baselines.

1 Introduction

Personalized federated learning (Fallah et al., 2020;
Chen et al., 2018; Shamsian et al., 2021) involves
collaborative training with non-shareable private
data from multiple clients. For each client, we
aim to train a personalized model that fits to its lo-
cal data, leveraging knowledge from other clients.
Personalized federated learning has been increas-
ingly attended in the federated learning community
due to its ability to account for data heterogene-
ity across clients (Li et al., 2021). On the other
hand, the advent of Pretrained Language Models
(PLMs) (Liu et al., 2019; Kenton and Toutanova,
2019) has yielded remarkable performance for nat-
ural language processing, e.g., text classification.

†Corresponding Author

However, such PLMs are usually large in size, e.g.,
with hundreds of millions or billions of parameters.
There has been limited works investigating how
to efficiently train with such large PLMs in fed-
erated learning scenarios (Guo et al., 2022; Zhao
et al., 2022). In this paper, we investigate on effi-
cient training with PLMs in personalized federated
learning for the task of text classification.

One challenge of training PLMs in a federated
learning scenario is how to reduce communication
cost. Federated learning generally requires com-
municating updated trainable model parameters
between a central server and local clients (McMa-
han et al., 2017; Li et al., 2020). When training
with PLMs, their sheer size may introduce huge
communication cost between the server and clients,
thus reducing the training efficiency. To solve this
problem, recent works propose to leverage prompt
tuning (Guo et al., 2022; Zhao et al., 2023). By
only training and communicating the prompt em-
beddings and freeze the pretrained parameters of
the PLMs, the communication cost is largely re-
duced compared with training all the parameters of
the PLMs. However, these works can still be im-
practical in real-life federated learning. The main
reason is that their training on local clients requires
back-propagating through the PLMs, in order to cal-
culate the gradient of the prompt embeddings. The
memory consumption of back-propagation is sev-
eral times higher (depending on implementation)
than that of forward-propagation1(Baydin et al.,
2022; Belouze, 2022). Additionally, the memory
footprint taken by gradient computation is propor-
tional to the size of the PLMs, which is becom-
ing increasingly large due to the observation of
emergent abilities with the recent pretrained large
language models (Wei et al., 2022; Schaeffer et al.,
2024). Therefore, back-propagating with the PLMs

1This is because back-propagation requires saving the in-
termediate results of a computational graph, while the forward-
propagation does not.

4597

can be extremely memory consuming. Unfortu-
nately, the clients in federated learning (e.g., edge
devices) usually have limited access to the mem-
ory resources (Rabbani et al., 2021; Deng, 2019).
Consequently, the memory footprint required by
gradient computation can exceed the capacity of
client devices, resulting the local training being
infeasible.

To address these issues, we propose a gradient-
free training framework that saves both the mem-
ory and communication cost in federated learning
with PLMs. Specifically, during local training with
client data, the PLM is trained via a gradient-free
approach of discrete local search with the set of
natural language tokens, which saves the mem-
ory consumption of back-propagation by avoiding
forward-propagation during local training. Addi-
tionally, it significantly reduces the communication
cost by allowing to upload with only discrete token
indices. Further, with the prompts from local train-
ing being only natural language tokens, we propose
a compression mechanism that compresses the ag-
gregated prompt embeddings according to linear
word analogies (Ethayarajh et al., 2018; Nissim
et al., 2020; Drozd et al., 2016), further reducing
the communication cost of downloading from the
server. Our contributions are as follows:

• We propose a noval gradient-free personal-
ized federated learning framework for text
classification with PLMs. To the best of our
knowledge, we are one of the first to consider
gradient-free training in federated learning
with PLMs.

• Our gradient-free framework includes training
with discrete local search while compressing
the prompt embeddings with discrete tokens,
substantially reducing the communication and
memory cost during federated learning.

• Experiments on various datasets show that our
gradient-free framework can achieve superior
performance compared to baselines.

2 Related Work

Federated Learning with PLMs: The sheer
size of the PLMs (Liu et al., 2019; Kenton and
Toutanova, 2019) poses challenges to federated
learning due to both high communication cost and
large memory footprint during local training. Pre-
vious works (Wang et al., 2022, 2023; Zhang et al.,

2023) of federated learning with PLMs mostly tar-
gets the training efficiency in terms of the com-
munication cost. For instance, Lit et al. (2022)
propose to reduce the communication cost by only
communicating the lower layers of the PLMs be-
tween server and clients, while the upper layers
are trained only with local data. Inspired by the
superior performance and efficiency of prompt tun-
ing (Lester et al., 2021; Liu et al., 2022), (Guo
et al., 2022; Zhao et al., 2023; Guo et al., 2023)
propose to further reduce the communication cost
via only training and communicating the continu-
ous prompt embeddings. The drawback of these
works is that they all require training with gradients,
neglecting the huge memory consumption caused
by back-propagating through the PLMs. This can
be problematic in federated learning for clients
with constrained computation resources, e.g., edge
devices that have limited memory capacity.

Gradient-Free Training with PLMs: Sun et al.
(2022b); Cao et al. (2023) propose Language-
Model-as-a-Service (LMaaS) that fine tunes the
pretrained prompt embeddings of the PLMs with
CMA-ES (Hansen and Ostermeier, 2001), a
gradient-free method that only requires forward-
propagation. This setting requires the client data
being transferred to an external server with the
API of PLMs, thus violating the privacy-preserving
principle of federated learning. Deng et al. (2022);
Diao et al. (2022) model the prompts for the PLM
inputs with a prompt generator that is trained with
gradients from reinforcement learning. In this way,
the back-propagation is not on parameters of the
PLM but the prompt generator. This may not be
suitable for federated learning, since the prompt
generators (e.g., implemented with another PLM)
can introduce additional large computation cost for
clients during local training. Hou et al. (2022);
Prasad et al. (2022) also study gradient-free train-
ing of PLMs, but it is unclear how to apply their
approach for federated learning. To illustrate, Hou
et al. (2022) adopts boosting with prompts, requir-
ing ten times the computation for model inference
compared to without boosting, thus is not compat-
ible with clients equipped with constrained com-
putation resources. Importantly, none of the works
above study federated learning.

3 General Setup

Let M be the number of clients in federate learn-
ing, and {Di}Mi=1 be their local datasets. In per-

4598

sonalized federated learning, these datasets are
from different domains or tasks. We have Di =
{xn,yn}Nn=1, for i = 1, . . . ,M with totally N
training samples, where xn is the nth text sequence
and yn is its label for text classification. Let f(·) be
the pretrained PLM encoder, and pi ∈ RT×D be a
sequence of T prompt token embeddings for client
i. In experiments, we follow (Sun et al., 2022b)
with T = 50. D is the dimension of the pretrained
token embeddings. By prompt tuning, we predict
on xn via concatenating it with prompt pi using a
template M,

M(xn)=[pi; e(xn); e(It is [Mask])] (1)

p(yn|xn) = [softmax(f(M(xn)) · vT
l)]yn , (2)

where [;] denotes row concatenation and e(·) is
the embedding layer of the PLM that converts each
token into its pretrained embedding. f and e are
frozen during federated learning. The output from
f on the position of [MASK] is compared via inner
product with the verbalizer vl, which contains em-
beddings of words that are representative of each
label (Gao et al., 2020). For instance, we can have
vl = e([good, bad]) for sentiment classification.

