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Abstract

Emotion Recognition in Conversation (ERC)
involves detecting the underlying emotion be-
hind each utterance within a conversation. Ef-
fectively generating representations for utter-
ances remains a significant challenge in this
task. Recent works propose various models to
address this issue, but they still struggle with
differentiating similar emotions such as excite-
ment and happiness. To alleviate this problem,
We propose an Emotion-Anchored Contrastive
Learning (EACL) framework that can generate
more distinguishable utterance representations
for similar emotions. To achieve this, we utilize
label encodings as anchors to guide the learn-
ing of utterance representations and design an
auxiliary loss to ensure the effective separation
of anchors for similar emotions. Moreover, an
additional adaptation process is proposed to
adapt anchors to serve as effective classifiers
to improve classification performance. Across
extensive experiments, our proposed EACL
achieves state-of-the-art emotion recognition
performance and exhibits superior performance
on similar emotions. Our code is available at
https://github.com/Yu-Fangxu/EACL.

1 Introduction

Emotion Recognition in Conversation (ERC) aims
to identify the emotions of each utterance in a con-
versation. It plays an important role in various sce-
narios, such as chatbots, healthcare applications,
and opinion mining on social media. However, the
ERC task faces several challenges. Depending on
the context, similar statements may exhibit entirely
different emotional attributes. Simultaneously, dis-
tinguishing conversation texts that contain similar
emotional attributes is also extremely difficult (Ong
et al., 2022; Zhang et al., 2023a). Figure 1 is an
example of a chat between a man and a woman.
Differentiating between happy and excited can be
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Well you paint a romantic 
picture. [Excited]

Well I didn't want it to be like 
cheesy, you know. [Happy]

Did she cry? [Excited]

She didn't cry, but she was 
laughing a lot and it was very 

exciting, so... [Happy]
Oh, my god.  How long have 
you been planning on doing 

this? [Excited]

ManWoman

Figure 1: An example of a conversation in the IEMO-
CAP dataset.

challenging for machines due to their frequent oc-
currence in similar contexts. Appendix A exhibits
quantitative analysis for emotions. This requires
the model to accurately distinguish different emo-
tions based on the context.

Therefore, abundant efforts have been made im-
plicitly to obtain distinguishable utterance repre-
sentations from two lines, model design and rep-
resentation learning. As the representative of the
former line, DialogueRNN (Majumder et al., 2019)
designs recurrent modules to track dialogue history
for classification. Representation learning methods
primarily exploit supervised contrastive learning
(SupCon) (Khosla et al., 2020) for learning utter-
ance representations. SPCL (Song et al., 2022) pro-
poses a prototypical contrastive learning method to
alleviate the class imbalance problem and achieve
state-of-the-art performance. Our preliminary fine-
grained experimental results for SPCL, as shown
in Figure 2, use the normalized confusion matrix
to evaluate the prediction performance. The find-
ings reveal that similar emotions such as happy
and excited are frequently misclassified as each
other. This suggests that SPCL still struggles with
effectively differentiating similar emotoins.

To tackle the aforementioned issues, this paper
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Figure 2: Normalized confusion matrix of SPCL on the
IEMOCAP dataset. The rows and columns represent
the actual classes and predictions made by the model
respectively. The cross-point (i, j) means the percentage
of emotion i predicted to be emotion j. Except for the
diagonal, the bigger values and deeper color mean these
emotions are easily misclassified.

presents a novel Emotion-Anchored Contrastive
Learning framework (EACL). EACL utilizes tex-
tual emotion labels to generate anchors that are
emotionally semantic-rich representations. These
representations as anchors explicitly strengthen
the distinction between similar emotions in the
representation space. Specifically, we introduce
a penalty loss that encourages the corresponding
emotion anchors to distribute uniformly in the rep-
resentation space. By doing so, uniformly dis-
tributed emotion anchors guide utterance represen-
tations with similar emotions to learn larger dissimi-
larities, leading to enhanced discriminability. After
generating separable utterance representations, we
aim to compute the optimal positions of emotion
anchors to which utterance representations can be
assigned for classification purposes. To achieve
better assignment, inspired by the two-stage frame-
works (Kang et al., 2019; Menon et al., 2020; Nam
et al., 2023), we propose the second stage to shift
the decision boundaries of emotion anchors with
fixed utterance representations and achieve better
classification performance, which is simple yet ef-
fective.

We conduct experiments on three widely used
benchmark datasets, the results demonstrate that
EACL achieves a new state-of-the-art performance.
Moreover, EACL achieves a significantly higher
separability in similar emotions, which validates
the effectiveness of our method.

