SUQL: Conversational Search over Structured and Unstructured Data
with Large Language Models

Shicheng Liu
Sina J. Semnani

Jialiang Xu
Chen Jie Yu

Wesley Tjangnaka
Monica S. Lam

Computer Science Department, Stanford University
Stanford, CA

{shicheng, xjl, wesleytij,

Abstract

While most conversational agents are grounded
on either free-text or structured knowledge,
many knowledge corpora consist of hybrid
sources. This paper presents the first conversa-
tional agent that supports the full generality of
hybrid data access for large knowledge corpora,
through a language we developed called SUQL
(Structured and Unstructured Query Language).
Specifically, SUQL extends SQL with free-text
primitives (SUMMARY and ANSWER), so infor-
mation retrieval can be composed with struc-
tured data accesses arbitrarily in a formal, suc-
cinct, precise, and interpretable notation. With
SUQL, we propose the first semantic parser, an
LLM with in-context learning, that can handle
hybrid data sources.

Our in-context learning-based approach, when
applied to the HybridQA dataset, comes within
8.9% Exact Match and 7.1% F1 of the SOTA,
which was trained on 62K data samples. More
significantly, unlike previous approaches, our
technique is applicable to large databases and
free-text corpora.

We introduce a dataset consisting of crowd-
sourced questions and conversations on Yelp,
a large, real restaurant knowledge base with
structured and unstructured data. We show
that our few-shot conversational agent based
on SUQL finds an entity satisfying all user re-
quirements 90.3% of the time, compared to
63.4% for a baseline based on linearization.'

1 Introduction

Large Language Models (LLMs) have shown ex-
ceptional performance on numerous downstream
tasks. A range of recent works focus on improving
their factuality by grounding responses in exter-
nal resources including structured data (Hu et al.,
2022; An et al., 2023; Nan et al., 2023; Poesia et al.,
2022; Arora et al., 2023; Xu et al., 2020, 2023) and

!Code and data available at https://github.com/
stanford-oval/suqgl

sinaij,

jyu0l, lam}@cs.stanford.edu

free text (Khattab et al., 2023; Jiang et al., 2023;
Semnani et al., 2023; Gao et al., 2023).

However, many data sources contain both struc-
tured data and free text: patient records, financial
databases, and review websites, to name a few. Fig-
ure 2 in the appendix shows the running example
of an application used in this paper. Each row in
this table represents a unique restaurant, with in-
formation such as its name, type of cuisine, and
rating as structured data. In addition, each row in-
cludes popular dishes and customer reviews in free
text. To answer a question like “Can you find me
an Italian restaurant with a romantic atmosphere?”,
an agent needs to combine the structured attribute
cuisines and the free-text attribute reviews.

To handle the combination of structured and un-
structured data, many previous chat systems use a
classifier to assign queries to one of its specialized
modules that is designed to handle structured data,
unstructured data, or chitchat (Jin et al., 2021; Chi
et al., 2022; Zhao et al., 2023). Unfortunately, this
approach is inadequate for questions that need both
free-text and structured data.

Another popular approach is to convert, or /in-
earize, the structured data into free text (Oguz et al.,
2022), as shown in Figure 1. With this approach,
we can no longer wield the power of SQL to query
the database, and free text retrievers are not good
at handling complex questions.

The need of composing hybrid data source
queries is highlighted by the HybridQA dataset,
which collects many natural questions whose an-
swers include information from both structured
data and free text (Chen et al., 2020). Previous
attempts trying to ground question-answering sys-
tems on hybrid data (Lei et al., 2023; Wu et al.,
2023; Kumar et al., 2023; Lee et al., 2023a) either
work on only small datasets, or forego the expres-
siveness of structured data queries, or support lim-
ited compositions of structured and unstructured
knowledge queries.

4535

Findings of the Association for Computational Linguistics: NAACL 2024, pages 4535-4555
June 16-21, 2024 ©2024 Association for Computational Linguistics

https://github.com/stanford-oval/suql
https://github.com/stanford-oval/suql

- linearize Name, Hummus Mediterranean Kitchen, cuisine, - o752
] mediterranean, ..., reviews, | t1; d r | This is your place : : '
g > Name, Penny Roma, cuisine, italian, ... , reviews, My > >
girlfriend was craving pasta on a Monday night ... AR A Ceos
Embedding
model $ Cos Sim
Q Hey! Can you recommend me an
(o restaurant with a ? 9 % CS7e] po.2ch o222

Linearization
(Vector DB)

KD

| found Hummus Mediterranean Kitchen. It is a 4 star Mediterranean
restaurant in San Francisco with a clean and welcoming atmosphere.

x wrong cuisine;
no mention of romantic
atmosphere in review

8 Hey! Can you recommend me an DB schema
restaurant with a ? A Few-shot examples
Semantic Parser <,
Semantic SELECT (reviews) FROM rest ¢ cirlrjuca)i?er
: *, summary(reviews restaurants C
Pfgsdggll_ WHERE AND RN S’
w. LIMIT 1; =
. .
| found Penny Roma, which has a 4.0 rating on our database and

offers a variety of
as delightful, authentic, and

dishes. Overall, the atmosphere is described

v

Figure 1: Comparison of traditional approach (linearization) with our approach (semantic parsing with SUQL).
Top: In the linearization approach, database entries are linearized and converted to embedding vectors. At run-time,
a user request is converted to an embedding vector, which is used to find the closest embedding from the stored
vectors. The results are then supplied to LLM for response generation.

Bottom: In our approach (semantic parsing with SUQL), a user utterance is parsed into formal SUQL by a few-
shotted LLM, which is then executed by the SUQL compiler to fetch results from the database. The results are then

supplied to LLM for response generation.

This paper proposes an approach to grounding
conversational agents in hybrid data sources that
take full advantage of both structured data queries
and free-text retrieval techniques.

Our first contribution is to demonstrate empiri-
cally that in real-life conversations, it is natural
for users to ask questions that span both struc-
tured and unstructured data. Through crowd-
sourcing, we obtain questions that users ask and
conversations that they have with a restaurant chat-
bot. Results show that more than 49% of those
questions require knowledge from both structured
and unstructured knowledge.

To leverage the expressiveness and precision of
formal query languages, we propose SUQL, a pre-
cise, succinct, compositional, expressive, and
executable formal language. SUQL augments
SQL with several primitives for processing free
text. At a high level, SUQL combines an off-the-
shelf retrieval model and LLMs (for unstructured
data) with the SQL semantics and operators (for
structured data).

We validate our approach using the Hy-
bridQA data set. Experiments on HybridQA show

that a few-shot, SUQL-based QA system comes
within 8.9% Exact Match and 7.1% F1 to the SOTA
model trained on over 62K data samples.

We have developed a fully operational con-
versational agent with a few-shot LLM-based
semantic parser with SUQL, shown in the bottom
part of Figure 1. We create a new single-turn user
question data set and a conversational dataset on
Yelp, a large, real knowledge corpus. Our chatbot
using SUQL finds an entity satisfying all user re-
quirements 90.3% of the time, compared to 63.4%
for a baseline based on linearization.

2 Related Work

Text-to-SQL Semantic Parsing. Text-to-SQL sys-
tems have been built for single-turn question an-
swering tasks (Guo and Gao, 2020; Wang et al.,
2020a; Scholak et al., 2021; Zhong et al., 2017) as
well as multi-turn, conversational tasks (Yu et al.,
2019a,b; Wang et al., 2020b; Liu et al., 2022). Re-
cently, LLMs have shown promising results on
the text-to-SQL semantic parsing problem via in-
context learning (Brown et al., 2020), with a range
of work focusing on various prompting strategies

4536

2

(Hu et al., 2022; Poesia et al., 2022; An et al., 2023;
Nan et al., 2023; Arora et al., 2023; Guo et al.,
2023; Sun et al., 2023; Zhang et al., 2023b).

This line of work is only applicable to struc-
tured data sources without any free text. When it
comes to free text, SQL is limited to basic pattern-
matching on strings, hindering the application of
text-to-SQL where deeper support is needed.

Specialized Modules Using a Classifier. One
approach to building a conversational interface to
hybrid sources is to classify each question and as-
sign it to one of the specialized modules. For in-
stance, Chirpy (Chi et al., 2022) implements differ-
ent modules to handle different kinds of questions.
Jin et al. (2021) and Zhao et al. (2023) implement
a “Turn Detection” module, to determine whether
a user turn involves unstructured data access or
should be handled by APIs/DBs. However, real
user questions naturally span across both structured
and free text columns, which cannot be answered
by systems built with separate modules.

Linearize structured data. Another popular
approach is to turn structured data into a linear
form, which can then be directly used by a language
model. A common approach is to linearize raw
tables row-by-row and feed linearized content into
a Tabular Language Model (TaLM) (Herzig et al.,
2020; Yin et al., 2020; Eisenschlos et al., 2021;
Deng et al., 2022; lida et al., 2021; Sun et al., 2022).

In particular, Oguz et al. (2022) linearizes Wiki-
data and Wikipedia tables, combines them with
Wikipedia text, and applies a retrieval model to
open-domain question-answering. However, this
approach is inherently limited. Many queries are
challenging to answer through free text alone, such
as “What are the number of deaths due to Covid in
August and September 2020 in New York?”. These
types of inquiries can be easily addressed using
structured data, which supports comparisons and
calculations across a big database. Moreover, lin-
earization complicates the unification of different
parts of the database.

3 Design and Rationale of SUQL

We present the design and rationale of the SUQL
language in this section. The design objectives
of the representation are expressiveness, accuracy,
and efficiency.

3.1 Design Rationale

Expressiveness. The design must be expressive,
supporting the full generality of queries of the
hybrid knowledge corpus. It must handle arbi-
trary compositions of (1) relational operators in
databases and (2) queries on free-text documents.
Note that such a design automatically subsumes
the multi-hop retrieval in NLP literature, where the
results of a retrieved answer are used to retrieve
another.

Formal languages, such as SQL, have been
proven to be complete with respect to relational
algebra (Codd et al., 1972). It can handle arbitrary
compositions by virtue of its grammar rules, which
for example, can be used to produce an unbounded
number of nested subqueries.

Instead of linearization, which turns all struc-
tured data into text, we propose the opposite.
SUQL is an extension of SQL with two NLP op-
erators, SUMMARY and ANSWER: SUMMARY pro-
duces the summary of a given text, and ANSWER
returns the answer to a given text. These opera-
tors can be used anywhere with text values in the
grammar, no different from numeric operators with
numeric values. The advantage of this design is
that SUQL is a succinct, formal representation that
is complete with respect to relational algebra and
NLP operations.