In this way, the only trainable parameter for
client i is the prompt pi. The training loss for
client i is,

L(pi;Di) =
1

N

N∑

n=1

−log p(yn|xn), (3)

When training with personalized federated learning
for text classification, the general objective is to
find {pi}Mi=1 that minimizes,

1

M

M∑

i=1

L(pi;Di), (4)

while keeping {Di}Mi=1 locally for each client. This
is achieved via coordinating the training with a
server that iteratively receives {pi}Mi=1 from local
training and distribute their aggregated version, de-
noted as p in Section 4.1. Unlike the PLMs with
online APIs (e.g. GPT-3.5/4 (OpenAI, 2023)) that
requires uploading user data to an external server,
it is reasonable that the PLMs is deployed locally
(i.e., without data uploading), for better data pri-
vacy with federated learning.

4 Our Framework

4.1 General Procedures
Our proposed framework of federated learning is
composed of the following four steps (also shown
in Alg 1), which are executed iteratively multiple
rounds of federated learning:

• Local Training: Each client trains its own pi

with its local data. Section 4.2 introduces our
proposed gradient-free approach of discrete
local search for pi.

• Upload: The learnt {pi}Mi=1 is uploaded to
the server via converting each pi to its corre-
sponding index (Section 4.3).

• Aggregate: The server aggregates information
from different clients by generating a global
prompt p from {pi}Mi=1 to generate, i.e.,

p =
1

M

M∑

i=1

pi, (5)

where we adopt FedAvg (McMahan et al.,
2017) and assume uniform weighting.

• Download: p is downloaded to each client
as the initialization of local training (with pi)
for the next round. Section 4.4 proposes a
compression method that approximates p with
reduced communication cost (denoted as p′).

Note that we assume the pretrained parameters
of PLMs have been downloaded to each client be-
fore the start of federated learning, so that we only
need to communicate the prompt parameters dur-
ing federated learning. We claim that downloading
the PLM parameters to local clients is a practical
assumption for federated learning. Specifically, it
avoids the client data being uploaded to the server
for model inference, as opposed to the recently
proposed Language-Model-as-a-Service (LMaas)
(Sun et al., 2022b; Deng et al., 2022; Cao et al.,
2023) where the PLM API is only stored on an
online server that requires data uploading. This is
especially important for federated learning where
the data privacy is of prime concern.

4.2 Gradient-Free Local Training
In updating each client i, its prompt pi is firstly ini-
tialized with the global prompt p (or p′ in Section
4.4) from the previous round of federated learn-
ing, then fine tuned on the local dataset Di. As

4599

Algorithm 1 Overall Algorithm.

Input: Datasets {Di}Mi=1, the PLM (API and its
pretrained embedding matrix e(V)).
Output: The resulting prompt p′.

Initialize p with natural token embeddings.
p = p′ = p′

−1

Download the PLM and p′
−1 to each client.

% General procedures for federated learning.
for r = 1, · · · , n_round do

% Iterate with the M clients.
for i = 1, · · · ,M do

% Local Training: Section 4.2, Alg. 3.
pi = Local_Training(p′, Di)
% Upload: Section 4.3.
Upload the indices of pi to the server.

end for
% Aggregation: Section 4.1
Aggregate {pi}Mi=1 with (5), generating p.
% Download: Section 4.4, Alg. 2
p′ = Compress_Download(p′, p′

−1, e(V))
p′
−1 = p′

end for

mentioned before, gradient-based fine tuning of
p with back-propagation can be extremely mem-
ory consuming with PLMs. Therefore, we study
gradient-free client update of the prompt embed-
dings, which does not require gradient computing
with back-propagation. Specifically, we propose
an update mechanism of the prompts based on dis-
crete local search with the set of natural language
tokens. Let V be the vocabulary of the PLM and
superscript t denote the tth row of a matrix. For
each update iteration, we want to update with only
natural language tokens for pi to reduce the com-
munication cost (Section 1). Specifically, given a
randomly sampled index t of the prompt token em-
beddings, t ∈ [1, T], and a set of candidate natural
language tokens C(pt

i) ⊂ V for replacement, we
update pt

i via,

pt
i = argmin

w{e(c)|c∈C(pt
i)}

L(repl(pi,w, t),Di), (6)

Note that pt
i on the left side is the updated prompt

of the next iteration of local training, while the
one on the right is from the previous iteration.
repl(pi,w, t) denotes replacing the tth row of pi

with w. We randomly choose one position t for
each iteration of local training. The candidate set

C(pt
i) is selected with,

C(pt
i) = argmax

C⊂V,|C|=K

∑

c∈C
cos(e(c),pt

i), (7)

where cos(·, ·) is the cosine similarity. We only se-
lect K candidate tokens in C with the most similar
semantics as pt

i (large cosine similarity), in order
to avoid large perturbation of pt

i in a single update
step. K is the number of local search in each step
that controls the training efficiency and is discussed
in Section 5. The general procedure is additionally
elaborated in Algorithm 3. Note that such a sim-
ple update mechanism allow us to represent the
learn prompt pi with token indices, significantly
reducing the upload communication cost 4.3.

We notice there are previous works (Li and
Liang, 2021; Liu et al., 2021) claiming that dis-
crete tokens are less expressive than continuous
tokens, thus the learning capacity may be limited
when trained with discrete tokens. However, as de-
scribed in Section 3, datasets of different clients in
personalized federated learning may represent dif-
ferent domains/tasks. For such cases, training with
continuous prompts may result in the updated pi

being overfit to the domain/task of client i, causing
negative knowledge transfer to other clients when
pi is aggregated with (5). In experiments, we will
show that our approach can produce better accu-
racy compared to training with continuous prompt
embeddings.

4.3 Uploading with Discrete Indices
By constraining the candidate embeddings to be
within the set of natural language tokens, i.e.,
C(pt

i) ⊂ V , the updated rows of pi can be saved
by only keeping its token index. This signifi-
cantly reduces the communication cost when up-
loading prompts to the server, compared with pre-
vious works of continuous prompt tuning Guo et al.
(2022); Zhao et al. (2022) that upload all the prompt
parameters. For instance, the vocabulary size of the
Roberta-Large (Liu et al., 2019) model is 50,264
with D = 1024, which implies that each token
index can be encoded with 16 bits. For rows of
pi that are not modified during client update, we
can signify it with a special index using a 16-bit
integer, e.g., 50,265 (not natural token indices).
Thus, we only need to upload 16 Bits for each po-
sition of pi. Comparatively, uploading the whole
prompt vector to the server requires communicat-
ing 16 ∗ 1024 ≈ 16KB for each position, provided
that the continuous parameters are encoded into

4600

float16 during communication. As the result, we
reduce the communication cost by 1000 times (16
Bits vs 16 KB).

4.4 Downloading with Embedding
Compression

After the client update, the uploaded pi, for i =
1 . . . ,M , are aggregated with (5). We can observe
that each row of the resulting p after aggregation
can no longer be represented with a single discrete
token index, thus cannot be compressed as in Sec-
tion 4.3 when being downloaded to clients. Below
we propose to compress p after aggregation with
the pretrained token embeddings of the PLM, i.e.,
approximating p with the matrix of pretrained to-
ken embeddings e(V) ∈ R|V|×D.