The main contributions of this work are summa-

rized as follows:

• We propose a novel emotion-anchored con-
trastive learning framework for ERC, that can
generate more distinguishable representations
for utterances.

• To the best of our knowledge, our method is
the first to explicitly alleviate the problem of
emotion similarity by introducing label seman-
tic information in modeling for ERC, which
can effectively guide representation learning.

• Experimental results show that our proposed
EACL achieves a new state-of-the-art perfor-
mance on benchmark datasets.

2 Related Work

2.1 Emotion Recognition in Conversation
Most of the present works adopt graph-based and
sequence-based methods. DialogueGCN (Ghosal
et al., 2019) builds a graph treating utterances as
nodes, and models intra-speaker and inter-speaker
relationships by setting different edge types be-
tween two nodes. MMGCN (Hu et al., 2021b)
fuses multi-modal utterance representations into a
graph. Differently, DAG-ERC (Shen et al., 2021)
exploits directed acyclic graphs to naturally capture
the spatial and temporal structure of the dialogue.
COGMEN (Joshi et al., 2022) combines graph neu-
ral network and graph transformer to leverage both
local and global information respectively.

Another group of works exploits transform-
ers and recurrent models to learn the interac-
tions between utterances. DialogueRNN (Ma-
jumder et al., 2019) combines several RNNs to
model dialogue dynamics. DialogueCRN (Hu
et al., 2021a) introduces a cognitive reasoning mod-
ule. Commensense Knowledge is explored by
KET (Zhong et al., 2019) and COSMIC (Ghosal
et al., 2020). Cog-BART (Li et al., 2022a) em-
ploys BART (Lewis et al., 2019) to simultaneously
generate responses and detect emotions with the
auxiliary of contrastive learning. EmoCaps (Li
et al., 2022c) and DialogueEIN (Liu et al., 2022)
design several modules to explicitly model emo-
tional tendency and inertia, local and global infor-
mation in dialogue. The power of the language
models is utilized by CoMPM (Lee and Lee, 2021)
which learns and tracks contextual information by
the language model itself and SPCL (Song et al.,
2022), a prototypical supervised contrastive learn-
ing method to alleviate the data imbalance problem.
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SACL (Hu et al., 2023)introduces adversarial ex-
amples to learn robust representations. Our EACL
goes along this track. Unlike the above approaches,
HCL (Yang et al., 2022) comes up with a general
curriculum learning paradigm that can be applied
to all ERC models. InstructERC (Lei et al., 2023)
and DialogueLLM (Zhang et al., 2023c) construct
instructions and fine-tune LLMs for ERC. (Lee,
2022; Guo et al., 2021) learn from soft labels.

2.2 Supervised Contrastive Learning

Recent works (Chen et al., 2020; He et al., 2020a)
in unsupervised contrastive learning provide a
similarity-based learning framework for represen-
tation learning. These methods maximize the simi-
larity between positive samples while minimizing
the similarity between negative sample pairs. To
make use of supervised information, supervised
contrastive learning (SupCon) (Gunel et al., 2020)
aims to make the data that have the same label
closer in the representation space and push away
those that have different labels. However, Sup-
Con works poorly in data imbalance settings. To
mitigate this problem, KCL (Kang et al., 2021)
explicitly pursues a balanced representation space.
TSC (Li et al., 2022b) uniformly set targets in the
hypersphere and enforce data representations to
close to the targets. BCL (Zhu et al., 2022) regards
classifier weights as prototypes in the representa-
tion space and incorporates them in the contrastive
loss. LaCon (Zhang et al., 2022) incorporates label
embedding for better language understanding. Our
method is inspired by TSC, differently, we incorpo-
rate emotion semantics in the representation space
and dynamically adjust the emotion anchors for
better classification.

3 Methodology

3.1 Problem Definition

A conversation can be denoted as a sequence of
utterances {u1, u2, u3, ..., un}, each utterance ut
is uttered by one of the conversation speakers
sj . There are m (m ≥ 2) speakers in the con-
versation, denoted as {s1, s2, ..., sm}. Given the
set of emotion labels E and conversation context
{(u1, su1), (u2, su2), ..., (ut, sut)}, the ERC task
aims to predict emotion et(et ∈ E) for current ut-
terance ut. E is a set of emotions. For instance,
in the IEMOCAP dataset, E = {excited, frustrated,
sad, neutral, angry, happy}.

3.2 Model Overview
The overview of our model is shown in Figure
3. The encoding strategy of our model adopts the
paradigm of prompt learning (Section 3.3). Our
training process is composed of two stages.