Accuracy of Translation from Natural Lan-
guage. LL.Ms have been shown to be capable of
translating complex text from one natural language
to another. They can translate complex sentences
into SQL queries for albeit small databases with
compound operations, such as the use of group-by,
ranking, and subqueries.

We posit that SUQL will give LLMs a succinct
notation to express complex queries involving hy-
brid data sources. Leveraging LLMs’ familiarity
with SQL, we hypothesize that we can create a
semantic parser for translating user queries in a
conversation into SUQL queries with an LLM via
in-context learning.

Efficiency. SUQL queries can be executed by
the SQL compiler requiring no modifications, as
the SUMMARY and ANSWER primitives can be pro-
vided simply as user-defined functions. However,
such an SQL compiler will perform very poorly.
A naive implementation of these textual primitives
would require retrieving and applying the NLP op-
eration one record at a time, which is prohibitively
expensive for large tables. Naive execution of the

4537

3

Operator

Description

Example

ANSWER (¢ : text | text [], q: text)
— text

return the answer to
question ¢ on value ¢

ANSWER (reviews,
“is this restaurant family-friendly?”)

SUMMARY (t: text | text []) — Text

return the summary of ¢

SUMMARY (reviews)

Table 1:

ANSWER function will not be effective.

Note that unlike previous methods such as
retrieval-based semantic parsing where queries are
constructed as results are retrieved (Cao et al.,
2022; Gu and Su, 2022), SUQL expresses the query
in its entirety. This makes it possible for us to
develop an optimizing compiler, as described in
Section 5.

3.2 Design of SUQL

We introduce two operations for text values in SQL.
In this paper, we use text to represent any of the
text types in SQL (CHAR, VARCHAR, TEXT, ...).

We define ANSWER (¢,q) to return an answer to
question ¢ on text input ¢. For instance,

ANSWER (reviews, ‘is this restaurant
family-friendly?”)

will return yes if the reviews indicate that the restau-
rant is family-friendly, and no otherwise. The result
is a text value that can be used anywhere it is al-
lowed. For instance,

ANSWER (reviews, ‘is this restaurant
family-friendly?’) = ‘Yes’

can be used as a filter to select family-friendly
restaurants.

ANSWER is a universal function that can be used
to derive any information from a text value by
supplying the right question. However, for con-
venience, we introduce SUMMARY (%) as syntactic
sugar for

ANSWER (¢, ‘what is the summary of this
document?’).

We posit it that the semantic parser can easily learn
to use SUMMARY. The formal definitions of AN-
SWER and SUMMARY are shown in Table 1.

The ANSWER and SUMMARY operations can be
applied to any text arguments and their results can
be used where a text value is expected, resulting
in compositions of hybrid data accesses. Com-
plex compositions of free text primitives and other
SQL operators are highlighted by questions in the
HybridQA dataset. In HybridQA, each cell in a

Free Text primitives in SUQL

column C' is potentially linked to some passages,
which we store in a separate column called C'_Info.
All questions from the dataset can be represented
in SUQL. We show 6 representative examples of
how each type of question can be represented in
SUQL in Table 2.

4 Conversational Agent

Using SUQL as the formal representation, the ar-
chitecture of a conversational agent with a hybrid
knowledge corpus is relatively straightforward.

The Dialogue State Tracking problem (Cheng
et al., 2020; Andreas et al., 2020; Campagna et al.,
2022) for the SUQL-based conversational agent
of a given schema S is defined as follows. We
define the dialogue history to consist of a se-
quence of utterances between the user and the
agent, Ay,Uy, -, A, U,, where A; and U; de-
notes an agent utterance and user input at turn ¢,
respectively. Each U; = (t;, ¢;) where ¢; is the nat-
ural text input, and ¢; is a SUQL query for schema
S if t; carries a query. Given schema S, (A;, U;)
for all previous turns 1 < ¢ < n and the latest user
utterance ¢, dialogue state tracking predicts g, if
t,, carries a query.

The semantic parser for the dialogue state track-
ing consists of two stages, both implemented with
an LLM using in-context learning. The first clas-
sifies if the knowledge corpus needs to be con-
sulted. For user utterances like greetings or general
questions, it skips the knowledge corpus access.
If consulting is needed, the second stage predicts
qn- The prompt includes the schema definition and
few-shot examples demonstrating SUQL free-text
primitives.

If the user utterance corresponds to a query, then
the predicted SUQL query is executed. Because the
semantic parser may have translated the user query
incorrectly, the agent is instructed via a prompt
to explicitly state to the user what it searched,
based on the predicted SUQL at this turn (e.g.,
“I searched for Italian restaurants with a romantic
atmosphere.”). If the search returns a result, we

4538

4

Question Type Exemplar Question SUQL query
. SELECT answer(“Event year Info”, ‘where is this event held?")
9
Type I ‘Where was the XXXI Olympic held? FROM table WHERE “Name™ = ‘XXXI":
. L. SELECT “Name” FROM table WHERE answer(“Event year Info”,
p nQ P 9
Type 11 ‘What was the name of the Olympic event held in Rio? ‘is this event held in Rio?’) = ‘Yes':
. . SELECT answer(“Flag Bearer Info”, ‘when is this person born?’) FROM table
9
Type III When was the flag bearer of Rio Olympic born? WHERE answer(“Event year Info”, ‘is this event held in Rio?’) = “Yes’;
Type IV ‘Which male bearer participated in Men’s 100kg SELECT “Flag Bearer” FROM table WHERE “Gender” = ‘Male’ AND answer(
M event in the Olympic game? “Flag Bearer Info”, ‘did this person participate in Men’s 100kg event?’) = ‘Yes’;
For the 2012 and 2016 Olympic Event, when SELECT MAX(answer(“Flag Bearer Info”, ‘when is this person born?”)::date)
Type V « 5 IN (2016 2012
was the younger flag bearer born? FROM table WHERE “Event year” IN (‘2016°, 2012’);
Type VI ‘When did the youngest Burmese flag bearer SELECT “Event year” FROM table ORDER BY answexr(“Flag Bearer Info”,

participate in the Olympic opening ceremony?

‘when is this person born?’)::date DESC LIMIT I;

Table 2: The question types in HybridQA with exemplar questions (Figure 3 of Chen et al. (2020)) translated to the

corresponding SUQL queries.

ask the LLM to formulate the response based on
the result; otherwise, we explicitly ask it to indicate
that no results are found. The latter is important
because LLMs tend to hallucinate whenever no
answers to the user question are supplied.

5 An Optimizing SUQL Compiler

Here, we describe the key optimizations we imple-
mented in the SUQL compiler.

5.1 Search and Filter Optimization

When ANSWER is used as a filter in the query, the
naive implementation would require one LLM call-
ing for every record in the database, which is infea-
sible. Similar to how database indexing is used to
optimize queries, we use dense retrieval models to
quickly identify the relevant records, instead of op-
erating on them one-by-one. In addition, if only a
few results are needed, it is unnecessary to evaluate
the filter on all the records.

First, our SUQL optimizing compiler identifies
filters that use the ANSWER functions. It uses pre-
computed embeddings from a dense retrieval model
for similarity matching with the questions to iden-
tify top candidates. Note that the retrieved answers
are relevant, but they may not satisfy the filter-
ing constraints. We invoke the LLM on the entire
clause to determine if the filter is successful. For
example, if the user asks for a restaurant where
parking is easy, and a review happens to say “the
parking is hard”. The review may have the high-
est similarity score if no other reviews mention
“parking”. Thus, we need to apply the original fil-
ter ANSWER (reviews, ‘is parking easy?’) = ‘Yes’
using an LLM to ensure that the retrieved review
indeed says that the parking is easy (Prompt 8).

If multiple free text constraints are present, the

SUQL compiler uses an aggregated similarity score
based on each constraint to retrieve results that
most likely satisfy all constraints. Formally, the
aggregated similarity score for each row r is calcu-
lated as:

Z max sim(c, t)
C

where c is a text constraint, ¢ is a text in row r, and
sim(-, -) denotes the similarity score between two
texts.

5.2 Enumerated Types

Enumerated types (ENUM) are widely used in
structured attributes to restrict the values of a text
type to carry only one or more of a pre-defined set
of permitted values. ENUM standardizes the val-
ues of the attributes so a filter based on the variable
can be performed as a simple string match between
the attribute values and permitted literals.

The challenge is how to ensure that the semantic
parser will map ENUM attribute values to a permit-
ted one. For all ENUM type declarations with no
greater than N = 10 values, we include all the per-
mitted values in the schema declarations supplied
as a prompt to the LLM. The LLM is observed to be
capable of automatically generating the ENUM val-
ues. For larger ENUM types, we do not include the
permitted values, and the parser may generate an
unexpected value. For example, the user utterance
“Where can I find coffee” is likely to be translated
to the filter clause ‘coffee’ = ANY(cuisines). How-
ever, the Yelp database only has ‘coffee & tea’ or
‘cafe’ cuisines, and not ‘coffee’.

Our solution is to redefine the semantics of the =
operator for enumerated types. This is well known
in the compiler literature as overloading. We first
define the CLASSIFY function:

4539

5

Definition 5.1.

CLASSIFY(t : text,S :vy,..

= {Ui17-~

-3 Un)

Here, we say two strings are similar if they have
similar meanings. It is possible the value of interest
is not included in the set of permitted values, in
which case CLASSIFY returns (). We use a 0-shot
LLM to implement CLASSIFY (Prompt 6).

Definition 5.2. The equal operator = is overloaded
such that

t1 =ty iff to € CLASSIFY(t1, F),
where ¢; : text and ty : ENUM(E)

For instance, given a clause ‘coffee’
ANY(cuisines), where CLASSIFY (‘coffee’,
cuisines) = { ‘coffee & tea’, ‘cafe’ }, then the clause
will match any records whose cuisine attribute
contains either ‘coffee & tea’ or ‘cafe’.

5.3 Query Order Optimizations

Since ANSWER and SUMMARY involve LLM calls,
it is important to minimize the execution of such
functions.

Predicate Ordering. As discussed above, AN-
SWER functions in filters are expensive, compared
to other predicates. Thus, whenever possible, the
SUQL compiler would prioritize executing the
other predicates so ANSWER is applied to fewer
records.