This draws from the intuition in previous works
on linear word analogies (Ethayarajh et al., 2018;
Nissim et al., 2020; Drozd et al., 2016), which
show interesting examples with linear operations
among the pretrained word/token embeddings, e.g.,
e(king)− e(man) + e(woman) ≈ e(queen) or
e(doctor) − e(man) + e(woman) ≈ e(nurse).
These indicate that a pretrained token embedding
can be estimated by a few embeddings of tokens
with similar or relevant semantics. As for our p, we
can observe from (5) that its prompt embeddings is
assumed to be within the convex hull of the natural
token embeddings. Therefore, it should be viable to
estimate each row of p with a few or fixed number
of natural token embeddings. For each round of
federated learning with aggregated prompt p, let p′

be the compressed prompt downloaded to clients
from the server after compressing p in the current
round. We denote p′

−1 as the compressed prompt
downloaded to clients in the previous round. Below,
we elaborate on how to compress p into p′, given
p′
−1 from the previous round of federated learning.
We should note that p′

−1 from the previous round
is accessible by both the server and clients, since it
was generated by the server and received by the
clients. Thus, for the training stability of p at
index t, we only compress its increment (resid-
ual) between the previous and current rounds, i.e.,
Rt = pt − pt′

−1, instead of directly compressing
pt. Specifically, we want to find a sparse projec-
tion from e(V) to Rt, so it can be approximated
with a limited number of pretrained embeddings.
Let I be a sequence of token indices, initialized
as I = [1 · · · , |V|]. We define e(V)I be the rows
in e(V) indexed by I . Formally, we optimize the

following,

x∗ = argminx ||e(V)TI · x−Rt||22 + α||x||1, (8)

Ix = argmax|Ix|=L

∑

j∈Ix
|x∗[j]|, I = I[Ix], (9)

where Ix takes the top L token indices with the
largest absolute projection values in x∗. I[Ix] is
the value of I indexed by Ix. x ∈ R|I|×1 is the
learnt projection, || · ||1 and || · ||2 are the one and
two norms, respectively, and | · | denotes the ab-
solute value. We solve a sparse x∗ using LASSO
regularization as in (8), with α being the regular-
ization weight. We empirically set α = 0.2 for all
datasets and clients. x∗[j] is the jth element of x∗.
To further minimize the error in estimating Rt, the
final projection x∗

f ∈ RI×1 is,

x∗
f = argminxf

||e(V)TI · xf −Rt||22. (10)

We denote the cardinal of resulting I in (10) as
Φ, the number of token embeddings used to ap-
proximate Rt. Instead of downloading with the
aggregated p, we download {I,x∗

f} to each client.
As the result, we only need to download 16× 2Φ
Bits for each prompt token, consider that both the
token index in I and continuous variable in x∗

f are
encoded with 16 Bits, as in Section 4.2.

The client will reconstruct the residual R via
R̂ = e(V)TI · xf . Finally, the compressed prompt
received by the clients for the current round is,

pt′ = pt′
−1 + R̂t, (11)

p′ = [p1′, · · · ,pT ′
] will be further saved as p′

−1

for the next round of federated learning. In the
experiments, I is selected with two iterations of (8)
and (9), as in Algorithm 2.

After the last round of federated learning, we
follow (Fallah et al., 2020; Chen et al., 2018) that
further fine-tunes p′ with a post tuning process for
the final pi (no communication cost). The post tun-
ing is to adapt the resulting pi to the task/domain
of test client i for more personalization. To avoid
forgetting of the global knowledge encoded by p′,
we adopt the gradient-free method of BBT (Sun
et al., 2022b) that allows p′ being trained in a con-
strained continuous subspace with a small learning
rate. Please refer to Appendix B for more details.
In experiments, we also compare our discrete local
search with BBT in local training, showing that our
approach discrete local search is more effective in
the federated learning setting.

4601

Method Upload Download BP?

A. Prompt Tuning 0 0 Yes

B. Prompt Tuning (Fed) 819 KB 819 KB Yes

C. Meta Prompt Tuning (Fed) 819 KB 819 KB Yes

D. pFedMe 819 KB 819 KB Yes

E. FedKD 1.3 GB 1.3 GB Yes

F. Fine Tuning (Fed) 5.3 GB 5.3 GB Yes

G. BBT 0 0 No

H. BBT (Fed) 8 KB 8 KB No

I. Ours (Φ = 3) 0.8 KB 4.8 KB No

J. Ours (Φ = 5) 0.8 KB 8 KB No

K. Ours (FullDownload) 0.8 KB 819 KB No

Table 1: Illustration of our approaches and base-
lines (cited/explained in Appendix C). Upload and
Download shows the Bits that is uploaded and down-
loaded per round of federated learning. BP? indi-
cates whether the method requires back-propagation.
Our approaches can save the memory consumption
of back-propagation, while significantly reduce the
communication cost. We index the mapproaches with
A-K for the convenience of Figure 2.

5 Experiments

5.1 Experiment Setting

Training: Following pLF-Bench (Chen et al.,
2022), we adopt the datasets of Sentiment140
(Twitter) (Go et al., 2009), CoLA (Warstadt et al.,
2018) and SST2 (Socher et al., 2013) for experi-
ments of text classification with federated learning.
We additionally adopt FDU-MTL (Liu et al., 2017)
that contains 16 text domain. We train and evaluate
on all the 16 domains of FDU-MTL (each client
with a unique text domain). Please refer to Ap-
pendix A for more training details and data splits.
Table 1 lists our approaches and considered base-
lines, which are also detailed in Appendix C. We
follow (Sun et al., 2022b) that uses Roberta-Large
in our experiments. We do not adopt larger mod-
els, e.g. LLaMA (Touvron et al., 2023) , due to
our practical assumption that the federated learn-
ing clients are given limited access to computation
resources (Section 1).
Evaluation: The performance of the PLM from
federated learning is evaluated via the average clas-
sification accuracy over clients that it is tested on.
We conduct two kinds of testing: i) P: Testing on
the Participant clients of federated learning. This
evaluated how much a PLM can capture the knowl-
edge from clients during training. i) NP: Testing on
the Non-Participant clients of federated learning.
This evaluated the PLM can generalize to unseen

0 5 10 15 20 25 30
Epoches

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

Av
er

ag
ed

 Tr
ai

ni
ng

 lo
ss

K=2
K=5
K=8

Figure 1: Averaged training loss during joint training of
Ours (Φ = 5) with different values of K.

clients. For Sentiment140, CoLA and SST2, our
partition of participant and non-participant clients
follows (Chen et al., 2022). For FDUMTL, we first
set all its 16 domain/clients as participant for the
evaluation of P. In evaluating NP, we conduct a
4-split cross-validation that split the 16 clients into
4 groups. We iteratively treat the clients of each
group as non-participant while those from others
groups as participant (Table 3). In this way, each
client is treated as non-participant once and we
average the results for NP.

In Table 1, we also report on: 1) Whether the
method requires back-propagation, i.e., does the
model consume a large memory footprint for lo-
cal training? 2) The communication cost, i.e., the
number of communicated Bits between server and
clients for each round of federated learning. In
calculating the Bits, we assume the token indices
are encoded with 16-bit and continuous parameters
are converted into float16 during communication,
as in Sections 4.2 and 4.4. Importantly, we calcu-
late the upload and download cost separately, due
to the fact that the upload bandwidth is usually
smaller than the download bandwidth (Hegedűs
et al., 2021), i.e., upload is more expensive than
download with the same number of Bits. For in-
stance, with prompt length T = 50 (Appendix A),
the upload communication cost for Ours (Φ = 5)
is 50× 16 = 0.8K (Section 4.2) and its download
cost is 50× 2× 5× 16 = 8K (Section 4.4)

5.2 Local Search with Different K Values.
As discussed in Section 4.2, discrete prompt tokens
might be less expressive than continuous prompt
embeddings trained with gradients (Li and Liang,
2021; Liu et al., 2021). Thus, one may be con-
cerned about the capability of discrete local search