The first stage (Section 3.4) is called representa-
tion learning, which aims to learn more distinctive
representations with emotion anchors. Concretely,
we incorporate anchors containing semantic infor-
mation into the contrastive learning framework and
utilize them to guide the learning of utterance rep-
resentations. Our objectives are (1) to bring utter-
ances with the same emotion closer to their cor-
responding anchors and push utterances with dif-
ferent emotions farther away, and (2) to achieve a
more uniform distribution of anchors in the hyper-
space for better classifying different emotions.

The second stage (Section 3.5) is called emotion
anchor adaptation, which aims to further improve
classification performance by slightly adjusting an-
chors. The anchors in the first stage can help the
model learn separable representations of utterances.
However, separated emotion anchors may not be
located in the most representative positions of each
category of utterance representation for the follow-
ing emotion recognition because contrastive learn-
ing in the first stage aims not to achieve this goal.
Therefore, we design the second stage to slightly
adjust the positions of emotion anchors to shift the
decision boundaries for better classification perfor-
mance. In this stage, we freeze the parameters of
the language model and only fine-tune the emo-
tion anchors, as shown on the right side of Figure
3. Lastly, EACL matches the utterance represen-
tations with the most similar emotion anchors to
make predictions.

3.3 Prompt Context Encoding
Following previous work (Song et al., 2022), we
employ pre-trained language models and adopt
prompt tuning to transform the classification into
masked language modeling. An effective prompt
template aligns the downstream task with the large
semantic information learned by the language
model in the pre-training stage, which boosts the
model’s performance in downstream tasks.

To predict the emotion of utterance ut, we take
k utterances before timestamp t as the context to
predict et. Formally, the input for the language
model is composed as:

xt = [st−k, ut−k, . . . , st, ut, P rompt] (1)
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Language Model

Monica: Enough! Joey: Lean-lean-

lean! For utterance: Lean-lean-

lean, Speaker Joey feels <mask>

Contrastive Utterance 
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Figure 3: Overview of our proposed framework. Left side introduces representation learning, which is composed of
utterance representation and emotion anchor learning. Right side describes the process of adapting emotion anchors
to the optimal positions for classification.

where Prompt P = "For utterance ut, speaker st
feels [mask]" . We take the last hidden state of
[mask] as utterance representation.

3.4 Stage One: Representation Learning

In this section, we will introduce two main compo-
nents of EACL in stage one: utterance representa-
tion learning and emotion anchor learning.

3.4.1 Utterance Representation Learning
The objective in this section is to acquire dis-
cernible representations for each individual utter-
ance. To accomplish this, we employ label encod-
ings to generate emotion anchors and incorporate
them into a contrastive learning framework. By
utilizing these anchors, we can proficiently steer
the process of representation learning.

Given a batch of samples X = {x1, x2, . . . , xb}
∈ Rb×ℓ, where b, ℓ are batch size and max length
of input respectively. We feed X into the pre-
trained language model and get the last hidden
states Z = Encoder(X ). Then we use the hidden
state of [mask] token at the end of the sentence as
the representation of utterance ut. Finally, we ob-
tain the representations of utterances with an MLP
layer:

R = MLPcl(Z[mask]) (2)

where R = {r1, r2, . . . , rb} and R ∈ Rb×d, d is
dimension of the encoder.

Similarly, we take textual emotion labels as the
input of language models to obtain emotion anchors
for all emotions E = {e1, e2, . . . , es}:

Za = Encoder(E)
A = MLPcl(Za)

(3)

where A ∈ Rs×d, each row of which represents a
emotion anchor. s represents the number of emo-
tions. To ensure we get a stable anchor representa-
tion, Za is frozen in our training process.

We propose an emotion-anchored contrastive
learning loss to utilize emotion label semantics for
better representation learning. More specifically, in
each mini-batch, we let V = {v1, v2, . . . , vb+s} =
R ∪A and V+

i represents the set of utterances or
anchor representation that have the same label as
utterance ri except for itself. Finally, our emotion-
anchored contrastive loss is as follows:

cij = sim(vi, vj)/τ

Lsup =

s+b∑

i=1

− log

∑
vj∈V+

i
ecij

|V+
i |∑vj∈V ecij

(4)

where |V+
i | represents number of positive exam-

ples. τ is the temperature hyperparameter for the
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contrastive loss. sim represents a similarity func-
tion, we adopt cosine similarity here.

In equation 4, the interactions between rep-
resentations can be divided into three compo-
nents: utterances-utterances, anchors-utterances,
and anchors-anchors. Representations with the
same label are brought closer to each other, while
those with different labels are pushed farther apart.
The utterances-utterances interactions are similar to
traditional contrastive learning, while the anchors-
utterances interactions represent the process of
anchor-guided utterance representation learning.
The anchors-anchors interaction ensures a better
distinction between different emotions.