Specifically, the SUQL compiler converts
SELECT clauses with filter predicates into disjoint
normal form (DNF), i.e., an OR of ANDs. For each
AND clause, it prioritizes filters not using the AN-
SWER function so ANSWER calls are applied only
to the filtered records.

Lazy Evaluation. Lazy evaluation, the concept
of evaluating only when the result is needed, is a
long-standing concept in programming languages
(Hudak, 1989). The SUQL compiler adopts this
concept to minimize execution cost. Specifically,
when a LIMIT clause is present, it stops the evalu-
ation once the required number of rows is filled.

6 Experiments

To evaluate SUQL, we perform two experiments.
The first is on HybridQA, a popular academic ques-
tion answering dataset as discussed above. Tables
in HybridQA are small enough to be provided
as input to a neural model. To perform a more

s Ui, }s Y, € S similar to .

comprehensive experiment on conversations with
large, real data bases, we introduce a new bench-
mark based on the real restaurant data corpus from
Yelp.com.

6.1 HybridQA Experiment

The HybridQA dataset consists of roughly 70K
question-answering pairs aligned with 13,000
Wikipedia tables, whose entities are linked to mul-
tiple free-form corpora. Every question can be
answered correctly only by referring to both the
structured and unstructured data. To test out SUQL,
we create the following system:

1. Use LLM with in-context learning (with less
than 10 examples) to parse natural language
and a given database schema into a SUQL
query (Prompt 9).

2. Execute the generated SUQL to retrieve re-
sults from the database. If no results are
returned, repeat this process by generating
a different SUQL query, with up to 2 tries
(Prompt 10).

3. Use LLM to convert the retrieved database
result to a succinct answer (Prompt 11) since
the gold labels in HybridQA are short. Be-
cause the gold labels have only one entity,
even though the full answer may include mul-
tiple entities, we just pick one out of the pos-
sibly many results returned by SUQL.

GPT-4-1106-preview is used in all steps,
except that GPT-3.5-turbo-0613 is used in
Step 3.

Our in-context learning-based QA system
achieves 59.3% Exact Match and 68.3% F1 on
the development set of HybridQA and 59.0% EM
and 68.4% F1 on the held-out test set, as shown in
Table 3. Our method uses only 3 simple prompts,
achieving within 8.9% EM and 7.1% F1 to the
SOTA on the test set, which has been trained on the
HybridQA training set with over 62K examples.

Most significantly, unlike our approach, these
models do not generalize beyond small tables.
Techniques based on feeding the entire table into a
Transformer (DocHopper, Mate, MITQA, DEHG,
and MAFID) cannot be applied to large data cor-
pora that exceed their input token limit. Neither
can techniques based on retrieving entire columns
(MuGER?) and feeding into a reader model. The
SOTA model S?HQA separately retrieves rows in
the table and passages. It then feeds the top results

4540

6

. . Dev Test
Method Model Trained on (Size) EM Fl EM FI
DocHopper (Sun et al., 2022) ETC 47.7 55.0 463 533
HYBRIDER (Chen et al., 2020) 44.0 50.7 43.8 50.6
MuGER? (Wang et al., 2022) 57.1 67.3 563 66.2
Mate (Eisenschlos et al., 2021) BERT HvbridOA (62K 63.4 71.0 628 702
DEHG (Feng et al., 2022) ybridQA (62K) 455 763 639 755
MITQA (Kumar et al., 2023) 65.5 727 643 719
MAFiD (Lee et al., 2023b) T5 66.2 74.1 654 73.6
S3HQA (Lei et al., 2023) BERT/BART/DeBERTa 68.4 753 679 755
LLaMA2 (7B) (Zhang et al., 2023a) LLaMA2 (7B) Zero-shot 20.7 - - -
TableLlama (Zhang et al., 2023a) Tablelnstruct (2.6M) 27.6 - - -
End-to-End QA w/ retriever (Shi et al., 2024) Zero-shot 24.5% 30.0f - -
HPROPRO (Shi et al., 2024) GPT-4 Few-shot 4807 5467 487 577
SUQL (Ours) 59.3 68.3 59.0 684

Table 3: Performance of few-shot-based SUQL and related work on the HybridQA dataset. | denotes running on
200 sampled cases from the development set (Shi et al., 2024).

of each to the final reader. It needs to feed the
whole column to the reader if the query involves
sorting. In contrast, our approach has full compo-
sitional generality and can handle arbitrarily large
datasets. We are the first to apply semantic parsing
techniques to the HybridQA dataset since no prior
formal representations could accurately capture the
hybrid queries.

Recently, Zhang et al. (2023a) applied LLaMA-
based techniques to HybridQA. They fine-tuned
LLaMAZ2 (7B) on their TableInstruct dataset with
more than 2.6M samples and achieved only 27.6
EM on Hybrid QA. They also reported a baseline
of LLaMA2 (7B) on HybridQA directly, which
resulted in just 20.7 Exact Match.

Shi et al. (2024) reported two experiments us-
ing GPT-4 on the HybridQA dataset. (1) Their
GPT-4 End-to-End QA w/ retriever uses zero-shot
GPT-4 to directly answer questions based on table
and text parts retrieved by the retriever from Chen
et al. (2020). (2) HPROPRO w/ GPT-4 uses few-
shot program-based prompts to iteratively generate
and execute Python code with the help of GPT-
4. On a 200-sample of the development set, their
two systems achieved 24.5 and 48.0 EM and 30.0
and 54.6 F1, respectively. The HPROPRO system
achieves 48.7 EM and 47.7 F1 on the test set. Our
SUQL-based approach outperforms both systems,
outperforming HPROPRO by more than 10.0% in
both EM and F1 on the test set.

Sui et al. (2023) also experimented using in-
context learning with GPT-4 on HybridQA. How-
ever, they only reported the result of 1,000 ran-

domly sampled questions from the development
set. For each question, they experiment with dif-
ferent formats (JSON, HTML, Markdown, etc.)
of feeding the entire table and question to GPT-4.
The prediction is considered accurate if it is a sub-
string of the gold answer, and vice versa®. Their
best-reported result is GPT-4 with HTML format
at 56.68% with this metric. Using their metric on
the full development set, our SUQL-based system
achieves a score of 72.5%.

These results show the effectiveness of SUQL
on the hybrid question-answering task, compared
to other ICL techniques.

Error Analysis. From analyzing 100 randomly
sampled error cases, we found:

* 44% are due to format mismatches, e.g. “John-
son City, Tenessee” versus “Johnson City”.
Similar issues related to evaluating LLM-
generated responses have been noted by Ka-
malloo et al. (2023).

* 20% are due to the gold label being either
wrong or incomplete. Incomplete cases exist
because only one gold answer is permitted
in HybridQA, while in fact for some cases,
multiple possible correct answers could be
found.

* 24% are due to semantic parsing errors.

* 10% are due to errors from the SUQL execu-
tion involving the LLM-based ANSWER func-
tion and ENUM classifier.

* the remaining 2% are due to type-related con-
version errors, since HybridQA tables do not

2Based on communication with one of the authors.

4541

7

have annotated types while SUQL expects a
typed schema.

In summary, even though the EM of SUQL is
59.3% on the development set, only 36% of the
100 non-EM cases are true errors. Thus, the true
accuracy of SUQL may reach 85.3%.

6.2 Conversational Agent on Restaurants

To experiment with real-life datasets, we collect
a total of 1828 restaurants from Yelp.com across
4 cities, alongside the top 20 reviews and top 20
popular dishes for each restaurant. The columns
of our database are name, cuisines, price, rat-
ing, num_reviews, address, phone_number, open-
ing_hours, location, reviews, and popular_dishes.

We use an off-the-shelf dense retriever model
(Yu et al., 2022) as the retriever in SUQL. We use
gpt-3.5-turbo-0613 as the LLM for all sys-
tems in this section.

6.2.1 Collecting User Queries

We solicit user queries via crowdsourcing on Pro-
lific (Prolific, 2023). We do not disclose to the
workers what fields are available in the database
so as to not bias their queries. We ask them to
come up with 100 questions about restaurants. Sep-
arately, we also ask crowd workers to interact with
our conversational agent (described in Section 4)
and collect 96 turns across 20 conversations.

Single-turn ~ Conversation
Structured-only 45 37
Combination 55 25
Total 100 62

Table 4: Statistics on whether a search question requires
only structured data or a combination.

Single-turn ~ Conversational
Linearization @ 1 57.0 % 63.4 %
Linearization @ 3 49.7 % 61.9 %
SUQL 93.8 % 90.3 %

Table 5: Turn accuracy measurement on linearized sys-
tem versus SUQL system.

The setting of restaurants in real-life use cases re-
quires a user to first specify a location, a structured
column in the database. We annotate whether a
user question only involves structured information
or a combination with free text in Table 4. In single
turns, all collected user queries involve searching
for a restaurant. Out of the 96 dialogue turns, 62

involve searching for restaurants. In total, over
49% of user queries require knowledge from both
structured and unstructured columns.

6.2.2 Turn Accuracy

We experiment with the linearization technique pro-
posed by Oguz et al. (2022) for relational tables,
using again the same dense retriever model (Yu
et al., 2022). Specifically, we concatenate cell val-
ues on the same row and separate them by commas.
Based on the conversation history, these systems
use a few-shot LLM to extract a succinct search
query for the retrievers.

For each user input, we manually inspect
whether the restaurants retrieved by a system satisfy
all criteria specified by the user and respond with
correct and relevant information. Concretely, given
a user utterance u and a list of returned restaurants
R ={ri,r2, -+ ,rm}, we evaluate whether each
r; 18 a true positive or false positive. We calculate
the turn accuracy as the number of true positives
divided by the number of true and false positives
for all the queries in the dataset.

For the SUQL system, the queries are limited to
return at most 3 results. The accuracy is 93.8% for
single-turn questions and 90.3% for conversational
queries, as shown in Table 5.

We compare our results with two linearization-
based systems, where m = 1 (“Linearization 1)
and m = 3 (“Linearization 3”). SUQL improves
the answer accuracy, by up to 36.8% in single-turn
settings and up to 26.9% in conversations. This
shows that the conversational agent with SUQL
can provide much more accurate results.

Our system returns no answers to 21 of the 100
user questions and 8 of the 62 queries in the con-
versations. Manual inspection reveals that 7 out
of the 21 and 2 out of the 8 truly have no answers.
Thus, our system has a false negative rate of 14%
and 9% for user questions and conversational turns,
respectively.