4602

Sentiment140 FDUMTL CoLA SST2 Avg
P NP P NP P NP P NP P NP

Prompt Tuning 73.22 N/A 83.41 N/A 71.89 N/A 79.87 N/A 77.10 N/A

Prompt Tuning (Fed) 73.44 74.67 84.28 83.76 74.22 73.03 81.22 81.49 78.29 78.24

Meta Prompt Tuning (Fed) 73.95 74.89 84.20 83.89 73.17 73.46 81.96 82.44 78.32 78.67

pFedKD 72.75 73.11 84.03 83.86 72.56 71.34 78.65 79.57 77.00 76.97

pFedMe 75.66 74.95 84.60 84.79 74.95 72.27 81.78 81.65 79.25 77.66

Fine Tuning (Fed) 74.17 75.52 85.98 85.09 74.01 74.35 80.96 79.42 78.78 78.60

BBT 73.17 N/A 84.34 N/A 74.26 N/A 80.34 N/A 78.03 N/A

BBT (Fed) 73.87 73.58 86.12 86.44 75.88 73.07 81.46 80.67 79.33 78.69

Ours (Φ = 3) 74.08 74.94 86.64 86.66 75.22 72.97 81.78 82.14 79.43 79.18

Ours (Φ = 5) 76.17 75.34 87.14 87.00 74.86 73.31 82.36 82.88 80.13 79.63

Ours (FullDownload) 75.16 76.00 87.71 87.31 75.75 73.78 82.95 82.73 80.39 80.00

Table 2: Results with our considered datasets for federated learning. "P" and "NP" denotes the mean accuracy
on Participant and Non Participant clients of federated learning, respectively. Prompt Tuning and BBT are
not federated learning methods, thus all clients are treated as Participants Please note that, in addition to
performance, our approaches are also superior in terms of memory consumption and computation cost. Please
refer to Table 1 for more details.

in minimizing the loss functions of different tasks
of different clients. From (6), we can observe
that such capability is large and determined by the
search number K for each step of local search. Ide-
ally, in maximizing the optimization ability of our
local search, we can set K = |V|, i.e., and try
with the whole vocabulary instead of searching lo-
cally. However, such a combinatorial optimization
is computationally expensive, thus not compatible
with resource constrained clients. There should be
a trade-off between the optimization ability and
training efficiency for discrete local search.

In this section, we investigate how the optimiza-
tion ability of our proposed local search is affected
by the search number K. In Figure 1, we plot
the averaged training loss (4) over all the clients
in FDU-MTL when training Ours (Φ = 5) with
different K values. We can observe that our local
search can effectively minimize the loss function
during training. Additionally, we find that the per-
formance gain, i.e., the difference in the optimized
loss value, is diminishing when switching from
K = 2 to K = 5 and from K = 5 to K = 8.
However, the introduced computation cost from
K = 2 to K = 5 is the same as that from K = 5
to K = 8. With such observation, we take K = 5
as a trade-off between the computation efficiency
and optimization ability, since 1) local search with
K = 5 is not very expensive, e.g., comparing the
implementation of BBT (Sun et al., 2022b) that

A B C D E F G H I J K
80

82

84

86

88

90

Ac
cu

ra
cy

Group 0
Group 1

Group 2
Group 3

Figure 2: Results on each group of non-participant
clients in FDUMTL. For convenience, we denote each
method with the index defined in Table 1. Our ap-
proaches are the right of the vertical line.

requires 20 searches each step. 2) The performance
gain from K = 5 to K = 8 is much smaller than
that K = 2 to K = 5, thus increasing the value
of K from 5 may not be cost-effective. Therefore,
we keep K = 5 for all our experiments. Note that
such a parameter selection of K only leverages the
training data of clients, with no development or
testing data involved.

5.3 Result Analysis

Table 2 shows our results with considered datasets.
Our approaches can achieve the highest accuracy,
with comparable or much lower communication
cost than the baselines (Table 1). This is espe-

4603

cially obvious with the upload communication,
i.e., the upload cost of our approaches is 10 times
smaller than the closest baselines (BBT (Fed)),
which thanks to our proposed discrete local search
mechanism (Section 4.2) that only requires upload-
ing the pretrained token indices to the server. As
mentioned in Appendix B, BBT (Sun et al., 2022b)
works by randomly projecting the prompt param-
eters (with a fixed random matrix A) into a small
subspace, within which a low-dimensional vector
z is trained. However, there is no guarantee that
such a random projected subspace can cover di-
rections that capture knowledge that is generaliz-
able across clients. On the contrary, though our
local search algorithm is constrained with discrete
natural language tokens, such tokens should cap-
ture rich semantics of natural language that are
expressive enough to describe a pattern that is gen-
eralizable across clients. This might explain why
our approach of discrete local search with natural
language tokens yeilds higher accuracy in training
with data of different clients. Moreover, we can
observe that Ours with Φ = 3 and Φ = 5 can main-
tain comparable performance for text classification
as with Ours (FullDownload), while substantially
decreasing download communication cost.

Among the gradient-based approaches (i.e.,
BP?=Yes), FedKD (Wu et al., 2022) generally has
lower classification accuracy, which might because
its student model (DistilRoberta-base) is less capa-
ble than Roberta-Large as used in other approaches.
We follow (Wu et al., 2022) that uses a small stu-
dent model for FedKD to save the communication
cost. We can observe that these gradient-based
baselines may produce results that are inferior to
gradient-free approaches. This may be counter-
intuitive since these gradient-based prompt tuning
approaches allow training in the whole (more ex-
pressive) parameter space of prompt parameters,
compared to gradient-free approaches with which
the search space for the prompt parameters is usu-
ally constrained (Sun et al., 2022b). However, pre-
vious works of gradient-free training with PLMs
(Sun et al., 2022b,a) also show results that are better
than gradient-based approaches, especially with the
scenario of few-shot training. Such a phenomenon
may be explained by the over-expressiveness of
prompts trained with gradients, i.e., subject to over-
fitting with limited training data. Also, as discussed
in Section 4.2, the prompts trained with gradients
may overfit to the task/domain of the clients during
local client update, inducing negative knowledge

X, ros, Target, himself, turn, Europe, WORK,
Energy, scored, *, shortly, balls, TV, yearly, 2012,
Race, International, ', Marketplace, conference, io,
os, modifications, IG, troopers, inside, Forms,
publishes, cellphone, CO, legal, executive, fight,
ings, hope, Summer, Officers, football, Property, #,
book, parents, expenses, ac, manager, create, age,
email, market, mainline

Figure 3: The learnt prompt from the apparel domain
of FDU-MTL, using our proposed discrete local search.

transfer from other clients.
In Figure 2, we detailed results of NP for

FDUMTL with each of its groups. We can find
that our approach consistently outperform the base-
lines with in terms of group-wise NP accuracy. We
also provide detailed participant accuracy for each
client in Table 4 and 5.

Privacy with the learnt prompts. Figure 3 shows
the prompts learnt with data from the apparel do-
main of FDU-MTL, using the proposed discrete
local search in client update (Section 4.2). We
can find it is hard to interpret, and we cannot in-
fer that the client data is about "apparel" given the
prompt tokens. Such a lack of interpretability re-
duces the chance of client privacy leakage, when
uploading the learnt prompts to the server after
client update. Inspired by recent approaches of
evaluating with Large Language Models (LLMs)
(Peng et al., 2023), we further conduct a privacy
leakage analysis in Appendix H. Specifically, given
a prompt trained from a certain client/domain of
FDU-MTL, we investigate how GPT-4 (OpenAI,
2023) can link the prompt to its training domain.
We find that none of the 16 clients/domains can be
inferred from their prompts using GPT-4 predic-
tions, indicating less chance of privacy leakage.