Recent research (Gunel et al., 2020) has in-
dicated that combining cross-entropy loss with
contrastive learning facilitates language models
with more discriminative ability. Therefore cross-
entropy loss is added to help improve representa-
tion learning. We additionally add a linear mapping
for classification:

Ŷ = softmax(MLPce(Z[mask])) (5)

LCE = −1

b

b∑

i=1

s∑

j=1

yij log ŷij (6)

where Ŷ ∈ Rb×s represents the possibility distribu-
tion of b utterances over s emotions. yij represents
the element in the i-th row and j-th column of Ŷ .
MLPce is a linear layer for classification.

3.4.2 Emotion Anchor Learning
Nevertheless, despite the implementation of the in-
teraction between representations, the three types
of interactions mentioned in Section 3.4.1 alone are
insufficient to explicitly disperse the distance be-
tween the most similar emotion anchors. To further
tackle the issue of similarity, we propose an an-
chor angle loss. This loss is designed to incentivize
emotion anchors to maximize the angle between
themselves and their most similar emotion anchors
within the contrastive space:

LAg = −1

s

s∑

i=1

min
j,i̸=j

arccos
⟨ai, aj⟩
∥ai∥∥aj∥

(7)

where ai represents i-th emotion anchor represen-
tation in A.
LAg aims to minimize the maximal pairwise co-

sine similarity between all the emotion anchors. It
is equivalent to maximizing the minimal pairwise

angle. The more dispersed emotion anchors are, the
better their capacity to recognize similar emotions.

Combining all the components mentioned in
stage one, the overall loss is a weighted average
of cross-entropy loss, anchor angle loss, and con-
trastive loss, as given in equation 8.

L = λ1(Lsup + λ2LAg) + (1− λ1)LCE (8)

where λ1 and λ2 are hyper-parameters to balance
loss terms.

3.5 Stage Two: Emotion Anchor Adaptation

In the first stage, we used emotion anchors gener-
ated from emotion labels to guide the convergence
of utterance representations toward different emo-
tion clusters. These emotion anchors serve as rep-
resentatives for each emotion, which are suitable
to function as effective nearest-neighbor classifiers
for utterance representations. However, separated
emotion anchors trained from stage one may not
be located in the most representative positions of
each category of utterance representation, which
weakens the classification ability of emotion an-
chors. To ensure the alignment between utterance
representations and emotion anchors, we propose
the second stage to adapt the emotion anchors to
shift the decision boundaries by training them with
a small number of epochs. This approach aims to
enhance the ability of emotion anchors for classifi-
cation purposes.

To be more specific, we freeze the parameters of
the language model and make the emotion anchors
inherited from stage one ai(i = 1, ..., s) trainable
parameters, which corresponds to the right side in
Figure 3. In order to be consistent with the repre-
sentation learning, we still use the same similarity
measure for adapting emotion anchors.

The loss function for emotion anchor adaptation:

cij = sim(ri, aj)/τ

Lada = −1

b

b∑

i=1

s∑

j=1

yij log ŷij

= −1

b

b∑

i=1

s∑

j=1

yij log
ecij∑s
k=1 e

cik

(9)

where cij means adjusted cosine similarity between
the i-th utterance representation ri and j-th emo-
tion anchors aj . τ is the same temperature hyper-
parameter in stage one.
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3.6 Emotion Prediction

During the inference stage, we predict emotion
labels by matching each utterance representation
with the nearest emotion anchor:

ŷi = argmax
j

sim(ri, aj) (10)

Where ri is the representation of utterance xi and
aj is the emotion anchor of class j.

4 Experiments

4.1 Experimental setup

The language model loads the initial parameter
with SimCSE-Roberta-Large (Gao et al., 2021).
All experiments are conducted on a single NVIDIA
A100 GPU 80GB and we implement models with
PyTorch 2.0 framework. More experimental details
are provided in Appendix B.

4.2 Datasets

In this section, we will introduce three adopted
popular benchmark datasets: IEMOCAP (Busso
et al., 2008), MELD (Poria et al., 2018) and
EmoryNLP (Zahiri and Choi, 2017).

(1) IEMOCAP: consists of 151 videos of two
speakers’ dialogues with 7433 utterances. Each
utterance is annotated by an emotion label from 6
classes, including excited, frustrated, sad, neutral,
angry, and happy.

(2) MELD: is extracted from the TV show
Friends. It contains about 13000 utterances from
1433 dialogues. Each utterance is labeled by one of
the following 7 emotion labels: surprise, neutral,
anger, sadness, disgusting, joy, and fear.