6.2.3 User Feedback

We solicit feedback from our crowdsource users
after they talk to our restaurant chat-bot with three
free-form questions shown in Figure 5. Overall, the
feedback was positive: “There’s actually nothing I
didn’t like about this chatbot. I would honestly use
this chatbot on a regular basis if it were available
to the public”, “I liked that the chatbot was fast in
responses and it gave very detailed responses and
I hardly had any questions about a restaurant after

4542

8

the option was given”, and “Shocked at how good
the restaurant suggestions were. I even asked for
something with better prices and got that too. Now
I’m hungry. I asked to define a cuisine style and it
was able to do that”.

Negative comments include: occasional slow-
ness of the chatbot; “it didn’t provide any links or
pictures”; “It did not sound friendly and sometimes
the responses were too long. Bullet point outputs
would be much more helpful.”

7 Conclusion

We introduce SUQL, the first formal query lan-
guage for hybrid knowledge corpora, consisting of
structured and unstructured data. The key novelty
of SUQL is the incorporation of free-text primi-
tives into a precise, succinct, expressive, and inter-
pretable query language.

Our in-context learning-based approach when ap-
plied to the HybridQA dataset comes within 8.9%
Exact Match and 7.1% F1 to the SOTA on the test
set trained on 62K data samples. More significantly,
unlike previous approaches, our technique is appli-
cable to large databases and free-text corpora.

Our experiment on the real Yelp knowledge base
with crowdsourced questions and conversations
shows that our in-context learning conversational
agent based on SUQL finds an entity satisfying all
user requirements 90.3% of the time, compared to
63.4% for a baseline based on linearization. The
empirical findings underscore SUQL’s applicabil-
ity and its potential for future research directions
such as domain-specific applications in biomedical,
legal, and financial spheres.

Ethical Considerations

LLMs and formal languages such as SQL have
been used by an increasingly large population of
technical developers as well as everyday users. We
propose to combine them in the hope of bringing
the best of both sides to create a expressive, accu-
rate, and efficient language that facilitates conversa-
tional search over structured and unstructured data.
We do not foresee this work to result in any form
of harm or malicious misuse.

Data. The data used in this work is an open-
sourced research dataset (HybridQA) and a Yelp-
based restaurant conversation dataset (Restaurant).
During the curation process of the Restaurant
dataset, we used a certified online research crowd-
sourcing platform Prolific to make sure that we

respected worker’s privacy and paid them at fair
rates. Our procedure has been approved by an IRB
from our institution.

Compute. The models used herein are existing
pretrained retriever models and LLM API services
provided by OpenAl. We did not additionally pre-
train or finetune any compute-intensive models,
therefore avoiding a significant carbon footprint in
the experiments herein.

License. Our code will be released publicly and
licensed under Apache License, Version 2.0. Our
data will be made available to the community.

Limitations

Being LLM-based, SUQL can be subject to vulner-
abilities that are intrinsic to LLMs. These intrinsic
weaknesses can negatively affect SUQL’s effective-
ness, posing limitations on the overall pipeline per-
formance. We highlight two aspects of limitation
in the current version of SUQL methodology.

Performance Limitation. In this work, the
LLM’s semantic understanding capability upper-
bounds the semantic and syntactic correctness of
parsed SUQL queries. The ANSWER and SUM-
MARY functionalities in SUQL can also be affected
by the underlying LLM, resulting in potentially er-
roneous filtering evaluation during the execution of
the SUQL queries.

Reliability Limitation. The applicability of
the method can also be affected by the reliabil-
ity of the underlying LLM. In our pipeline, the
semantic parser may hallucinate database contents
in a non-interpretable manner, even when explic-
itly instructed not to. Other caveats include non-
deterministic behavior between LLM API calls and
potential vulnerabilities against LLM-oriented ad-
versarial attacks.

Acknowledgements

This work is supported in part by the National Sci-
ence Foundation, the Alfred P. Sloan Foundation,
the Verdant Foundation, Microsoft Azure Al credit,
KDDI, JPMorgan Chase, and the Stanford Human-
Centered Artificial Intelligence (HAI) Institute. We
thank Gui David for his experiments on the restau-
rants dataset in the early stages of the project. We
also thank members of the Stanford OVAL (Open
Virtual Assistant Lab) and the ACL ARR reviewers
for their valuable comments and suggestions.

4543

9

References

Shengnan An, Bo Zhou, Zeqi Lin, Qiang Fu, Bei Chen,
Nanning Zheng, Weizhu Chen, and Jian-Guang Lou.
2023. Skill-based few-shot selection for in-context
learning. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 13472-13492, Singapore. Association for
Computational Linguistics.

Jacob Andreas, John Bufe, David Burkett, Charles

Chen, Josh Clausman, Jean Crawford, Kate Crim,
Jordan Del.oach, Leah Dorner, Jason Eisner, Hao
Fang, Alan Guo, David Hall, Kristin Hayes, Kellie
Hill, Diana Ho, Wendy Iwaszuk, Smriti Jha, Dan
Klein, Jayant Krishnamurthy, Theo Lanman, Percy
Liang, Christopher H. Lin, Ilya Lintsbakh, Andy Mc-
Govern, Aleksandr Nisnevich, Adam Pauls, Dmitrij
Petters, Brent Read, Dan Roth, Subhro Roy, Jesse
Rusak, Beth Short, Div Slomin, Ben Snyder, Stephon
Striplin, Yu Su, Zachary Tellman, Sam Thomson, An-
drei Vorobev, Izabela Witoszko, Jason Wolfe, Abby
Wray, Yuchen Zhang, and Alexander Zotov. 2020.
Task-oriented dialogue as dataflow synthesis. Trans-
actions of the Association for Computational Linguis-
tics, 8:556-571.

Aseem Arora, Shabbirhussain Bhaisaheb, Harshit

Nigam, Manasi Patwardhan, Lovekesh Vig, and Gau-
tam Shroff. 2023. Adapt and decompose: Efficient
generalization of text-to-SQL via domain adapted
least-to-most prompting. In Proceedings of the st
GenBench Workshop on (Benchmarking) Generali-
sation in NLP, pages 25-47, Singapore. Association
for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Giovanni Campagna, Sina Semnani, Ryan Kearns, Lu-
cas Jun Koba Sato, Silei Xu, and Monica Lam. 2022.
A few-shot semantic parser for Wizard-of-Oz dia-
logues with the precise ThingTalk representation. In
Findings of the Association for Computational Lin-
guistics: ACL 2022, pages 4021-4034, Dublin, Ire-
land. Association for Computational Linguistics.

Shulin Cao, Jiaxin Shi, Zijun Yao, Xin Lv, Jifan Yu, Lei
Hou, Juanzi Li, Zhiyuan Liu, and Jinghui Xiao. 2022.
Program transfer for answering complex questions
over knowledge bases. In Proceedings of the 60th
Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 8128—
8140, Dublin, Ireland. Association for Computational
Linguistics.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong,
Hong Wang, and William Yang Wang. 2020. Hy-
bridQA: A dataset of multi-hop question answering
over tabular and textual data. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 1026-1036, Online. Association for Computa-
tional Linguistics.

Jianpeng Cheng, Devang Agrawal, Héctor
Martinez Alonso, Shruti Bhargava, Joris Driesen,
Federico Flego, Dain Kaplan, Dimitri Kartsaklis,
Lin Li, Dhivya Piraviperumal, Jason D. Williams,
Hong Yu, Diarmuid O Séaghdha, and Anders
Johannsen. 2020. Conversational semantic parsing
for dialog state tracking. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 8107-8117,
Online. Association for Computational Linguistics.

Ethan A. Chi, Ashwin Paranjape, Abigail See, Caleb
Chiam, Trenton Chang, Kathleen Kenealy, Swee Kiat
Lim, Amelia Hardy, Chetanya Rastogi, Haojun Li,
Alexander Iyabor, Yutong He, Hari Sowrirajan, Peng
Qi, Kaushik Ram Sadagopan, Nguyet Minh Phu, Di-
lara Soylu, Jillian Tang, Avanika Narayan, Giovanni
Campagna, and Christopher Manning. 2022. Neural
generation meets real people: Building a social, infor-
mative open-domain dialogue agent. In Proceedings
of the 23rd Annual Meeting of the Special Interest
Group on Discourse and Dialogue, pages 376395,
Edinburgh, UK. Association for Computational Lin-
guistics.

Edgar F Codd et al. 1972. Relational completeness of
data base sublanguages. IBM Corporation.

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong
Yu. 2022. Turl: Table understanding through repre-
sentation learning. ACM SIGMOD Record, 51(1):33-
40.

Julian Eisenschlos, Maharshi Gor, Thomas Miiller, and
William Cohen. 2021. MATE: Multi-view attention
for table transformer efficiency. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 76067619, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Yue Feng, Zhen Han, Mingming Sun, and Ping Li.
2022. Multi-hop open-domain question answering
over structured and unstructured knowledge. In Find-
ings of the Association for Computational Linguistics:
NAACL 2022, pages 151-156, Seattle, United States.
Association for Computational Linguistics.

Tianyu Gao, Howard Yen, Jiatong Yu, and Danqi Chen.
2023. Enabling large language models to generate
text with citations. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 6465—6488, Singapore. Associa-
tion for Computational Linguistics.

4544

10

https://doi.org/10.18653/v1/2023.emnlp-main.831
https://doi.org/10.18653/v1/2023.emnlp-main.831
https://doi.org/10.1162/tacl_a_00333
https://doi.org/10.18653/v1/2023.genbench-1.3
https://doi.org/10.18653/v1/2023.genbench-1.3
https://doi.org/10.18653/v1/2023.genbench-1.3
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2022.findings-acl.317
https://doi.org/10.18653/v1/2022.findings-acl.317
https://doi.org/10.18653/v1/2022.acl-long.559
https://doi.org/10.18653/v1/2022.acl-long.559
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.emnlp-main.651
https://doi.org/10.18653/v1/2020.emnlp-main.651
https://doi.org/10.18653/v1/2022.sigdial-1.37
https://doi.org/10.18653/v1/2022.sigdial-1.37
https://doi.org/10.18653/v1/2022.sigdial-1.37
https://doi.org/10.18653/v1/2021.emnlp-main.600
https://doi.org/10.18653/v1/2021.emnlp-main.600
https://doi.org/10.18653/v1/2022.findings-naacl.12
https://doi.org/10.18653/v1/2022.findings-naacl.12
https://doi.org/10.18653/v1/2023.emnlp-main.398
https://doi.org/10.18653/v1/2023.emnlp-main.398

Yu Gu and Yu Su. 2022. ArcaneQA: Dynamic program
induction and contextualized encoding for knowl-
edge base question answering. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 1718-1731, Gyeongju, Republic
of Korea. International Committee on Computational
Linguistics.

