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Abstract

In contemporary machine learning approaches
to bilingual lexicon induction (BLI), a model
learns a mapping between the embedding
spaces of a language pair. Recently, retrieve-
and-rank approach to BLI has achieved state
of the art results on the task. However, the
problem remains challenging in low-resource
settings, due to the paucity of data. The task is
complicated by factors such as lexical variation
across languages. We argue that the incorpora-
tion of additional lexical information into the
recent retrieve-and-rank approach should im-
prove lexicon induction. We demonstrate the
efficacy of our proposed approach on XLING,
improving over the previous state of the art by
an average of 2% across all language pairs.

1 Introduction

Bilingual lexicon induction (BLI) is fundamental
to many downstream NLP applications, such as
machine translation (Qi et al., 2018; Duan et al.,
2020), cross-lingual information retrieval (Vuli¢
and Moens, 2015), document classification (Kle-
mentiev et al., 2012), dependency parsing (Guo
et al., 2015; Ahmad et al., 2019), and language
acquisition and learning (Yuan et al., 2020). In
addition, it facilitates model sharing between high-
resource and their aligned low-resource languages.

Contemporary approaches to BLI involve align-
ment of embeddings trained on monolingual cor-
pora into a shared vector space. A challenge of this
approach is hubness — the problem of high density
regions in cross-lingual embedding space where, in
the alignment space, the embedding of a term in a
source language is surrounded by a dense cluster of
terms in the target language. These hub terms are
difficult to align and are worthy of investigation.
The recent cross-domain similarity local scaling
(CSLS) addresses this by normalizing distances by
the average distance of each term’s embedding to
its nearest neighbors (Conneau et al., 2017). While

it would be desirable to take advantage of CSLS in
a state-of-the-art BLI model such as BLICEr (Li
et al., 2022b), computing nearest neighbors is pro-
hibitively expensive. While performance is better
due to a pairwise cross-attention mechanism, this
affects our ability perform an approximate nearest
neighbour lookup.

We propose instead to address the hubness prob-
lem by including simple lexical features. We start
with the observation that the lexical similarity of
a pair of languages tends to be indicated by a rela-
tively high rank correlation of term frequency, par-
ticularly for certain parts of speech. Figure 1 shows,
by part of speech, the Spearman’s rank correlation
of corresponding terms in the 5k vocabularies in
the XLING corpus (Glavas et al., 2019). All lan-
guage pairs have a positive rank correlation. This is
especially so for proper nouns (PROPN) and nouns
and the least so for verbs. This suggests that includ-
ing term frequency and part of speech as features to
the model can improve alignment of terms in high-
density regions of the embedding space. Indeed,
our approach improves the state of the art by 2.75%
and 1.2% on the semi-supervised and supervised
splits, respectively, of the XLING benchmark. An
additional benefit of our approach is that it does
not incur the computational overhead of the more
complex CSLS for the pairwise approach.

2 Related Work

Methods for BLI can be classified into unsuper-
vised, semi-supervised and supervised approaches.
While purely unsupervised methods (Conneau
et al.,2017; Grave et al., 2018) have yielded impres-
sive results on many language pairs, minimal super-
vision through a small seed dictionary has helped
improve performance considerably especially when
relatively low-resource languages are considered.
Supervised and semi-supervised approaches typi-
cally assume a dictionary of 5k and 1k word cor-
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Figure 1: Spearman’s Rank correlation of term frequencies derived from Common Crawl and Wikipedia. Cells
containing a 0 have an insufficient (<10) number of terms in the source language for a particular part of speech.

respondences respectively for their training. In
the semi-supervised setting, high-confidence align-
ments at each step are iteratively added as anchor
points for subsequent training runs. Results on
semi-supervised BLI have shown to improve by
adopting a classification-based approach to itera-
tively refine and augment the seed translation dic-
tionary (Karan et al., 2020). Such an approach
allows for including arbitrary features such as term
frequencies and sub-word information.

Recent semi-supervised and supervised ap-
proaches include ContrastiveBLI (Li et al., 2022a)
and BLICEr which achieve state of the art results
and serve as strong baselines for our work. Con-
trastiveBLI uses a familiar bi-encoder setup with
hard negative sampling and contrastive learning.
Two configurations for the bi-encoder are used:

C1: Fine-tuned bi-encoder on static fastText (Bo-
janowski et al., 2017) embeddings

C2: Fine-tuned bi-encoder on multi-lingual
BERT (Devlin et al., 2018). C2 involves an addi-
tional step of a Procrustes mapping from C1 (300-
dim) to the fine-tuned BERT (768-dim) embedding.
The final embeddings are then a linear combination
of the projected C1 and BERT representation.