(3) EmoryNLP: contains 97 episodes, 897
scenes, and 12606 utterances from TV show
Friends. It differs from MELD in that the emo-
tional tags contained are: joyful, sad, powerful,
mad, neutral, scared, and peaceful.

In our experiments, we only use textual modal-
ity. The detailed statistics of the three datasets are
shown in Table 1.

4.3 Metrics

Following previous works (Lee and Lee, 2021;
Song et al., 2022), we choose the weighted-average
F1 score as the evaluation metric.

Dataset
Dialogues Utterances

CLS
train dev test train dev test

IEMOCAP 100 20 31 4810 1000 1623 6
MELD 1038 114 280 9989 1109 2610 7

EmoryNLP 659 89 79 7551 954 984 7

Table 1: Statistics of the three datasets, where CLS is
the number of classes.

4.4 Baselines

For a comprehensive evaluation, we compare our
method with the following baselines:

(1) Graph-based model: DialogueGCN (Ghosal
et al., 2019) employs GCNs to gather context
features for learning utterance representations,
Shen (Shen et al., 2021) shows the performance of
replacing the feature extractor with Roberta-Large.
RGAT (Ishiwatari et al., 2020) proposes relational
position encodings to model both speaker relation-
ship and sequential information. DAG-ERC (Shen
et al., 2021) utilizes an acyclic graph neural net-
work to intuitively model a conversation’s natural
structure without introducing any external informa-
tion. DAG-ERC+HCL (Yang et al., 2022) pro-
poses a curriculum learning paradigm combined
with DAG-ERC for learning from easy to hard.
SIGAT (Jia et al., 2023) models speaker and se-
quence information in a unified graph to learn the
interactive influence between them.

(2) Sequence-based model: COSMIC (Ghosal
et al., 2020) incorporates different elements of com-
monsense and leverages them to learn self-speaker
dependency. Cog-BART (Li et al., 2022a) applies
BART with contrastive learning to take response
generation into consideration. DialogueEIN (Liu
et al., 2022) designs emotion interaction and ten-
dency blocks to explicitly simulate emotion iner-
tia and stimulus. CoMPM (Lee and Lee, 2021)
utilizes pretrained models to directly learn contex-
tual information and track dialogue history. Sup-
Con (Gunel et al., 2020) is the vanilla supervised
contrastive learning. SCCL (Yang et al., 2023)
conducts contrastive learning with 3-dimensional
affect representations. DIEU (Zhao et al., 2023a)
aims to solve the long-range context propagation
problem. CKCL (Tu et al., 2023) denoises in-
formation irrelevant context and knowledge when
training. MPLP (Zhang et al., 2023b) models
the history and experience of speakers and ex-
ploits paraphrasing to enlarge the difference be-
tween labels. Emocaps (Li et al., 2022c) devises
transformer to a novel architecture, Emoformer,
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Methods IEMOCAP MELD EmoryNLP Average

Graph-based models

DialogueGCN (Ghosal et al., 2019) 64.91 63.02 38.10 55.34
RGAT (Ishiwatari et al., 2020) 66.36 62.80 37.89 55.68
DAG-ERC (Shen et al., 2021) 68.03 63.65 39.02 56.9

DAG-ERC+HCL (Yang et al., 2022) 68.73 63.89 39.82 57.48
SIGAT (Jia et al., 2023) 70.17 66.20 39.95 58.77

Sequence-based models

COSMIC (Ghosal et al., 2020) 65.25 65.21 38.11 56.19
+CKCL (Tu et al., 2023) 67.16 66.21 40.23 57.87

Cog-BART (Li et al., 2022a) 66.18 64.81 39.04 56.68
DialogueEIN (Liu et al., 2022) 68.93 65.37 38.92 57.74
CoMPM (Lee and Lee, 2021) 69.46 66.52 38.93 58.3
SupCon (Gunel et al., 2020) 68.14 65.63 39.28 57.68
Emocaps (Li et al., 2022c) 69.49 63.51 - -

SPCL+CL (Song et al., 2022) 67.19 65.74 39.52 57.48
SACL (Hu et al., 2023) 69.22 66.45 39.65 58.44

SCCL (Yang et al., 2023) 69.88 65.70 38.75 58.11
DIEU (Zhao et al., 2023a) 69.90 66.43 40.12 58.81

MPLP (Zhang et al., 2023b) 66.65 66.51 - -
ChatGPT 3-shot (Zhao et al., 2023b) 48.58 58.35 35.92 47.62

EACL (ours) 70.41 67.12 † 40.24 59.26†

Table 2: Weighted-average F1 score of different models on benchmark datasets. Bold font and underlining indicate
the best and second-best performance respectively. SPCL+CL is reproduced with the official code and uses the
SimCSE-Roberta-Large that EACL uses. † represents statistical significantly over baselines with t-test (p<0.05)

to extract the emotional tendency of utterance.
SACL (Hu et al., 2023) proposes contrastive learn-
ing combined with adversarial training for robust
representations. SPCL+CL (Song et al., 2022)
combines prototypical contrastive learning and cur-
riculum learning to tackle the emotional class im-
balance issue. ChatGPT (Zhao et al., 2023b) re-
ports results in the 3-shot performance.