Chunxi Guo, Zhiliang Tian, Jintao Tang, Pancheng
Wang, Zhihua Wen, Kang Yang, and Ting Wang.
2023. Prompting gpt-3.5 for text-to-sql with de-
semanticization and skeleton retrieval. In Pacific Rim
International Conference on Artificial Intelligence,

pages 262-274. Springer.

Tong Guo and Huilin Gao. 2020. Content enhanced
bert-based text-to-sql generation.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Miiller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4320—4333, Online. Association for Computa-
tional Linguistics.

Yushi Hu, Chia-Hsuan Lee, Tianbao Xie, Tao Yu,
Noah A. Smith, and Mari Ostendorf. 2022. In-
context learning for few-shot dialogue state tracking.
In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 2627-2643, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Paul Hudak. 1989. Conception, evolution, and appli-
cation of functional programming languages. ACM
Comput. Surv., 21(3):359-411.

Hiroshi lida, Dung Thai, Varun Manjunatha, and Mohit
Iyyer. 2021. TABBIE: Pretrained representations of
tabular data. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 3446-3456, Online. Association
for Computational Linguistics.

Zhengbao Jiang, Frank Xu, Luyu Gao, Zhiqing Sun,
Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie
Callan, and Graham Neubig. 2023. Active retrieval
augmented generation. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 7969-7992, Singapore. As-
sociation for Computational Linguistics.

Di Jin, Seokhwan Kim, and Dilek Hakkani-Tur. 2021.
Can I be of further assistance? using unstructured
knowledge access to improve task-oriented conver-
sational modeling. In Proceedings of the 1st Work-
shop on Document-grounded Dialogue and Conver-
sational Question Answering (DialDoc 2021), pages
119-127, Online. Association for Computational Lin-
guistics.

Ehsan Kamalloo, Nouha Dziri, Charles Clarke, and
Davood Rafiei. 2023. Evaluating open-domain ques-
tion answering in the era of large language models.

In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 5591-5606, Toronto, Canada.
Association for Computational Linguistics.

Omar Khattab, Keshav Santhanam, Xiang Lisa Li,
David Hall, Percy Liang, Christopher Potts, and
Matei Zaharia. 2023. Demonstrate-search-predict:
Composing retrieval and language models for
knowledge-intensive nlp.

Vishwajeet Kumar, Yash Gupta, Saneem Chemmengath,
Jaydeep Sen, Soumen Chakrabarti, Samarth Bharad-
waj, and Feifei Pan. 2023. Multi-row, multi-span
distant supervision for Table+Text question answer-
ing. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 8080—-8094, Toronto, Canada.
Association for Computational Linguistics.

Sung-Min Lee, Eunhwan Park, Daeryong Seo,
Donghyeon Jeon, Inho Kang, and Seung-Hoon Na.
2023a. MAFiD: Moving average equipped fusion-in-
decoder for question answering over tabular and tex-
tual data. In Findings of the Association for Compu-
tational Linguistics: EACL 2023, pages 2337-2344,
Dubrovnik, Croatia. Association for Computational
Linguistics.

Sung-Min Lee, Eunhwan Park, Daeryong Seo,
Donghyeon Jeon, Inho Kang, and Seung-Hoon Na.
2023b. MAFiD: Moving average equipped fusion-in-
decoder for question answering over tabular and tex-
tual data. In Findings of the Association for Compu-
tational Linguistics: EACL 2023, pages 2337-2344,
Dubrovnik, Croatia. Association for Computational
Linguistics.

Fangyu Lei, Xiang Li, Yifan Wei, Shizhu He, Yiming
Huang, Jun Zhao, and Kang Liu. 2023. S3HQA: A
three-stage approach for multi-hop text-table hybrid
question answering. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 1731—
1740, Toronto, Canada. Association for Computa-
tional Linguistics.

Qi Liu, Zihuiwen Ye, Tao Yu, Linfeng Song, and Phil
Blunsom. 2022. Augmenting multi-turn text-to-SQL
datasets with self-play. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2022,
pages 5608-5620, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Linyong Nan, Yilun Zhao, Weijin Zou, Narutatsu
Ri, Jaesung Tae, Ellen Zhang, Arman Cohan, and
Dragomir Radev. 2023. Enhancing text-to-SQL capa-
bilities of large language models: A study on prompt
design strategies. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
14935-14956, Singapore. Association for Computa-
tional Linguistics.

Barlas Oguz, Xilun Chen, Vladimir Karpukhin, Stan
Peshterliev, Dmytro Okhonko, Michael Schlichtkrull,

4545

11

https://aclanthology.org/2022.coling-1.148
https://aclanthology.org/2022.coling-1.148
https://aclanthology.org/2022.coling-1.148
http://arxiv.org/abs/1910.07179
http://arxiv.org/abs/1910.07179
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2022.findings-emnlp.193
https://doi.org/10.18653/v1/2022.findings-emnlp.193
https://doi.org/10.1145/72551.72554
https://doi.org/10.1145/72551.72554
https://doi.org/10.18653/v1/2021.naacl-main.270
https://doi.org/10.18653/v1/2021.naacl-main.270
https://doi.org/10.18653/v1/2023.emnlp-main.495
https://doi.org/10.18653/v1/2023.emnlp-main.495
https://doi.org/10.18653/v1/2021.dialdoc-1.16
https://doi.org/10.18653/v1/2021.dialdoc-1.16
https://doi.org/10.18653/v1/2021.dialdoc-1.16
https://doi.org/10.18653/v1/2023.acl-long.307
https://doi.org/10.18653/v1/2023.acl-long.307
http://arxiv.org/abs/2212.14024
http://arxiv.org/abs/2212.14024
http://arxiv.org/abs/2212.14024
https://doi.org/10.18653/v1/2023.acl-long.449
https://doi.org/10.18653/v1/2023.acl-long.449
https://doi.org/10.18653/v1/2023.acl-long.449
https://doi.org/10.18653/v1/2023.findings-eacl.177
https://doi.org/10.18653/v1/2023.findings-eacl.177
https://doi.org/10.18653/v1/2023.findings-eacl.177
https://doi.org/10.18653/v1/2023.findings-eacl.177
https://doi.org/10.18653/v1/2023.findings-eacl.177
https://doi.org/10.18653/v1/2023.findings-eacl.177
https://doi.org/10.18653/v1/2023.acl-short.147
https://doi.org/10.18653/v1/2023.acl-short.147
https://doi.org/10.18653/v1/2023.acl-short.147
https://doi.org/10.18653/v1/2022.findings-emnlp.411
https://doi.org/10.18653/v1/2022.findings-emnlp.411
https://doi.org/10.18653/v1/2023.findings-emnlp.996
https://doi.org/10.18653/v1/2023.findings-emnlp.996
https://doi.org/10.18653/v1/2023.findings-emnlp.996

Sonal Gupta, Yashar Mehdad, and Scott Yih. 2022.
UniK-QA: Unified representations of structured and
unstructured knowledge for open-domain question
answering. In Findings of the Association for Compu-
tational Linguistics: NAACL 2022, pages 1535-1546,
Seattle, United States. Association for Computational
Linguistics.

Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Ti-
wari, Gustavo Soares, Christopher Meek, and Sumit
Gulwani. 2022. Synchromesh: Reliable code genera-
tion from pre-trained language models.

Prolific. 2023. https://www.prolific.com.
Acessed: June 2023.

Torsten Scholak, Raymond Li, Dzmitry Bahdanau,
Harm de Vries, and Chris Pal. 2021. DuoRAT: To-
wards simpler text-to-SQL models. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1313-1321,
Online. Association for Computational Linguistics.

Sina Semnani, Violet Yao, Heidi Zhang, and Monica
Lam. 2023. WikiChat: Stopping the hallucination of
large language model chatbots by few-shot ground-
ing on Wikipedia. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
2387-2413, Singapore. Association for Computa-
tional Linguistics.

Qi Shi, Han Cui, Haofeng Wang, Qingfu Zhu, Wanxiang
Che, and Ting Liu. 2024. Exploring hybrid question
answering via program-based prompting.

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and
Dongmei Zhang. 2023. Gpt4table: Can large lan-
guage models understand structured table data? a
benchmark and empirical study. Proceedings of
WSDM 2024.

Haitian Sun, William W. Cohen, and Ruslan Salakhutdi-
nov. 2022. Iterative hierarchical attention for answer-
ing complex questions over long documents.

Ruoxi Sun, Sercan Arik, Rajarishi Sinha, Hootan
Nakhost, Hanjun Dai, Pengcheng Yin, and Tomas
Pfister. 2023. SQLPrompt: In-context text-to-SQL
with minimal labeled data. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2023,
pages 542-550, Singapore. Association for Compu-
tational Linguistics.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020a. RAT-
SQL: Relation-aware schema encoding and linking
for text-to-SQL parsers. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7567-7578, Online. Association
for Computational Linguistics.

Runze Wang, Zhenhua Ling, Jing-Bo Zhou, and Yu Hu.
2020b. Tracking interaction states for multi-turn text-
to-sql semantic parsing. ArXiv, abs/2012.04995.

Yingyao Wang, Junwei Bao, Chaoqun Duan, Youzheng
Wu, Xiaodong He, and Tiejun Zhao. 2022. MuGER2:
Multi-granularity evidence retrieval and reasoning
for hybrid question answering. In Findings of the
Association for Computational Linguistics: EMNLP
2022, pages 6687-6697, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Jian Wu, Yicheng Xu, Yan Gao, Jian-Guang Lou, Borje
Karlsson, and Manabu Okumura. 2023. TACR: A
table alignment-based cell selection method for Hy-
bridQA. In Findings of the Association for Compu-
tational Linguistics: ACL 2023, pages 6535-6549,
Toronto, Canada. Association for Computational Lin-
guistics.

Silei Xu, Shicheng Liu, Theo Culhane, Elizaveta Pert-
seva, Meng-Hsi Wu, Sina Semnani, and Monica Lam.
2023. Fine-tuned LLMs know more, hallucinate less
with few-shot sequence-to-sequence semantic pars-
ing over Wikidata. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 5778-5791, Singapore. Associa-
tion for Computational Linguistics.