BLICEr further improves performance through
a reranking step using a fine-tuned cross-encoder
based on xlm-roberta-large (Conneau et al., 2019).
Instead of a simple binary classification over sam-
pled hard negatives, a score polarization technique
is described which increases or decreases CSLS
scores on a base CLWE embedding (C1 or C2)
based on the assigned label. The model is then
trained to predict this score. Results in BLICEr

include an additional step of linearly combining
the cross-encoder score with CSLS of the base em-
bedding for each candidate. We frequently allude
to C1, C2, and BLICEr in subsequent sections.

3 Method

3.1 Retriever

We use the fastText-based C1 model described pre-
viously to retrieve top candidates for our reranker.
C2, which leverages both fastText and multilingual-
BERT, achieves better results both as a standalone
BLI system as well as when used as a retriever in
BLICEr. However, for simplicity, we only use the
static fastText-based C1 model in our system and
note that further improvement might be had from
utilizing C2 as the retriever. For the supervised and
semi-supervised systems, we utilize the C1 model
trained on 5k and 1k data respectively. Consistent
with recent work in BLI, we use the CSLS metric
to score the nearest neighbors.

3.2 Base Reranker

Our ranking approach closely follows BLICEr
in several respects. We score each source-target
candidate pair using xIm-roberta-large!. The
pairs are formatted — e.g., for English apple and
French pomme — as apple (english), pomme
(frangais)!. Also like BLICEr, we mine twenty
hard negatives for each positive example to train the
cross encoder for a binary classification objective.

While BLICEr demonstrated improvement in
the supervised setting through score polarization,

! Available via https://huggingface.co/xIm-roberta-large.
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Cl 50.4 42,15 61.65 3565 59.60 4250 3815 41.89 3581 4026 65.63 48.61  32.06
C2 50.85 45 62.5 4235  61.05 4605 4105 4475 3939 4468 6677 5026  35.57
RCSLS+BLICEr 56.5 459 63.65 41.1 64.45 5225 40.2 - - - - - -
CI1+BLICEr 52.5 50.95 64.4 49.3 65.05 50.8 46.55 - - - -

C2(C1)+BLICEr 51.05  50.15 63 50.9 62.85 52.7 46.35 - - - - -

1k | XLM-R (Ours) 46.45 49.3 58.75 47.1 579 51.8 40.7 40.11  38.89 4492 5826 4447 33776
LETOR(XLM+CSLS) 52.75 50.7 63.15 49 62.55 5275 45.4 4524 4318 4879 6357 5122 3822
LETOR+Freq 56.9 53 67.3 50.7 66.25 54.7 47.4 4574 4472 5055  66.12  52.88  39.32
LETOR+POS+Freq 58.2 53.15 67.3 50.75 66.3 5475 4774 4651 4498 5044 6722 53.04 3925
LETOR+POS+Freq+C1 58.9 53.45 68.5 51.9 67.8 56.45 49.2 48.88 4647 51.54 68.61 54.79 40.97
Cl 54.9 44.6 65.05 40.7 6345 49.15 4135 4421 3921 43.18  66.51 50.1 35.38
C2 5775 4717 67.2 47.2 65.6 50.5 4474 47.17 4271 4822  67.86 5233  38.66
RCSLS + BLICEr 64 53.6 71.75  53.15 70.5 60.45  50.35 - - - - -
CI1+BLICEr 62.75 5425  70.75 55.4 70.05 5925  51.05 - - - - -
C2(C1)+BLICEr 6345 5595 7090 57.55  70.25 60.4 52.85 - - - - - -

S5k | XLM-R (Ours) 52.8 49.45 59 4945  60.04 54.5 4175 4196  39.04 4326 54.6 45 30.91
LETOR(XLM+CSLS) 61.2 54.2 68.2 54.1 69.2 57.6 50.15 4947  46.46  50.54  66.45  53.86 41.03
LETOR+Freq 6475  56.05 7145 55.9 71.6 59.95 5155 5042 486 5226  68.6 5497  42.62
LETOR+POS+Freq 64.75 57 72.4 56.65 72.6 61.05 5235 51.57 486 53.1 69.96  56.08 4257
LETOR+POS+Freq+C1 6585 57.65 72.65 57.05 72.85 61.3 53.3 52.06 4929 5393 7094 56.81 43.22

Table 1: Results of our LETOR Method on XLING with 5k (supervised) and 1k (semi-supervised) data.

we maintain the simple binary objective in all our
experiments. In the semi-supervised set, we use
an additional 4k high-confidence pairs from C1 to
augment the initial 1k seed dictionary. The model
is fine tuned for one epoch on each language pair.