5 Results and Analysis

5.1 Main Results

Table 2 reports the results of our method and the
baselines. Our model outperforms other baselines
and achieves a new state-of-the-art performance on
IEMOCAP, MELD, and EmoryNLP datasets. The
results exhibit the effectiveness of our emotion-
anchored contrastive learning framework.

Based on the results, we can observe that
sequence-based methods have overall better perfor-
mance than graph-based methods. Compared to the
graph-based models, EACL improves a large mar-
gin over the DAG-ERC (Shen et al., 2021) which
is the state-of-the-art graph-based method without
introducing extra knowledge by 2.38%, 3.57%, and
1.22% on three benchmark datasets.

Compared to sequence-based methods, EACL

(a) IEMOCAP
Methods Exc Fru Sad Neu Ang Hap Avg W-f1

SPCL+CL 66.72 63.96 80.03 72.29 64.82 43.96 65.30 67.19
EACL 71.27 67.76 81.80 73.32 67.54 51.29 68.81 70.41
∆ +4.55 +3.80 +1.77 +1.03 +2.72 +7.33 +3.51 +3.22

(b) MELD
Methods Fear Neu Ang Sad Dis Surp Joy Avg W-f1

SPCL+CL 26.59 77.92 54.40 43.53 30.94 59.26 60.34 50.43 65.74
EACL 23.54 80.44 54.01 42.41 33.86 60.48 65.22 51.42 67.12
∆ -3.05 +2.52 -0.39 -1.12 +2.92 +1.22 +4.88 +0.99 +1.38

(c) EmoryNLP
Methods Joy Sad Pow Mad Neu Pea Sca Avg W-f1

SPCL+CL 53.52 31.61 10.28 44.21 51.40 16.83 39.51 35.34 39.52
EACL 52.73 30.77 15.27 41.97 49.76 23.48 41.18 36.45 40.24
∆ -0.79 -0.84 +4.99 -2.24 -1.64 +6.65 +1.67 +1.11 +0.72

Table 3: Fine-grained performance comparison between
SPCL+CL and EACL for all emotions on three bench-
mark datasets, the F1-score is used for each class. ∆ is
the difference between the two models.

outperforms two contrastive learning methods,
SACL and SPCL+CL by a large margin. Specifi-
cally, SPCL’s use of a queue for storing class rep-
resentations and prototype generation from small
batches results in unstable representation learning.
Significant movement of prototypes that undergo
during training and the asynchronous update of
queue representations with the language model’s
parameters lead to suboptimal utterance represen-
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Dataset IEMOCAP MELD EmoryNLP

Original 70.41 67.12 40.24
w/o Emotion Anchor Learning 69.78 (0.63 ↓) 66.63(0.49 ↓) 39.90(0.34 ↓)

w/o Classification Objective 69.98(0.43 ↓) 66.24(0.88 ↓) 39.73(0.51 ↓)
w/o Anchor Inheritance 69.79(0.62 ↓) 67.03(0.09 ↓) 38.46 (1.78 ↓)
w/o Anchor Adaptation 69.67(0.74 ↓) 64.43(2.89 ↓) 39.98 (0.26 ↓)
w/ representation center 69.84(0.57 ↓) 66.49(0.63 ↓) 39.84(0.38 ↓)

Table 4: Ablation results on benchmark datasets.

tations. EACL outperforms the state-of-the-art
results on the IEMOCAP dataset by 0.92%, the
MELD dataset by 0.6%, and the EmoryNLP dataset
by 0.59%. Besides, EACL has an overwhelming
performance advantage over ChatGPT, one possi-
ble reason is that the few-shot prompt setting may
not be enough to achieve satisfactory performance.

Table 3 reports the fine-grained performance on
benchmark datasets. EACL outperforms SPCL+CL
which is the most relevant method to us in most
emotion categories on all benchmark datasets.
Specifically, in the IEMOCAP dataset, We have
observed a significant improvement in performance
on two pairs of similar emotions, happy and excited
with an increase of 7.33% and 4.55%, frustrated
and angry with an increase of 3.80% and 2.72%
respectively. Detailed performance analysis is pro-
vided in Appendix C.