Silei Xu, Sina Semnani, Giovanni Campagna, and Mon-
ica Lam. 2020. AutoQA: From databases to QA
semantic parsers with only synthetic training data. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 422-434, Online. Association for Computa-
tional Linguistics.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. TaBERT: Pretraining for joint
understanding of textual and tabular data. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8413-8426, On-
line. Association for Computational Linguistics.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vin-
cent Zhang, Caiming Xiong, Richard Socher, Walter
Lasecki, and Dragomir Radev. 2019a. CoSQL: A
conversational text-to-SQL challenge towards cross-
domain natural language interfaces to databases. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1962—
1979, Hong Kong, China. Association for Computa-
tional Linguistics.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern
Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene
Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit,
David Proctor, Sungrok Shim, Jonathan Kraft, Vin-
cent Zhang, Caiming Xiong, Richard Socher, and
Dragomir Radev. 2019b. SParC: Cross-domain se-
mantic parsing in context. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4511-4523, Florence, Italy.
Association for Computational Linguistics.

4546

12

https://doi.org/10.18653/v1/2022.findings-naacl.115
https://doi.org/10.18653/v1/2022.findings-naacl.115
https://doi.org/10.18653/v1/2022.findings-naacl.115
http://arxiv.org/abs/2201.11227
http://arxiv.org/abs/2201.11227
https://www.prolific.com
https://doi.org/10.18653/v1/2021.naacl-main.103
https://doi.org/10.18653/v1/2021.naacl-main.103
https://doi.org/10.18653/v1/2023.findings-emnlp.157
https://doi.org/10.18653/v1/2023.findings-emnlp.157
https://doi.org/10.18653/v1/2023.findings-emnlp.157
http://arxiv.org/abs/2402.10812
http://arxiv.org/abs/2402.10812
https://openreview.net/forum?id=EVqFdCB5PfV
https://openreview.net/forum?id=EVqFdCB5PfV
https://doi.org/10.18653/v1/2023.findings-emnlp.39
https://doi.org/10.18653/v1/2023.findings-emnlp.39
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://api.semanticscholar.org/CorpusID:228063793
https://api.semanticscholar.org/CorpusID:228063793
https://doi.org/10.18653/v1/2022.findings-emnlp.498
https://doi.org/10.18653/v1/2022.findings-emnlp.498
https://doi.org/10.18653/v1/2022.findings-emnlp.498
https://doi.org/10.18653/v1/2023.findings-acl.409
https://doi.org/10.18653/v1/2023.findings-acl.409
https://doi.org/10.18653/v1/2023.findings-acl.409
https://doi.org/10.18653/v1/2023.emnlp-main.353
https://doi.org/10.18653/v1/2023.emnlp-main.353
https://doi.org/10.18653/v1/2023.emnlp-main.353
https://doi.org/10.18653/v1/2020.emnlp-main.31
https://doi.org/10.18653/v1/2020.emnlp-main.31
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/P19-1443

Yue Yu, Chenyan Xiong, Si Sun, Chao Zhang, and
Arnold Overwijk. 2022. COCO-DR: Combating dis-
tribution shift in zero-shot dense retrieval with con-
trastive and distributionally robust learning. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1462—
1479, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun.
2023a. Tablellama: Towards open large generalist
models for tables.

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce
Cahoon, Shaleen Deep, and Jignesh M. Patel. 2023b.
Reactable: Enhancing react for table question answer-
ing.

Chao Zhao, Spandana Gella, Seokhwan Kim, Di Jin, De-
vamanyu Hazarika, Alexandros Papangelis, Behnam
Hedayatnia, Mahdi Namazifar, Yang Liu, and Dilek
Hakkani-Tur. 2023. “what do others think?”’: Task-
oriented conversational modeling with subjective
knowledge. In Proceedings of the 24th Annual Meet-
ing of the Special Interest Group on Discourse and
Dialogue, pages 309-323, Prague, Czechia. Associa-
tion for Computational Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning.

A Appendix

A.1 Hyperparameters

For all our experiments, we set a temperature of
0 in calls to OpenAl’s LLMs, and we directly use
the retriever provided by Yu et al. (2022), with the
default parameters.

A.2 Prompts in our experiments

We provide the prompts mentioned in this pa-
per. The syntax used is the Jinja2 template lan-
guage, which supports Python-like loops ({% for
%} {% endfor %}),conditions ({$ 1if %}{%
endif %}), variables ({{ var }}) and com-
ments ({# #}).

A.3 Our crowdsourcing process on Prolific

We utilize Prolific (Prolific, 2023) to curate our
Restaurant dataset. The crowdsourcing interface
is presented in Figure 3, after starting the crowd-
sourcing task, the crowdsourcing workers will be
prompted with questions shown in Figure 4. After
they finish conversing with the chatbot, they will
be shown three questions shown in Figure 5.

Among the 50 crowdsourcing workers who con-
sented to reveal their demographic information, 33
are female and 17 are male. All 50 crowdsourcing
workers reside in the United States. We paid the
crowdsourcing workers 12.30 USD per hour. The
average expected duration is 8 minutes. The pay
rate is higher than the federal minimum wage in
the United States, which is 7.25 USD per hour. Our
crowdsourcing process asked for user consent in us-
ing their conversation with the chatbot for research
purposes. No personal identifiable information was
collected.

4547

https://doi.org/10.18653/v1/2022.emnlp-main.95
https://doi.org/10.18653/v1/2022.emnlp-main.95
https://doi.org/10.18653/v1/2022.emnlp-main.95
http://arxiv.org/abs/2311.09206
http://arxiv.org/abs/2311.09206
http://arxiv.org/abs/2310.00815
http://arxiv.org/abs/2310.00815
https://doi.org/10.18653/v1/2023.sigdial-1.28
https://doi.org/10.18653/v1/2023.sigdial-1.28
https://doi.org/10.18653/v1/2023.sigdial-1.28
http://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103

Cuisines Rating . Popular_dishes Reviews
Enum([] Num(2,1) Free Text[] Free Text[]
Hummus mediterran Chicken Kebab Plate, | t1;dr| This is your place if you're looking for a
Mediterran ean,halal, 4.0 Lamb Beef Gyro, healthy and filling meal whether it's a quick pick-
ean Kitchen salad Marinated Chicken Gyros, ... me-up or casual dining, ...
italian My girlfriend was craving pasta on a Monday
venues'& Cacio E Pepe, night. ... We were not expecting such an
Penny Roma 4.0 Agnolotti Dal Plin, intimate and romantic dining experience. The
event -
spaces Albacore Tartare, restaurant was candle lit, modern, and perfect

for a date night. ...

Figure 2: restaurants table with both structured and unstructured data.

-

n a database, the {{ field_name }} field has the following set of options, separated by new lines. "{{ predicted_field_value
}}" is not one of the possible choices. You need to classify "{{ predicted_field_value }}" into one or more of the
values below:

{% for choice in field_value_choices %}

{{ choice }}

{% endfor %}

You can only select from the above choices. Your response should be a list of comma separated index numbers.
Your answer:

Table 6: ENUM classifier prompt used in SUQL compiler. This is a zero-shot prompt.

Answer a question based on the following text.{{ type_prompt }}
Question: {{ question }}. If there is no information, say "no info".
Documents:

{$ for review in reviews %}

{{ review }}

% endfor %}

Provide a concise answer in a few words:

Table 7: The ANSWER function prompt used in SUQL compiler. This is a zero-shot prompt.

‘answer (document, query)‘ takes in a document and a query. It asks ‘query‘ on ‘document' and outputs the answer.
Now, let’s look at this use case. Your task is to determine whether the output is correct.

answer ({{ field }}, "{{ query }}") {{ operator }} {{ value }}

{{ field }} = ["{{ document }}"]

Choose from one of the following choices:

- the output is correct.
- the output is incorrect.

Table 8: The ANSWER function prompt as filter used in SUQL compiler. This is a zero-shot prompt.

4548

You are a semantic parser. Generate a query for a database with given signature. Do not generate fields beyond the given
fields.

1929_International_Cross_Country_Championships_0

CREATE TABLE validation_table_7 ("Rank" INT, "Athlete" TEXT, "Athlete_Info" TEXT[], "Nationality" TEXT, "Nationality_Info"
TEXT[], "Time" TEXT);

User: What is the difference in time between Jos\’e Reliegos of Spain and the person born 5 September 1892 who competed at
the 1928 Olympics ?

Target: SELECT a."Time"::INTERVAL - b."Time"::INTERVAL FROM "validation_table_7" a, "validation_table_7" b WHERE a."Athlete"
= ’"Jos\’e Reliegos’ AND a."Nationality" = ’Spain’ AND answer (b."Athlete_Info", ’is this athlete born 5 September
1892?') = "Yes’;

List_of_cities_in_Somalia_by_population_0

CREATE TABLE validation_table_8 ("Rank" INT, "City" TEXT, "City_Info" TEXT[], "Region" TEXT, "Region_Info" TEXT[],
"Population" INT);

User: Which gulf is north of the Somalian’s city with 550,000 residents ?

Target: SELECT answer ("City_Info", ’'Which gulf is north of this Somalian’’s city ?’) FROM "validation_table_8" WHERE
"Population™ = ’550,000";

List_of_the_mothers_of_the_Ottoman_Sultans_0

CREATE TABLE validation_table_14 ("Name" TEXT, "Name_Info" TEXT[], "Titles" TEXT, "Titles_Info" TEXT[], "Maiden Name" TEXT,

"Origin" TEXT, "Origin_Info" TEXT[], "Death" DATE, "Son (s)" TEXT, "Son (s)_Info" TEXTI[]);
User: Who was the husband of the mother of Ottoman sultan Suleiman I ?

Target: SELECT answer ("Name_Info", ’'Who is her husband?’) FROM "validation_table_14" WHERE "Son (s)" = ’'Suleiman I’;

List_of_Mohun_Bagan_A.C._managers_0

CREATE TABLE validation_table_10 ("Name" TEXT, "Name_Info" TEXT[], "Nationality" TEXT, "Nationality_Info" TEXT[], "FROM"
DATE, "TO" DATE);

User: What is the nationality of the manager who was born on 15 February 1968 ?

Target: SELECT "Nationality" FROM "validation_table_10" WHERE answer ("Name_Info", ’is this manager born on 15 February
1968?') = 'Yes’;

Grammy_Award_for_Best_Jazz_Vocal_Performance,_Male_0

CREATE TABLE "validation_table_2615" ("Year" INT, "Year_Info" TEXT[], "Performing artist (s)" TEXT, "Performing artist (s
)_Info" TEXT[], "Work" TEXT, "Work_Info" TEXT[], "Nominees" TEXT, "Nominees_Info" TEXT[])

User: How many people performed on the most recent song to win ?