3.3 LETOR with XGBoost

We model our additional features through a Learn-
ing to Rank (Cao et al., 2007) objective using XG-
Boost (Chen and Guestrin, 2016). Each group con-
sists of features belonging to the source word and
all of its candidates. We use the following features
as inputs to our LETOR model:

POS features: Source and candidate POS (cate-
gorical), and a binary label indicating a POS match.

Frequency features: Frequency ranks for the
source and candidate described in section 1. In ad-
dition, we use the log-normalized raw frequency of
source and candidate using wordfreq (Speer, 2022)
which is derived from 8 different monolingual text
corpora. We separately include the difference in
frequency of the source-candidate pair.

Retriever & Reranker features: Raw logits re-
turned from the base reranker (XLM-R) and CSLS
score from the retriever (C1) for each pair.

Due to polysemy and synonymy, a group of can-
didates can consist of multiple positives as a result
of synonymy in the target language. The listwise
learning objective effectively shepherds our model
into making better choices by taking into account
relative candidate scores, their frequency alignment
with the source and the part-of-speech information.

4 Results

We conduct our experiments on XLING which is
a widely-used standard for BLI comprising 28 lan-

guage pairs from 8 different languages. We choose
XLING for its good mix of languages of differing
typological similarities to compared to previous
benchmarks (Conneau et al., 2017). The results
from our modelling are presented in Table 1. We
benchmark our results against BLICEr used in con-
junction with different retrieval backbones - RC-
SLS (Joulin et al., 2018), C1, and C2. BLICEr only
reports results on en-* XLING pairs, but we also
report mean unidirectional accuracy of all other
language pairs and compare results with C1 and C2
which are the best reported results on those pairs.
LETOR-* rows use as input the raw logits from
our own version of the fine-tuned XLM-R cross-
encoder model. While this model is competitive
with other baselines in the semi-supervised task, its
standalone results are less impressive on the fully
supervised set. This difference may be attributed to
a more sophisticated sampling strategy and score
polarization in BLICEr. We report results with a
simple LETOR model using just the XILM-R log-
its and CSLS score, and also incremental changes
from incorporating each of the features.

While we used XLLM-R base, our final model
still outperforms BLICEr in all en-* pairs on the 1k
set, and 6 out of 7 pairs on the 5k set. Due to a more
competitive cross-encoder baseline, the difference
is more pronounced on the 1k set. We observe re-
sults from incorporating only the frequency-based
features, as well as both POS and term frequency in
our reranker. Part-of-speech information improves
model accuracy in most cases, albeit marginally,
however, best results are obtained when both fea-
tures are used in conjunction. We further analyzed
improvements on a per-POS basis and discovered
the largest gains for nouns (7.3%) from amongst
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Figure 2: (LEFT) Nearest Neighbours, source and target. (RIGHT) Transparency signifies frequency difference of
source-candidate pair, with point size indicating the likelihood of matching POS between source and target.

the most frequent POS types. This is consistent
with our expectations in 1. Finally BLICEr re-
ports results from using a linear combination of
similarity scores using the cross-encoder as well as
the CLWE backbone. For a more direct compari-
son, we do the same with our CLWE retriever (C1)
which helps improve model performance across the
board. Our approach yields improved results even
in the absence of this additional step.

In Figure 2, we visualize a random sample of 50
baseline error cases in the en-de test set corrected
by our LETOR model with (right) and without
(left) the additional lexical features. Through the
re-scaling of size of points with the probability of
the POS matching, and transparency by frequency
difference between source and candidate pairs, we
observe how these features help the target stand
out better in the right panel. This illustrates how
our method tackles the hubness issue. While it is
hard to disambiguate between close candidates in
the embedding space, the LETOR model is able to
turn to external cues in the form of these lexical
features to help it make better predictions.

en-de en-fi en-fr en-hr en-it en-ru en-tr

m Gold s-t Freq Diff  m LETOR Error Freq Diff XLM-R Error Freq Diff

Figure 3: Mean absolute difference of term frequency.