6 Conclusions

In this paper, we propose a gradient-free framework
that trains with discrete local search on natural lan-
guage token during personalized federated learn-
ing. Compared with gradient-based approaches,
the discrete local search circumvents gradient com-
putation and saves the huge memory consumption
caused by back-propagation. We additionally pro-
pose a compression mechanism inspired by linear
word analogy that allows the server-client com-
munication with discretely indexed tokens. Ex-
periments show that our framework can achieve
superior performance compared to baselines.

4604

7 Limitations

Our proposed approach considers communicating
and compressing the pretrained embeddings of the
natural language tokens, which is only applicable
to the domain of natural langauge processing. It
would be more comprehensive for our study to
further explore applying our approach for visual
tokens (Wu et al., 2020; Yin et al., 2022) during
federated learning.

8 Ethics Statement

Ours study of personalized federated learning is
intended to protect client privacy during training,
avoiding malicious use of client private informa-
tion. Additionally, the datasets in our experiments
are all publicly available.

References
Atılım Güneş Baydin, Barak A Pearlmutter, Don

Syme, Frank Wood, and Philip Torr. 2022. Gra-
dients without backpropagation. arXiv preprint
arXiv:2202.08587.

Gabriel Belouze. 2022. Optimization without backprop-
agation. arXiv preprint arXiv:2209.06302.

Xingyu Cai, Jiaji Huang, Yuchen Bian, and Kenneth
Church. 2021. Isotropy in the contextual embedding
space: Clusters and manifolds. In International Con-
ference on Learning Representations.

Tingfeng Cao, Liang Chen, Dixiang Zhang, Tianxiang
Sun, Zhengfu He, Xipeng Qiu, Xing Xu, and Hai
Zhang. 2023. Competition for gradient-free tuning of
large language models: approaches, results, current
challenges and future directions. National Science
Review, 10(6):nwad124.

Daoyuan Chen, Dawei Gao, Weirui Kuang, Yaliang Li,
and Bolin Ding. 2022. pfl-bench: A comprehensive
benchmark for personalized federated learning. Ad-
vances in Neural Information Processing Systems,
35:9344–9360.

Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and
Xiuqiang He. 2018. Federated meta-learning with
fast convergence and efficient communication. arXiv
preprint arXiv:1802.07876.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. 2015. Binaryconnect: Training deep neural
networks with binary weights during propagations.
Advances in neural information processing systems,
28.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan
Wang, Han Guo, Tianmin Shu, Meng Song, Eric P
Xing, and Zhiting Hu. 2022. Rlprompt: Optimizing
discrete text prompts with reinforcement learning.
arXiv preprint arXiv:2205.12548.

Yunbin Deng. 2019. Deep learning on mobile devices: a
review. In Mobile Multimedia/Image Processing, Se-
curity, and Applications 2019, volume 10993, pages
52–66. SPIE.

Shizhe Diao, Xuechun Li, Yong Lin, Zhichao Huang,
and Tong Zhang. 2022. Black-box prompt learn-
ing for pre-trained language models. arXiv preprint
arXiv:2201.08531.

Aleksandr Drozd, Anna Gladkova, and Satoshi Mat-
suoka. 2016. Word embeddings, analogies, and ma-
chine learning: Beyond king-man+ woman= queen.
In Proceedings of coling 2016, the 26th international
conference on computational linguistics: Technical
papers, pages 3519–3530.

Kawin Ethayarajh, David Duvenaud, and Graeme Hirst.
2018. Towards understanding linear word analogies.
arXiv preprint arXiv:1810.04882.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar.
2020. Personalized federated learning: A meta-
learning approach. arXiv preprint arXiv:2002.07948.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on ma-
chine learning, pages 1126–1135. PMLR.

Karl Pearson F.R.S. 1901. Liii. on lines and planes of
closest fit to systems of points in space. The London,
Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, 2(11):559–572.

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and
Tieyan Liu. Representation degeneration problem in
training natural language generation models. In In-
ternational Conference on Learning Representations.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2020.
Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N project report, Stanford, 1(12):2009.

Tao Guo, Song Guo, and Junxiao Wang. 2023. pfed-
prompt: Learning personalized prompt for vision-
language models in federated learning. In Proceed-
ings of the ACM Web Conference 2023, pages 1364–
1374.

Tao Guo, Song Guo, Junxiao Wang, and Wenchao Xu.
2022. Promptfl: Let federated participants cooper-
atively learn prompts instead of models–federated
learning in age of foundation model. arXiv preprint
arXiv:2208.11625.

Nikolaus Hansen and Andreas Ostermeier. 2001. Com-
pletely derandomized self-adaptation in evolution
strategies. Evolutionary computation, 9(2):159–195.

4605

https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720

István Hegedűs, Gábor Danner, and Márk Jelasity. 2021.
Decentralized learning works: An empirical compar-
ison of gossip learning and federated learning. Jour-
nal of Parallel and Distributed Computing, 148:109–
124.

Bairu Hou, Joe O’Connor, Jacob Andreas, Shiyu Chang,
and Yang Zhang. 2022. Promptboosting: Black-box
text classification with ten forward passes. arXiv
preprint arXiv:2212.09257.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of naacL-HLT, pages 4171–4186.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo
Wang, Yuan Li, Xu Liu, and Bingsheng He. 2021. A
survey on federated learning systems: vision, hype
and reality for data privacy and protection. IEEE
Transactions on Knowledge and Data Engineering.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar San-
jabi, Ameet Talwalkar, and Virginia Smith. 2020.
Federated optimization in heterogeneous networks.
Proceedings of Machine learning and systems, 2:429–
450.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Zhengyang Lit, Shijing Sit, Jianzong Wang, and Jing
Xiao. 2022. Federated split bert for heterogeneous
text classification. In 2022 International Joint Con-
ference on Neural Networks (IJCNN), pages 1–8.
IEEE.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2017.
Adversarial multi-task learning for text classification.
arXiv preprint arXiv:1704.05742.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du,
Zhilin Yang, and Jie Tang. 2021. P-tuning v2:
Prompt tuning can be comparable to fine-tuning
universally across scales and tasks. arXiv preprint
arXiv:2110.07602.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-
iao Du, Zhilin Yang, and Jie Tang. 2022. P-tuning:
Prompt tuning can be comparable to fine-tuning
across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 61–68.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Aguera y Arcas. 2017.
Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and
statistics, pages 1273–1282. PMLR.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R Devanur, Gregory R
Ganger, Phillip B Gibbons, and Matei Zaharia. 2019.
Pipedream: Generalized pipeline parallelism for dnn
training. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, pages 1–15.

Malvina Nissim, Rik van Noord, and Rob van der Goot.
2020. Fair is better than sensational: Man is to doctor
as woman is to doctor. Computational Linguistics,
46(2):487–497.

OpenAI. 2023. Gpt-4 technical report.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,
Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong
Guo. 2019. A generic communication scheduler for
distributed dnn training acceleration. In Proceedings
of the 27th ACM Symposium on Operating Systems
Principles, pages 16–29.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit
Bansal. 2022. Grips: Gradient-free, edit-based in-
struction search for prompting large language models.
arXiv preprint arXiv:2203.07281.

Tahseen Rabbani, Brandon Feng, Yifan Yang, Arjun
Rajkumar, Amitabh Varshney, and Furong Huang.
2021. Comfetch: Federated learning of large net-
works on memory-constrained clients via sketching.
arXiv preprint arXiv:2109.08346.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo.
2024. Are emergent abilities of large language mod-
els a mirage? Advances in Neural Information Pro-
cessing Systems, 36.

Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal
Chechik. 2021. Personalized federated learning us-
ing hypernetworks. In International Conference on
Machine Learning, pages 9489–9502. PMLR.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Tianxiang Sun, Zhengfu He, Hong Qian, Yunhua Zhou,
Xuan-Jing Huang, and Xipeng Qiu. 2022a. Bbtv2:
Towards a gradient-free future with large language
models. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 3916–3930.

4606

http://arxiv.org/abs/2303.08774
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing
Huang, and Xipeng Qiu. 2022b. Black-box tuning for
language-model-as-a-service. In International Con-
ference on Machine Learning, pages 20841–20855.
PMLR.

Canh T Dinh, Nguyen Tran, and Josh Nguyen. 2020.
Personalized federated learning with moreau en-
velopes. Advances in Neural Information Processing
Systems, 33:21394–21405.

Chaofan Tao, Lu Hou, Wei Zhang, Lifeng Shang,
Xin Jiang, Qun Liu, Ping Luo, and Ngai Wong.
2022. Compression of generative pre-trained lan-
guage models via quantization. arXiv preprint
arXiv:2203.10705.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Haoyu Wang, Handong Zhao, Yaqing Wang, Tong Yu,
Jiuxiang Gu, and Jing Gao. 2022. Fedkc: Federated
knowledge composition for multilingual natural lan-
guage understanding. In Proceedings of the ACM
Web Conference 2022, pages 1839–1850.

Rui Wang, Tong Yu, Junda Wu, Handong Zhao,
Sungchul Kim, Ruiyi Zhang, Subrata Mitra, and Ri-
cardo Henao. 2023. Federated domain adaptation for
named entity recognition via distilling with hetero-
geneous tag sets. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 7449–
7463.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2018. Neural network acceptability judgments.
arXiv preprint arXiv:1805.12471.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682.

Orion Weller, Marc Marone, Vladimir Braverman,
Dawn Lawrie, and Benjamin Van Durme. 2022. Pre-
trained models for multilingual federated learning.
arXiv preprint arXiv:2206.02291.

Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan,
Peizhao Zhang, Zhicheng Yan, Masayoshi Tomizuka,
Joseph Gonzalez, Kurt Keutzer, and Peter Vajda.
2020. Visual transformers: Token-based image repre-
sentation and processing for computer vision. arXiv
preprint arXiv:2006.03677.

Chuhan Wu, Fangzhao Wu, Lingjuan Lyu, Yongfeng
Huang, and Xing Xie. 2022. Communication-
efficient federated learning via knowledge distillation.
Nature communications, 13(1):2032.

Hongxu Yin, Arash Vahdat, Jose M Alvarez, Arun
Mallya, Jan Kautz, and Pavlo Molchanov. 2022. A-
vit: Adaptive tokens for efficient vision transformer.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 10809–
10818.

Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan
Li, Ruiyi Zhang, Tong Yu, Guoyin Wang, and Yi-
ran Chen. 2023. Towards building the federatedgpt:
Federated instruction tuning. In International Work-
shop on Federated Learning in the Age of Foundation
Models in Conjunction with NeurIPS 2023.

Haodong Zhao, Wei Du, Fangqi Li, Peixuan Li, and
Gongshen Liu. 2022. Reduce communication costs
and preserve privacy: Prompt tuning method in fed-
erated learning. arXiv preprint arXiv:2208.12268.

Haodong Zhao, Wei Du, Fangqi Li, Peixuan Li, and
Gongshen Liu. 2023. Fedprompt: Communication-
efficient and privacy-preserving prompt tuning in fed-
erated learning. In ICASSP 2023-2023 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1–5. IEEE.

A Additional Explanation

Our model architecture for prompt tuning is the
same as in (Sun et al., 2022b). Specifically, the
backbone of the PLM is the Roberta-Large model
(embedding dimension D = 1024), with T = 50
prompt tokens inserted into the input layer. The
model is trained with 50 rounds of federated learn-
ing for FDU-MTL, SST2 and CoLA, with each
client updated 40 steps for each round. For Senti-
ment140, we train for 100 rounds and we only sam-
ple 50 clients for training during each round (due
to the large number of clients in Sentiment140).

Following previous works of gradient-free learn-
ing (Sun et al., 2022b; Hou et al., 2022), we con-
sider the few-shot scenario for each testing client.
Specifically, we assume there are 16 samples for
each class in each testing client during post-tuning.
For FDU-MTL, these datasets are sampled from
the development split in each domain. For senti-
ment140, these are sampled from the datasets of
each testing client, with the rest data of each client
used for testing after post tuning. We additionally
sample a development dataset (not overlapped with
data for training) from the development split for
each client for FDUMLT with the same size as the
training set, since development datasets are also
used in previous works of gradient-free training
(Sun et al., 2022b; Hou et al., 2022). We evaluate
the classification accuracy of the resulting models
on the test set of each client, averaged over four
random seeds. We do not sample development

4607

Domains

Group 1 apparel, mr, baby, books

Group 2 camera, dvd, electronics, health

Group 3 imdb, kitchen, magazines, music

Group 4 software, sports, toys, video

Table 3: Group of domains in FDUMTL. In testing
the performance on non-participant clients, we do
4-split cross-validation with FDUMTL. Specifically,
we iteratively treat the domains from a group as non-
paticipant clients that are held-out from federated
learning, i.e., we train with domains/clients of the
other three groups during federated learning and test
on domains of the held-out group.

datasets for Sentiment140 since no development
datasets are provided. Note that our experiments
are based only on English datasets and it would
also be interesting for future works studying multi-
lingual federated learning (Weller et al., 2022).
We provide the algorithm for Local_Training and
Compress_Download in Algorithm2 and 3, respec-
tively.

B Black Box Tuning (BBT)

We briefly introduce a prior radient-free method of
BBT (Sun et al., 2022b). For prompt pi, suppose
we want to train its tth prompt token of pt

i, the BBT
approach first reparameterizes pt

i as,

pt
i = Az + pt, (12)

where z ∈ Rd, d << D, and A ∈ RD×d is a
randomly valued fixed matrix that project z into
the space of pt. z is the only learnable parameter
and is trained with CMA-ES (Hansen and Oster-
meier, 2001), a gradient-free method without back-
propagation. The value of σ in our implementation
follows (Sun et al., 2022b).

C Baselines

All of our baselines are trained with the same model
as used in (Sun et al., 2022b). We list the consid-
ered baselines are listed as follows:

• BBT (Sun et al., 2022b): Train separated
prompts locally on each testing client with
the gradient-free method of CMA-ES (Hansen
and Ostermeier, 2001), as in Section B. This
is like the post tuning stage of our approach.

• BBT (Fed): Federated training of z in (12)
with BBT on training clients and FedAvg on
the server. The resulting z is further fine tuned
with BBT on the local dataset of each client,
i.e., the same as Section B.

• FedKD (Wu et al., 2022): Compressing the
Roberta-Large into a smaller student model
(DistilRoberta-base) via knowledge distilla-
tion, and only communicate the student model
to save communication cost. For joint training
with FedKD, we follow its original paper (Wu
et al., 2022) that fine-tunes all the parameters
of both the Roberta-Large and DistilRoberta-
base.

• Prompt Tuning (Fed). The prompts are ini-
tially trained with FedAvg (McMahan et al.,
2017) on all the clients, then fine tuned on
each testing client, as with our framework.

• Meta Prompt Tuning (Fed): Same as Prompt
Tuning (Fed), except that we follow (Fallah
et al., 2020) that the prompts are trained using
federated meta learning with MAML (Finn
et al., 2017).