Target: SELECT answer ("Work_Info", ’'how many people performed on this song?’) FROM "validation_table_2615" ORDER BY "Year"
DESC LIMIT 1;

List_of_flag_bearers_for_Myanmar_at_the_Olympics_0

CREATE TABLE validation_table_67 ("Name" TEXT, "Event Year" INT, "Year_Info" TEXT[], "Season" TEXT, "Flag Bearer" TEXT, "Flag
Bearer_Info" TEXT[]);

User: When did the youngest Burmese flag bearer participate in the Olympic opening ceremony?

Target: SELECT "Event Year" FROM validation_table_67 ORDER BY answer ("Flag Bearer_Info", ’when is this person born?’)::date
DESC LIMIT 1;

List_of_museums_in_Atlanta_0

CREATE TABLE validation_table_3 ("Name" TEXT, "Name_Info" TEXT[], "Area" TEXT, "Area_Info" TEXT[], "Type" TEXT, "Summary"
TEXT, "Summary_Info" TEXT[]);

User: What is that address of the museum located in a Victorian House in an area whose Architectural styles within the
district include Craftsman Bungalow , Queen Anne , Stick style , Folk Victorian , Colonial Revival , American
Foursquare and Neoclassical Revival ?

Target: SELECT answer ("Name_Info", ’'what is the address?’) FROM "validation_table_19" WHERE answer ("Area_Info", ’is this an
area whose Architectural styles within the district include Craftsman Bungalow , Queen Anne , Stick style , Folk
Victorian , Colonial Revival , American Foursquare and Neoclassical Revival ?’') = ’'Yes’;

2007_in_Canadian_music_0

CREATE TABLE "validation_table_26" ("Rank" INT, "Artist" TEXT, "Artist_Info" TEXT[], "Album" TEXT, "Album_Info" TEXT[], "Peak
position" INT, "Sales" INT, "Certification" TEXT)

User: How many purchases of albums by the musician with the record Call Me Irresponsible have occurred ?

Target: SELECT answer ("Artist_Info", ’How many albums has this artist sold?’) FROM "validation_table_26" WHERE
answer ("Album_Info", ’is this record Call Me Irresponsible?’) = ’Yes’;

List_of_Indian_state_flowers_0

CREATE TABLE "validation_table_74" ("State" TEXT, "State_Info" TEXT[], "Common name" TEXT, "Common name_Info" TEXTI[],
"Binomial name" TEXT, "Binomial name_Info" TEXT[])

User:What is the state flower of the smallest state by area ?

Target: SELECT "Common name" FROM "validation_table_74" WHERE answer ("State_Info", ’is this the smallest state by area?’) =
"Yes';

List_of_Turner_Prize_winners_and_nominees_0

CREATE TABLE "validation_table_78" ("Year" INT, "Winner" TEXT, "Winner_Info" TEXT[], "Format" TEXT, "Nominees" TEXT,
"Nominees_Info" TEXT[], "Notes" TEXT, "Notes_Info" TEXT[]

User: In what year did the 1999 Turner Prize winner win the Academy Award for his film , 12 Years a Slave ?

Target: SELECT answer ("Winner_Info", ’in what year did he win the Academy Award for his film, 12 Years a Slave?’) FROM
"validation_table_78" WHERE answer ("Winner_Info", ’did he win the Academy Award for his film, 12 Years a Slave?’) =
"Yes’ AND "Year" = ’'1999';

{{ table_original_name }}

{{ create_cmd }}

User: {{ query }}

Target:

Table 9: HybridQA semantic parser prompt. This prompt contains 10 examples, each with a (1) short table
description, (2) table schema shown as a CREATE command, (3) the input query, and (4) the target SUQL

4549
15

You are a SQL semantic parser. In a prior turn, you have predicted a SQL, which returned no results. Your job now is to
generate a new SQL to try again.
In addition to the standard SQL syntax, you can make use of the ‘answer‘ function.

In general, you should try to RELAX constraints.

Table description: Doping_at_the_Olympic_Games_15

Schema: CREATE TABLE "validation_table_56" ("Name" TEXT, "Name_Info" TEXT[], "Country" TEXT, "Country_Info" TEXT[], "Sport"
TEXT, "Sport_Info" TEXT[], "Banned substance" TEXT, "Banned substance_Info" TEXT[])

Question: What substance was the athlete born in Bugulma banned in 2002 for using ?

Previously-generated SQL: SELECT "Banned substance" FROM "validation_table_56" WHERE answer ("Name_Info", ’is this athlete
born in Bugulma?’) = ’Yes’ AND "Country_Info" @> ARRAY[’2002'];

This SQL returned no result.

New SQL: SELECT "Banned substance" FROM "validation_table_56" WHERE answer ("Name_Info", ’‘is this athlete born in Bugulma and
banned in 2002?2’) = ’'Yes’;

Table description: Sweden_at_the_1932_Summer_Olympics_0

Schema: CREATE TABLE "validation_table_1" ("Medal" TEXT, "Name" TEXT, "Name_Info" TEXT[], "Sport" TEXT, "Sport_Info" TEXT[],
"Event" TEXT, "Event_Info" TEXT[])

Question: What was the nickname of the gold medal winner in the men ’s heavyweight greco-roman wrestling event of the 1932
Summer Olympics ?

Previously-generated SQL: SELECT answer ("Name_Info", ’What was his nickname?’) FROM "validation_table_1" WHERE "Medal" =

’Gold’ AND "Event" = 'Men’’s heavyweight Greco-Roman wrestling’;

This SQL returned no result.

New SQL: SELECT answer ("Name_Info", ’What was his nickname?’) FROM "validation_table_1" WHERE "Medal" = ’'Gold’ AND "Event" =
"Men’’s heavyweight’ AND "Sport" = ’Greco-Roman wrestling’;

Table description: 2011_Berlin_Marathon_0

Schema: CREATE TABLE "validation_table_4" ("Position" INT, "Athlete" TEXT, "Athlete_Info" TEXT[], "Nationality" TEXT,
"Nationality_Info" TEXT[], "Time" TIME)

Question: What place was achieved by the person who finished the Berlin marathon in 2:13.32 in 2011 the first time he
competed in a marathon ?

Previously-generated SQL: SELECT "Position" FROM "validation_table_4" WHERE "Time" = ’2:13:32’ AND answer ("Athlete_Info", ’is
this the first time this person competed in a marathon?’) = ‘Yes’;

This SQL returned no result.

New SQL: SELECT "Position" FROM "validation_table_4" WHERE "Time" = ’2:13:32’;

Table description: List_of_Pi_Kappa_Alpha_brothers_5

Schema: CREATE TABLE "validation_table_37" ("Name" TEXT, "Name_Info" TEXT[], "Original chapter" TEXT, "Original chapter_Info"
TEXT[], "Notability" TEXT, "Notability_Info" TEXT[])

Question: What year was the brother from Beta Omicron born ?

Previously-generated SQL: SELECT answer ("Name_Info", ’'what year was this brother born?’) FROM "validation_table_37" WHERE
"Original chapter" = ’'Beta Omicron’;

This SQL returned no result.

New SQL: SELECT answer ("Name_Info", ’what year was this person born?’) FROM "validation_table_37" WHERE "Original chapter" =
'Beta Omicron’;

Table description: List_of_radio_stations_in_the_United_Kingdom_15

Schema: CREATE TABLE "validation_table_55" ("Name" TEXT, "Name_Info" TEXT[], "Licence area" TEXT, "Licence area_Info" TEXT[],
"Analogue frequencies" FLOAT, "Notes" TEXT)"

Question: Which station broadcasts to a civil parish in north west Dorset sited on the River Yeo ?

Previously-generated SQL: SELECT "Name" FROM "validation_table_55" WHERE answer ("Licence area_Info", ’does this station
broadcast to a civil parish in north west Dorset sited on the River Yeo?’) = ’'Yes’;

This SQL returned no result.

New SQL: SELECT "Name" FROM "validation_table_55" WHERE answer ("Licence area_Info", ’is this a civil parish in north west
Dorset sited on the River Yeo?’) = ’'Yes’;

Table description: {{ description }}

Schema: {{ schema }}

Question: {{ question }}

Previously-generated SQL: {{ previous_sqgl }}

This SQL returned no result.

{% if second_previous_sqgl is not none %}
You also generated: {{ second_previous_sqgl }}
This SQL also returned no result.

{% endif %}

New SQL:

Table 10: HybridQA no result recovery prompt. This prompt contains 5 examples, each with a (1) short table
description, (2) table schema shown as a CREATE command, (3) the input query, (4) a previously generated SUQL
which returned no results, and (5) the target SUQL.

4550

You are a good answer extractor. Given a detailed answer to a question, you always extract an succinct answer. If no valid
answers can be extracted, answer with "No Info". Do not generate answers that is not from the original detailed answer.
The succinct answer should be the minimum span from the passage without modification. When copying the answer, do not
use a half word.

Question: The driver who finished in position 4 in the 2004 United States Grand Prix was of what nationality ?

Detailed Answer: The driver, Jenson Alexander Lyons Button, is British.

Succinct Answer: British

Question: What is that address of the museum located in a Victorian House in an area whose Architectural styles within the
district include Craftsman Bungalow , Queen Anne , Stick style , Folk Victorian , Colonial Revival , American
Foursquare and Neoclassical Revival ?

Detailed Answer: The address of the Hammonds House Museum is 503 Peeples Street SW in the West End neighborhood of Atlanta,
Georgia.

Succinct Answer: 503 Peeples Street SW

Question: What is the area of the national park whose terrain is extremely rugged and consists of sandstone peaks , narrow
gorges , ravines and dense forests , in kilometers ?

Detailed Answer: 524 km

Succinct Answer: 524

Question: Which gulf is north of the Somalian city with 550,000 residents ?

Detailed Answer: The Gulf of Aden is north of this city.

Succinct Answer: Gulf of Aden

Question: Who was the husband of the mother of Ottoman sultan Suleiman I ?

Detailed Answer: Her husband is Selim I.

Succinct Answer: Selim I

Question: What are the symptoms of the titular syndrome in his 2009 movie ?