5.2 Ablation Study

We conduct a series of experiments to confirm the
effectiveness of components in our method. The re-
sults are shown in Table 4. Removing any element
of EACL makes the overall performance worse.

To validate the effects of components in the first
stage, We remove the LAg which encourages the
angle of different emotion anchors to be uniform.
We can find that the lack of LAg results in a signifi-
cant decline in the performance of nearly 0.5%, as
reported in line 2 in Table 4, indicating that emo-
tion anchor learning helps for separating utterance
representations. Also, the removal of LCE drops
the performance by about 0.5% on average, the re-
sult demonstrates that supervised learning benefits
the fine-tuning of language models.

In the second stage, We explore whether adapt-
ing emotion anchors and emotion semantics are
necessary. Similar to classifier re-training (Kang
et al., 2019; Nam et al., 2023), we randomly initial-
ize emotion anchors that lie far from the data distri-
bution after learning the utterance representations.
Training from scratch is a cold start and cannot
reach the optimal position. This result in Line 4
verifies the importance of inheriting emotion an-

Dataset IEMOCAP MELD EmoryNLP

SimCSE-Roberta-Large 70.41 67.12 40.24
Deberta-Large 69.09 67.80 41.09

Promcse-Roberta-Large 70.45 67.38 40.93

Table 5: Performance under different language models.

chors and the result shows that the trained emotion
anchors express a more powerful ability of recog-
nition. When we remove the anchor adaptation or
take the center of training representations for each
emotion category as emotion anchors, performance
will degrade significantly, indicating the improper
positions of emotion anchors weaken the classifi-
cation performance and verifying the importance
of stage two. Lines 5 and 6 in Table 4 confirms our
assumption. In summary, the components of our
method contribute to the results substantially.

5.3 Performance on Different Language
Models

To evaluate the versatility of our learning frame-
work, we conducted experiments using different
pretrained language models. Specifically, we exam-
ined the performance of our framework on two ad-
ditional popular language models, namely Deberta-
Large (He et al., 2020b) and Promcse-Roberta-
Large (Jiang et al., 2022). The results, presented in
Table 5, demonstrate that all the pretrained models
deliver competitive performance. This observation
serves as evidence for the robustness and effective-
ness of our framework across various pre-trained
language models. It further emphasizes the general-
izability of our approach in conversational emotion
recognition tasks. We report fine-grained perfor-
mance in Appendix D.

5.4 Emotion Similarity Comparison

In this section, we conducted a comparison of the
similarity between pairs of emotions before and
after training with EACL in Figure 4. To observe
the angle change more intuitively, we also include
the angle degree. Figure 4 reveals a significant de-
crease in similarity for emotion anchors that are
considered similar. For instance, the cosine similar-
ity between excited and happy drops sharply from
0.77 to 0.08, while for frustrated and angry, it de-
creases from 0.84 to -0.3. Meanwhile, naturally dis-
similar emotions are now positioned further apart.
For instance, the similarity between neutral and
other emotions also experiences a notable decline.
These observations suggest that EACL effectively
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Figure 4: The cosine similarity of pair-wise emotions.
Figure (a) and (b) depicts cosine similarity between
emotion anchors before and after training with EACL.
(c) and (d) depicts the angle degree between emotion an-
chors before and after training with EACL respectively.

increases the separation between similar emotions,
thereby enhancing the model’s ability to distinguish
between them. Figure 5 visualizes the positions of
anchors before and after training, where similar
emotions are separated by EACL.

6 Conclusion and Future Work

This paper introduces a novel framework for con-
versational emotion recognition called emotion-
anchored contrastive learning. The proposed EACL
leverages emotion representations as anchors to en-
hance the learning process of distinctive utterance
representations. Building upon this foundation,
we further adapt the emotion anchors through fine-
tuning, bringing them the optimal positions and
more suitable for classification purposes. Through
extensive experiments and evaluations on three pop-
ular benchmark datasets, our approach achieves a
new state-of-the-art performance. Ablation studies
and evaluations confirm that the proposed EACL
framework significantly benefits dialogue modeling
and enhances the learning of utterance representa-
tions for more accurate emotion recognition.

The proposed EACL distributes the utterances
in representation space more uniformly, which is
beneficial for multi-class ERC tasks. When con-
sidering the context of multi-label classification,
EACL can group relevant emotions guided by hu-
man knowledge, or adjust the inter-class weights of
contrastive losses with label similarity (Wang et al.,
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Figure 5: The t-SNE visualization of emotion anchors.
Circles represent the position of emotion anchors before
training and stars are the positions after training.