• Prompt Tuning (Li and Liang, 2021): Train
separated prompt parameters locally on each
testing client with back-propagation. We did
not implement the SVD compression in com-
municating the parameters, in order to show
an upper bound of its classification perfor-
mance. We follow a learning rate of 1e-5.

• pFedMe (T Dinh et al., 2020): We train
ans communicate the prompt parameters with
pFedMe, where there is an L2 regularization
between the global prompt and personalized
prompts for for each client.

In addition, we also implement different varia-
tions of our approach: 1) Ours (Φ=3 or 5). We
experiment with different values of Φ, controlling
the degree of the embedding compression in Sec-
tion 4.4. 2) Ours (FullDownload). We directly
download the aggregated p from (5), without em-
bedding compression.

D Ablation study with α

In this section, we conduct an ablation study for
the regularization parameter α (default to α = 0.2)
for the lasso loss in (8). In Table 6, we take Ours
(Φ = 5) as an example and report results with α =

4608

0.2 (same as in the main paper) and α = 0. We can
find that the results with α = 0 is generally lower
than that with α = 0.2, indicating the importance
of encouraging sparsity with the lassso loss in (8).

E Comparing with PCA compression and
quantization

In Section 4.4, we present our proposed embed-
ding compression method to reduce the download
communication cost. To further validate the effec-
tiveness of the proposed embedding compression,
we compare it with the two additionaly baselines:
PCA compression and quantization.

PCA Compression: Principled Component
Analysis (PCA) (F.R.S., 1901) is a common way
of dimensional reduction, i.e., compress the em-
beddings via representing then with fewer dimen-
sions. Previous works (Cai et al., 2021; Rabbani
et al., 2021; Gao et al.) have shown that the learnt
token embeddings (contextualized or not) of pre-
trained models are distributed in a narrow cone of
the embedding space. In other words, the embed-
dings vectors are generally biased toward the top
principled components of learnt embedding matrix.
Specially, following the notation of Section 4.4,
let e(V) ∈ R|V|×D be the matrix of pretrained to-
ken embeddings. We can compute the principled
components of e(V), denoted as,

Ec = PCA(e(V)) (13)

where each column of Ec ∈ RD×D is a princi-
pled component of e(V). We have ET

c ·Ec = I ,
with I ∈ RD×D is the identity matrix. The infor-
mativeness of different principled component can
be measured by the variance after projecting e(V)
onto each of the components,

v = Var(e(V) ·Ec) (14)

where Var computes the variance for each row. As-
sume the index of each component, i.e., the row
index of Ec, has been ranked by v = [vi]

D
i=1

(from high to low). We plot the ratio of vari-
ance (v/

∑
vi) verse the index of each compo-

nent for Roberta-Large in Figure 4a. We can find
that the distribution of e(V) id highly an-isotropic,
with much larger variation being captured by the
top principled components. Thus, we can repre-
sent/compress the aggregated prompt p ∈ RT×D

from (5) with the top principled components2 be-
2From Section 4.1, each token of p is a convex combination

of e(V), thus should also be biased toward (more represented
by) the top principled components.

Algorithm 2 Compress_Download.

Input: The prompt p without compression, the
pretrained embedding matrix e(V).
Output: The reconstructed p′.
I = [1, · · · , |V|]
for t = 1 · · · , T do

% Embedding compression.
for L = [100, 5] do

Compute I with (8) and (9).
end for
Solve x∗

f with (10).
% Download.
Download {I,x∗

f} to the clients.
Compute pt′ on both server and clients

end for
return p′ = [p1′, · · · ,pT ′

]

fore downloading it to clients. Specifically, we
compress p via,

p̂ = p ·Ec[: n, :]
T (15)

where p̂RT×n is the compressed prompt and Ec[:
n, :] denotes the top-n principled components. Af-
ter downloading, each client reconstructs p via,

p = p̂ ·Ec[: n, :] (16)

In this way, we only need to download n integers
(16 bits each) for each prompt token in p. The total
download bits per communication round is T ×n×
16 = 800n bits. In comparison with our approach,
we experiment with n = 10 (denoted as PCA10),
so that it has the same download communication
cost for each round (8KB) as Ours Φ = 5. We
additionally experiment with n = 300 (denoted as
PCA300), where the prompts are represented by
more principled components but also with much
larger download communication cost each round
(0.24MB).

Quantization: We also compare our approach
with quantizing each dimension of p from (5)
before downloading. Following previous works
(Courbariaux et al., 2015; Tao et al., 2022) of com-
pressing pretrained language models, we quantize
each element w of p via,

wq = β ·Q(clip(w,−β, β)/β) (17)

where Q is a quantization function that
maps clip(w,−β, β) to its closest value in
{−1,−k−1

k , · · · , 0, · · · , k−1
k , 1}, k = 2b−1 − 1.

4609

0 200 400 600 800 1000
Index of Principled Components

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Ra
tio

 o
f V

ar
ia

nc
e

(a)

0 20 40 60 80 100
Communication Rounds (Epoches)

0.54

0.56

0.58

0.60

0.62

Av
er

ag
ed

 Tr
ai

ni
ng

 lo
ss

PCA10
PCA300
Quant (b = 3)
Ours (= 3)
Ours (= 5)
Ours (FullDownload)

(b)

Figure 4: (a) The ratio of variance (v/
∑

vi) captured by each principled component of the pretrained Roberta-Large
Token embeddings. (b) The training loss on Sentiment140 averaged over different clients in each communication
round of federated learning for different compression methods. We have the same random seeds and order of
training batches for all the methods.

Method Upload Download BP? FM(apparel) FM(mr) FM(baby) FM(books) FM(camera) FM(dvd) FM(electronics)

Prompt Tuning 0 0 Yes 83.42 81.75 79.95 86.38 80.05 86.52 84.18

Prompt Tuning (Fed) 819 KB 819 KB Yes 83.56 81.06 81.05 87.83 81.80 87.96 84.93

Meta Prompt Tuning (Fed) 819 KB 819 KB Yes 82.78 83.35 80.23 88.12 80.34 87.31 84.45

pFedMe 819 KB 819 KB Yes 84.67 81.26 81.47 86.92 80.56 87.92 81.26

FedKD 1.3 GB 1.3 GB Yes 83.67 79.89 80.46 86.92 81.07 87.08 79.89

Fine Tuning (Fed) 5.3 GB 5.3 GB Yes 86.93 79.82 80.46 86.92 81.07 88.48 87.50

BBT 0 0 No 85.93 83.75 81.22 86.10 80.56 85.96 87.76

BBT (Fed) 8 KB 8 KB No 87.44 81.02 82.99 90.19 81.84 87.92 87.74

Ours (Φ = 3) 0.8 KB 4.8 KB No 87.44 80.07 85.53 90.74 82.33 88.48 88.03

Ours (Φ = 5) 0.8 KB 8 KB No 88.54 80.05 86.55 90.21 82.61 88.08 87.78

Ours (FullDownload) 0.8 KB 819 KB No 89.04 81.03 86.78 90.97 83.73 87.18 88.88

Table 4: Detailed results with FDUMLT on paticipant clients. Please refer to Figure 2 for non-paticipant
clients. We report the accuracies for each of the 16 domains/clients (denoted as FM(domain name)) and their
average (denoted as FM(Avg)).