Detailed Answer: The text does not provide information on the symptoms of any syndrome.
Succinct Answer: No Info

Question: {{ query }}

Detailed Answer: {{ detailed_answer }}
Succinct Answer:

Table 11: HybridQA format extractor prompt. This prompt contains 6 examples, each with a (1) input query, (2) a
detailed answer from SUQL, and (3) a target succinct answer.

4551

You are a restaurant virtual assistant chatting with a user.
You can access a restaurant database to retrieve information about restaurants’ cuisine, price (cheap, moderate, expensive,
luxury), rating (1-5), num_reviews, location, popular_dishes, reviews, phone_number, and opening_hours.

asic #)

Hi! How can I help you?

They: what is a good place to get brunch in Chicago?
[Check the database? Yes]

{#

y #}

They: show me a Chinese restaurant in upper east side, NY

You: I found the 4.5 star Calle Dao Chelsea. It is a Chinese and Asian Fusion restaurant that serves brunch and has a menu
that reflects the history of Chinese migration to Cuba.

They: is it better than panda express?

[Check the database? Yes]

{# follow up on phone number #}

They: what is a good seafood restaurant in Seattle?

You: I found The Pink Door, a 4.5 star seafood restaurant in Seattle. Reviews mention the grilled whole fish and clam pasta
as seafood dishes served there.

They: Can you find their phone number?

[Check the database? Yes]

{# ha you heard? #}
They: have you heard of girl and the goat at Chicago?
[Check the database? Yes]

)

{#

do not db when asking about general kr

They: I want a Spanish restaurant in Kansas City

You: I found the 4 star La Bodega. It has one of the best happy hours in the city and a cozy atmosphere that feels like
you’re in the countryside of Spain.

They: Do you speak Spanish?

[Check the database? No]

o not check db when

g bout general knc

can you find me a place that serves peking duck?

Sorry, I don’t have that information.

They: ok, how about orange chicken instead?

You: Sorry, I don’t have that information.

They: how about chicken?

You: I found the 4 star Roost & Roast. It is a take-out place with no indoor dining, but there are tables outside. The menu
is simple and ordering is done via an iPad kiosk. They offer Thai-inspired dishes such as Hat Yai Fried Chicken, Pad
Thai, and several other stir frys.

They: what is hat yai fried chicken?

[Check the database? No]

{# shc #}

They: hey! show me something in Washington D.C.

You: I found the 4 star Old Ebbitt Grill. It is a historic restaurant located in Washington D.C. that has been serving locals
and tourists since 1856. The food is very good and the service is great, with a friendly and knowledgeable staff.

They: is there another one?

[Check the database? Yes]

edge

on ¢ ven if there rrors #}
They: have you heard of girl and the goat at Chicago?
You: Sorry. I don’t have that information

They: have you heard of girl and the goat at Chicago?

[Check the database? Yes]

{# on checking da

You: Hi! How can I help you?

{% for dlg_turn in dlg %}

They: {{ dlg_turn.user_utterance }}

{% if dlg_turn.agent_utterance is not none %}
You: {{ dlg_turn.agent_utterance }}

{% endif %}

{% endfor %}

[Check the database?

Table 12: Input Classifier prompt for the restaurant experiment. This prompt contains § examples.

4552
18

You are a semantic parser. Generate a query for a restaurant database with the following signature:

CREATE TABLE restaurants (
name TEXT,
cuisines TEXTI[],
price ENUM (’cheap’, ’'moderate’, ’expensive’, ’luxury’),
rating NUMERIC(2,1),
num_reviews NUMBER,
address TEXT,
popular_dishes FREE_TEXT,
phone_number TEXT,
reviews FREE_TEXT,
opening_hours TEXT,
location TEXT

)i

Do not generate fields beyond the given fields. The ‘answer' function can be used on FREE_TEXT fields.
{#

User: Where is Burguer King?
Target: SELECT address, summary (reviews) FROM restaurants WHERE name ILIKE ’%Burguer King$%’ LIMIT 1;

i
sic e #}

{# Basic e ple for cuisine fe W h r aura #}
User: what are some good-reviewed japanese restaurants in Kansas City?
Target: SELECT %, summary(reviews) FROM restaurants WHERE ’ japanese’ = ANY (cuisines) AND location = ’‘Kansas City’ AND rating

>= 4.0 LIMIT 3;

Agent: I found Sakura Sushi, Nami Ramen, and Kaze Teppanyaki.

User: What are their prices?

Target: SELECT name, price FROM restaurants WHERE (name ILIKE ’Sakura Sushi’ OR name ILIKE ’'Nami Ramen’ OR name ILIKE ’Kaze
Teppanyaki’) AND location = ’Kansas City’;

ge of ‘a N TEXT f 1 in both ¢

User: Show me a family-friendly restaurant that has burgers in D.C.

Target: SELECT *, summary(reviews), answer (reviews, ’‘is this restaurant family-friendly?’) FROM restaurants WHERE
answer (reviews, ’do you find this restaurant to be family-friendly?’) = ’Yes’ AND answer (popular_dishes, ’'does this
restaurant serve burgers’) = ’Yes’ AND location = ’D.C.’ LIMIT 1;

Agent: I found Jason’s steakhouse. Reviews mention kids love going there with their parents. It should be a great weekend
dinner for you and your family.

User: What do the reviews say about the atmosphere in the restaurant?

Target: SELECT answer (reviews, ’‘What is the atmosphere?’) FROM restaurants WHERE name ILIKE ’'Jason’’s steakhouse’ AND
location = ’'D.C." LIMIT 1;

function h and filter #}

n

{# e of ‘a v fur ion on bular_dishes #}
User: Find me a place with pasta in Nashville.
Target: SELECT %, summary (reviews) FROM restaurants WHERE answer (popular_dishes, ’‘does this restaurant serve pasta’) = ’Yes’

AND location = ’'Nashville’ LIMIT 1;

{# je of ‘a v functi revie i}

User: I love Chinese food. Find me a restaurant that doesn’t have a long wait time.

Target: SELECT x, summary(reviews), answer (reviews, ’what is the wait time?’) FROM restaurants WHERE ’chinese’ = ANY
(cuisines) AND answer (reviews, ’‘does this restaurant have short wait time?’) = ’Yes’ LIMIT 1;

{# Meaning of the d

User: I want a popular restaurant in Napa, CA.

Target: SELECT x, summary(reviews) FROM restaurants WHERE rating >= 4.5 AND location = ’Napa, CA’ ORDER BY num_reviews DESC
LIMIT 1;

Agent: I found the 5.0 star Gui’s vegan house. It has 2,654 reviews and reviews mention great atmosphere, quick and good
service, and good food quality.

User: Give me the review that talk about good food quality.

Target: SELECT single_review FROM restaurants AS r, unnest (reviews) AS single_review WHERE name ILIKE ’‘Gui’’s vegan house’
AND answer (single_review, ’‘does this review mention good food quality?’) = ’Yes’ AND r.location = ’Napa, CA’ LIMIT 1;

ar",

and follow up on fetching revi

{# Usage of ‘a >r ' functior reviews #}

User: Which restaurants have a happy hour in Bakersfield?

Target: SELECT %, summary(reviews), answer (reviews, ’'what is the happy hour here?’) FROM restaurants WHERE location =
'Bakersfield’ AND answer (reviews, ’‘does this restaurant have a happy hour?’) = ’‘Yes’ LIMIT 1;

{# of [#)

User: i’m hungry, what should i have for lunch? I am looking for salmon in Chicago.

Target: SELECT x, summary(reviews) FROM restaurants WHERE answer (popular_dishes, ’does this restaurant serve salmon?’) =
’Yes’ AND location = ’Chicago’ LIMIT 1;

Agent: I found the 4.5 star Daigo. It is a family-owned business that serves traditional Japanese cuisine.

User: Show me something else.

Target: SELECT %, summary(reviews) FROM restaurants WHERE NOT (name = ’‘Daigo’) AND answer (popular_dishes, ’does this
restaurant serve salmon?’) = ’Yes’ AND location = ’Chicago’ LIMIT 1;

r' function on revie

a

{% for dlg_turn in dlg[:-1] %}

{% if dlg_turn.genie_utterance is not none %}
User: {{ dlg_turn.user_utterance }}

Target: {{ dlg_turn.user_target }}

Agent: {{ dlg_turn.agent_utterance }}

{% endif %}

{% endfor %}

User: {{ query }}

Target:

Table 13: The semantic parser prompt for the restaurant experiment. This prompt contains 8 examples.

4553
19

Talk to a restaurants chatbot and evaluate it

&R $1.64 - $12.30/hr (O 8 mins 48 5 places

Imagine you are visiting Palo Alto and you are looking for restaurants. In this study, you will talk to a chatbot to find restaurants there. Once the conversation is
over, you will need to answer 3 questions regarding your overall experience with the chatbot.

Devices you can use to take this study:

Mobile

Iil Desktop

Open study link in a new window

Figure 3: The crowdsourcing interface that our user sees

r 1
Talk to a restaurants chatbot and
evaluate it

Imagine you are visiting Palo Alto and you are looking for restaurants. In this study, you will
talk to a chatbot to find restaurants there. Once the conversation is over, you will need to
answer 3 questions regarding your overall experience with the chatbot

For instance, here are some examples of how you could start the conversation

1. Hey there! | am bringing my family to Palo Alto, what are some Chinese restaurants
we can go to?

2. Give me a recommendation for a romantic, Italian restaurant in Palo Alto. I'd like to
take my girlfriend there.

3. Please help me find a restaurant that is handicap-accessible in Palo Alto.

4. Hi! Can you please find me a four-star restaurant that sells burgers in Palo Alto?

5. Are there any good reviewed Korean restaurants with a lunch special in Palo Alto?
What dishes do they have?

E3 Mot shared

* Indicates required question

Please copy paste your prolific ID here *

Your answer

Now, talk to the chatbot about to find a restaurant in Palo Alto for at least 5 turns. *
Remember to include "Palo Alto" in the conversation.

To start, click on this link. Once you are done, please type in "FINISHED" (all upper
case) to receive a dialog ID, and paste it here.

Your answer

Figure 4: The prompts we give crowdsourcing workers before they start conversing with our chatbot.

4554
20

Untitled Section

Write a few sentences on what you liked about this chathot. *

Your answer

Write a few sentences on what you disliked about this chatbot. *

Your answer

Did you encounter any prablems while using this chatbot? If yes, please elaborate. *

Your answer

Figure 5: The questions crowdsourcing workers are asked after they finish talking to the chatbot.

4555