2022; Zhao et al., 2022). Then, EACL can serve
to detect multiple emotions in a single utterance,
which will be left for future work.
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Appendix

A Emotion Similarity Anlaysis

To better understand our motivation, we exhibit the
emotion similarity in Figure 6. We split the emo-
tions into 3 groups which are composed of positive
emotions, negative emotions, and neutral, where
positive emotions include excited and happy, neg-
ative emotions contain frustrated, sad, angry, and
neutral. It is observed that excited and happy have
a cosine similarity of 0.77, and for frustrated and
angry, they have 0.84 cosine similarity. The simi-
larity of the positive emotions group is higher than
that of the negative emotions group. For neutral, it
is almost equally similar to other emotions.
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Figure 6: Cosine similarity between emotion word repre-
sentations extracted from SimCSE-Roberta-Large (Gao
et al., 2021).

B Experimental Setup

EACL loads the initial parameter by SimCSE-
Roberta-Large (Gao et al., 2021) which is identical
to the setting of SPCL. All the hyperparameters are
reported in Table 6. We exploit grid-search for λ1

in {0, 0.1, 0.3, 0.5, 0.7, 0.9}, λ2 in {0, 0.01, 0.1,
1.0} and τ in { 0.05, 0.07, 0.1, 0.15, 0.2}.

Hyperparameters IEMOCAP MELD EmoryNLP

λ1 0.9 0.1 0.9
λ2 0.01 0.1 0.01

Temperature τ 0.1 0.1 0.15
Epochs 8 8 8

Maximum length 256 256 256
Learning rate 1e-5 1e-5 1e-5

Dropout 0.1 0.1 0.1

Table 6: Hyperparameters of EACL on three benchmark
datasets.
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Figure 7: The normalized confusion matrix of three
benchmark datasets, each row is the true classes and
column is predictions. The Coordinate i, j means the
percentage of emotion i predicted to be emotion j.

C Detailed Performance Analysis

In Figure 7, we provide the normalized confu-
sion matrices for our EACL and SPCL+CL mod-
els across various datasets. These matrices serve
as crucial tools for assessing the models’ perfor-
mance. Notably, when we examine the diagonal
elements of these matrices, it becomes evident that
EACL consistently outperforms the state-of-the-art
method SPCL+CL in terms of true positives for
most fine-grained emotion categories. This sug-
gests that EACL excels at learning features that are
more distinguishable.

Particularly noteworthy is the performance of
EACL in comparison to SPCL+CL when consid-
ering specific emotion pairs, such as excited and
happy, as well as frustrated and angry on the
IEMOCAP dataset. In these cases, EACL demon-
strates superior performance. This underscores
the effectiveness of the EACL framework in ef-
fectively addressing the challenge of misclassifica-
tion, especially when dealing with emotions that
share similar characteristics. When we focus on the
MELD and EmoryNLP datasets, we observe that
EACL significantly reduces misclassifications be-
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(a) IEMOCAP
Model Exc Fru Sad Neu Ang Hap Avg W-f1

Deberta 68.55 69.74 80.17 70.18 65.41 50.96 67.50 69.09
PromCSE 68.64 67.19 80.81 74.66 69.11 53.41 68.97 70.45

SPCL+CL 66.72 63.96 80.03 72.29 64.82 43.96 65.30 67.19

(b) MELD
Methods Fear Neu Ang Sad Dis Surp Joy Avg W-f1

Deberta 34.0 80.43 55.28 44.44 37.59 60.85 65.34 53.99 67.8
PromCSE 23.59 81.0 54.96 43.35 30.53 59.51 65.12 51.15 67.38

SPCL+CL 26.59 77.92 54.40 43.53 30.94 59.26 60.34 50.43 65.74

(c) EmoryNLP
Methods Joy Sad Pow Mad Neu Pea Sca Avg W-f1

Deberta 54.04 28.74 21.54 41.73 51.75 18.12 42.52 36.92 41.09
PromCSE 54.42 28.33 14.21 43.35 51.64 23.42 41.30 36.68 40.93

SPCL+CL 53.52 31.61 10.28 44.21 51.40 16.83 39.51 35.34 39.52

Table 7: Fine-grained performance record on different
language models for all emotions on three benchmark
datasets, the F1-score is used for each class.

tween neutral emotions and other emotional states.
This highlights EACL’s capability to effectively
mitigate misclassification issues not only for simi-
lar emotions but for all emotion categories.

D Fine-Grained Performance on
Different Models

In this section, we report the fine-grained perfor-
mance when using Deberta-Large (He et al., 2020b)
and Promcse-Roberta-Large (Jiang et al., 2022)
in Table 7. The results indicate that our learning
framework is robust to different language models.
Similar to the result under Roberta-SimCSE, these
models can also effectively separate similar emo-
tions and achieve state-of-the-art performance on
the benchmark datasets.
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