Method FM(health) FM(imdb) FM(kitchen) FM(magazines) FM(music) FM(software) FM(sports) FM(toys) FM(video) FM(Avg)

Prompt Tuning 81.98 92.42 82.14 80.68 82.52 83.77 82.41 84.01 82.32 83.41

Prompt Tuning (Fed) 82.74 92.71 83.61 82.97 83.75 84.29 82.89 84.76 82.60 84.28

Meta Prompt Tuning (Fed) 82.34 92.41 84.53 83.25 83.56 83.48 83.58 85.26 82.21 84.20

pFedMe 84.51 93.00 84.44 82.25 83.60 84.29 83.42 85.53 84.53 84.60

FedKD 84.26 92.71 82.91 80.94 81.48 84.82 82.40 85.28 85.36 84.03

Fine Tuning (Fed) 85.79 93.00 86.99 85.12 84.39 84.82 85.46 86.80 85.08 85.98

BBT 84.01 92.13 81.38 81.46 82.28 85.08 82.40 85.53 83.86 84.34

BBT (Fed) 87.06 93.00 85.13 85.90 84.92 84.03 85.46 87.92 85.36 86.12

Ours (Φ = 3) 87.06 92.42 86.73 86.95 85.98 84.55 86.73 87.31 85.91 86.64

Ours (Φ = 5) 87.82 92.71 88.78 87.73 85.19 85.60 86.48 87.31 87.29 87.14

Ours (FullDownload) 89.57 94.27 88.75 87.44 86.34 85.44 87.86 89.31 86.86 87.71

Table 5: Results with FDUMLT on participant clients (continue).

In this way, Q(clip(w,−β, β)/β) can be encoded
with b bits. Following (Tao et al., 2022), the
scaling factor for each element is shared within the
same prompt token embedding. Let p[i, :] be the
embedding of the ith prompt token, the scaling
factor for each of its element is the maximum
absolute value in p[i, :],

β = max(|p[i, :]|) (18)

For each prompt token with dimension D, we have
to download the scaling factor β (16 bits) and b bits
for each dimension, so that the clients can recon-
struct wq. We experiment with b = 3, denoted as
Quat (b = 3). The total download communication
cost for each round is (D×b+16)×T ≈ 0.15MB.
Compared with Quat (b = 3) that quantizes each di-
mension of each prompt, our proposed approaches

4610

Method Upload Download Sentiment140 FDUMTL CoLA SST2 Avg

PCA10 0.8KB 8KB 72.37/73.26 83.25/83.89 72.45/72.11 79.65/78.34 76.93/76.90

PCA300 0.8KB 0.24MB 75.22/75.05 86.71/85.79 74.09/73.66 81.23/81.67 79.31/79.04

Quant (b = 3) 0.8KB 0.15MB 73.45/74.44 85.46/84.33 73.89/73.17 80.98/80.56 78.45/78.13

Ours (Φ = 5, α = 0) 0.8KB 8KB 74,77/74.35 85.80/86.41 74.94/73.11 81.45/82.12 79.24/79.00

Ours (Φ = 5, α = 0.2) 0.8KB 8KB 76.17/75.34 87.14/87.00 74.86/73.31 82.36/82.88 80.13/79.63

Ours (FullDownload) 0.8KB 819KB 75.16/76.00 87.71/87.31 75.75/73.78 82.95/82.73 80.39/80.00

Table 6: Results with different compression methods and α. We report the accuracy in the format of "P/NP",
where P and NP follow Table 2.

of embedding compression can be regarded as
quantizing on the token level, i.e., representing
each prompt with pretrained embeddings of dis-
crete tokens.

Results: We report the results with different
compress methods in Table 6. We can find that
PCA10 has much lower accuracies than Ours (Φ =
5), though sharing the same communication cost.
This is because the top 10 principled components
cannot capture enough information about the to-
ken embeddings, although the distribution of token
embeddings are biased toward the top principled
components (Figure 4a). We need to increase the
value of n to hundreds in order to get compara-
ble results with our approaches ((i.e., PCA300)),
which is at the expense of much higher communi-
cation cost. Additionally, we can notice that Quant
(b = 3) also induces higher download communica-
tion cost than our approaches, but yeilding lower
accuracies. These results validate the effectiveness
of our proposed embedding compression. Addition-
ally, Figure 4b shows the loss values averaged over
training clients during federated learning. We can
find that our approaches are effective in minimizing
the loss function during training (also discussed in
Section 5.2). We can also find that the final loss
values are generally positively correlated with the
accuracies in Table 6.

F The number of floating-point
operations during federated learning

From the previous work (Sun et al., 2022b) of
gradient-free training for PLMs, the number of
floating-point operations with gradient-free train-
ing can be evaluated via the number of model
queries (i.e., how many times a model is for-
warded). For all the methods in the paper, we have
the same number of communication rounds and
same number of update steps for each client per

Algorithm 3 Local_Training.

Input: Dataset Di for client i, p′ from the previ-
ous round of communication.
Output: pi after the client update.
pi = p′

% Training with discrete local search.
for s = 1 · · · , S do

Randomly sample index t, t ∈ 1 · · ·T .
Update pt

i using (6) and (7) with Di.
end for
return pi

round. Thus, the number of floating-point opera-
tions is proportional to the number of model queries
per step when training on each client. We keep all
the discussed approaches with the proposed dis-
crete local search method having 5 model queries
per step (i.e., K = 5 as in Section 5.2), including
the approaches denotes with "Ours" and those in
Appendix E. Thus, all these approaches have the
same number of model queries during federated
learning. Comparably, our gradient-free federated
learning baseline (i.e., BBT(Fed), there was no
previous works on gradient-free federated learn-
ing with pretrained models) have 20 model queries
per step, following the original implementation of
(Sun et al., 2022b). This implies that our methods
(5 queries per step) only use 1/4 (5/20) times of
floating-point operations during federated learning,
while having better performance than BBT(Fed).
Since we target the scenario that clients has lim-
ited memory access, where back-propagation might
not be viable (Section 1), we mostly compare the
number of floating-point operations of our meth-
ods with gradient-free federated learning baselines.
Provided the number of floating-point operations
during federated learning, the training efficiency
can be further enhanced by system designs, e.g.,

4611

the parallelism strategy (Narayanan et al., 2019)
or communication scheduler (Peng et al., 2019),
which are out of the scope of this paper.

G Overhead

Our way of converting the prompt token index of
each position to 16 bits (Section 5.1) induces no
computational overhead, if we save the 16 bits in-
dex for each position during training (50 prompt
positions in total, i.e., T = 50). The uploading of
such bits is the same as uploading any model pa-
rameters in federated learning. There is not need of
additionaly designed software implementation. Ac-
tually, by only uploading 16 bits for each position,
we save the upload time compared with uploading
the prompy embedding (the gradient-based meth-
ods in Table 4 and 5).

H Inferring the text domain with GPT-4

As mentioned in Section 5.3, we leverage GPT-
4 (OpenAI, 2023) to infer the text domain (client)
from the prompt trained on it, in order to investigate
on the risk of privacy leakage by uploading prompt
from clients to the server. This is inspired by re-
cent approaches of evaluating with Large Language
Models (LLMs) (Peng et al., 2023). Specifically,
try to ask GPT4 with the following template,

Given the following prompt sequence
learnt from Roberta-Large:
{prompt}
Can you infer that this is trained from a
{domain} dataset?

where {prompt} and {domain} refer to a prompt
and the text domain (client) from which the prompt
is trained on, respectively. For example, with
{prompt} as in Figure 3 and the {domain} being
apparel in FDU-MTL, the GPT-4 answers as,

The given list of words and phrases
doesn’t provide sufficient evidence to
conclude that it is trained from an ap-
parel dataset.

We tried with 16 domains from FDUML and none
of them result in a positive answer i.e., GPT-4 an-
swers with positive semantics that it can infer the
{domain} from {prompt}. In another word, the fre-
quency that GPT-4 can infer the {domain} from the
{prompt} is zero, indicating less chance of client
privacy leakage.

4612