To hone in on how the use of these lexical fea-
tures affects a model, we do a post-hoc error analy-
sis of our model on the test set using mean absolute
difference of term frequency. Figure 3 shows the
frequency difference in en-* pairs for the gold set
and all error cases of XLM-R and LETOR. XLM-
R consistently has higher frequency difference be-
tween source-predicted pairs. Conversely, predic-
tions from the LETOR model have a frequency
deviation that is more in-line with the gold distri-
bution illustrating the models’ higher proclivity to
choose candidates with similar frequency.

5 Conclusion

Approaches to BLI have evolved to include full
transformer based reranking methods. However,
results on recent benchmarks indicate consider-
able scope of improvement still, particularly for
low-resource or lexically dissimilar language pairs.
While embeddings afford a rich semantic represen-
tation of individual words, we look towards sup-
plementary features derived from individual mono-
lingual corpora. Owing to the hubness issue we
often retrieve many close candidates highlighting
the need for better reranking and additional tools to
deduce the correct correspondence. Our simple-yet-
effective strategy of modeling lexical features using
a ranking objective yields significant improvement
over baselines. We are able to quantify their impact
and demonstrate the efficacy of our approach across
a wide array of language pairs. We hope this work
inspires further research into both the acquisition
and modelling of such features to further advance
state of the art on bilingual lexicon induction.
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6 Limitations

Our proposed approach uses a relatively simple
learning-to-rank approach with XGBoost. This
might be less effective at capturing complex, non-
linear interactions between our features (POS types,
term frequency, score from upstream models) than
more sophisticated approaches such as Neural Net-
works. Also, as noted previously, we do not use
the SOTA bi-encoder based model (C2) during our
retrieval step due to compute and time constraints
of training BERT-based bi-encoders for each in-
dividual language pair. Similarly we do not use
scores from the SOTA cross-encoder, BLICEr, as
input to the LETOR model. For these reasons, our
approach might not fully exploit the extent of im-
provements made possible by incorporating such
lexical features in the BLI task.

Another limitation of our work stems from ambi-
guity in the evaluation set of our benchmark dataset
- XLING. Samples in XLING are constructed using
word tuples derived from Google Translate. This
approach does not account for issues arising due to
polysemy and synonymy. The test set consists of a
single target correspondence for each source word
when, in practice, multiple correspondences might
exist. Thus, a performance measure of any model
evaluated on this test set, while indicative, does not
fully reflect its efficacy on this task.
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A Qualitative Examples

In Table 2, we show select examples from the en-
de test set where the LETOR model is able to suc-
cessfully map source words to the correct target
correspondences. The words predicted with the
baseline C1 model are very close alternatives from
the target languages which translate to rotations,
monochromatic, and sword for the source words
motions, coloured, and spear respectively.

src motions coloured spear
ranksrc 15490 8450 13647
POSsre NOUN VERB NOUN
predietor | bewegungen farbig speer
rankictor 5855 19410 15249
DOSietor NOUN ADV PROPN
preder rotationen einfarbigen | schwert
rankei 122792 111085 7149
POSc1 NOUN ADJ VERB

Table 2: Sample LETOR and C1 predictions (en-de)

The target words are much closer to the source
words in relative frequency as shown by their ranks.
The extra features help steer the LETOR model
towards better predictions from amongst retrieved
candidates that are very close in embedding space.
We also plot the "motion" example in Figure 4. The
correct translation "bewegungen" is better high-
lighted after applying transparency and size re-
scaling to indicate frequency difference and proba-
bility of part-of-speech match.

Plot with Words Varying in Size and Transparency

Source
N NN
Source
B Target

0.37 A feinabstimmung

augenbewegungen 2P

0369 A 3

0.35 1

pc2

bewegungen

0.34 1

drehorgirBER@ngsrichtung
drehbewegungen

0.331 . .
richtungsanderungen

0.32 1

-0.18 -0.17

pcl

-0.21 —-0.20 -0.19 -0.16

Source
I NN
Source
B Target

0.37 4

0.36 1

0.35 1

pc2

bewegungen

0.34 4

0.33 4

0.32 4

-0.18 -0.17 -0.16

pcl

-0.21 -0.20 -0.19

Figure 4: Example of BLI for "motion" without (top)
and with (bottom) term frequency and POS information
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