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Abstract

In contemporary machine learning approaches001
to bilingual lexicon induction (BLI), a model002
learns a mapping between the embedding003
spaces of a language pair. Recently, retrieve-004
and-rank approach to BLI has achieved state005
of the art results on the task. However, the006
problem remains challenging in low-resource007
settings, due to the paucity of data. The task is008
complicated by factors such as lexical variation009
across languages. We argue that the incorpora-010
tion of additional lexical information into the011
recent retrieve-and-rank approach should im-012
prove lexicon induction. We demonstrate the013
efficacy of our proposed approach on XLING,014
improving over the previous state of the art by015
an average of 2% across all language pairs.016

1 Introduction017

Bilingual lexicon induction (BLI) is fundamental018

to many downstream NLP applications, such as019

machine translation (Qi et al., 2018; Duan et al.,020

2020), cross-lingual information retrieval (Vulić021

and Moens, 2015), document classification (Kle-022

mentiev et al., 2012), dependency parsing (Guo023

et al., 2015; Ahmad et al., 2019), and language024

acquisition and learning (Yuan et al., 2020). In025

addition, it facilitates model sharing between high-026

resource and their aligned low-resource languages.027

Contemporary approaches to BLI involve align-028

ment of embeddings trained on monolingual cor-029

pora into a shared vector space. A challenge of this030

approach is hubness – the problem of high density031

regions in cross-lingual embedding space where, in032

the alignment space, the embedding of a term in a033

source language is surrounded by a dense cluster of034

terms in the target language. These hub terms are035

difficult to align and are worthy of investigation.036

The recent cross-domain similarity local scaling037

(CSLS) addresses this by normalizing distances by038

the average distance of each term’s embedding to039

its nearest neighbors (Conneau et al., 2017). While040

it would be desirable to take advantage of CSLS in 041

a state-of-the-art BLI model such as BLICEr (Li 042

et al., 2022b), computing nearest neighbors is pro- 043

hibitively expensive. While performance is better 044

due to a pairwise cross-attention mechanism, this 045

affects our ability perform an approximate nearest 046

neighbour lookup. 047

We propose instead to address the hubness prob- 048

lem by including simple lexical features. We start 049

with the observation that the lexical similarity of 050

a pair of languages tends to be indicated by a rela- 051

tively high rank correlation of term frequency, par- 052

ticularly for certain parts of speech. Figure 1 shows, 053

by part of speech, the Spearman’s rank correlation 054

of corresponding terms in the 5k vocabularies in 055

the XLING corpus (Glavaš et al., 2019). All lan- 056

guage pairs have a positive rank correlation. This is 057

especially so for proper nouns (PROPN) and nouns 058

and the least so for verbs. This suggests that includ- 059

ing term frequency and part of speech as features to 060

the model can improve alignment of terms in high- 061

density regions of the embedding space. Indeed, 062

our approach improves the state of the art by 2.75% 063

and 1.2% on the semi-supervised and supervised 064

splits, respectively, of the XLING benchmark. An 065

additional benefit of our approach is that it does 066

not incur the computational overhead of the more 067

complex CSLS for the pairwise approach. 068

2 Related Work 069

Methods for BLI can be classified into unsuper- 070

vised, semi-supervised and supervised approaches. 071

While purely unsupervised methods (Conneau 072

et al., 2017; Grave et al., 2018) have yielded impres- 073

sive results on many language pairs, minimal super- 074

vision through a small seed dictionary has helped 075

improve performance considerably especially when 076

relatively low-resource languages are considered. 077

Supervised and semi-supervised approaches typi- 078

cally assume a dictionary of 5k and 1k word cor- 079
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Figure 1: Spearman’s Rank correlation of term frequencies derived from Common Crawl and Wikipedia. Cells
containing a 0 have an insufficient (<10) number of terms in the source language for a particular part of speech.

respondences respectively for their training. In080

the semi-supervised setting, high-confidence align-081

ments at each step are iteratively added as anchor082

points for subsequent training runs. Results on083

semi-supervised BLI have shown to improve by084

adopting a classification-based approach to itera-085

tively refine and augment the seed translation dic-086

tionary (Karan et al., 2020). Such an approach087

allows for including arbitrary features such as term088

frequencies and sub-word information.089

Recent semi-supervised and supervised ap-090

proaches include ContrastiveBLI (Li et al., 2022a)091

and BLICEr which achieve state of the art results092

and serve as strong baselines for our work. Con-093

trastiveBLI uses a familiar bi-encoder setup with094

hard negative sampling and contrastive learning.095

Two configurations for the bi-encoder are used:096

C1: Fine-tuned bi-encoder on static fastText (Bo-097

janowski et al., 2017) embeddings098

C2: Fine-tuned bi-encoder on multi-lingual099

BERT (Devlin et al., 2018). C2 involves an addi-100

tional step of a Procrustes mapping from C1 (300-101

dim) to the fine-tuned BERT (768-dim) embedding.102

The final embeddings are then a linear combination103

of the projected C1 and BERT representation.104

BLICEr further improves performance through105

a reranking step using a fine-tuned cross-encoder106

based on xlm-roberta-large (Conneau et al., 2019).107

Instead of a simple binary classification over sam-108

pled hard negatives, a score polarization technique109

is described which increases or decreases CSLS110

scores on a base CLWE embedding (C1 or C2)111

based on the assigned label. The model is then112

trained to predict this score. Results in BLICEr113

include an additional step of linearly combining 114

the cross-encoder score with CSLS of the base em- 115

bedding for each candidate. We frequently allude 116

to C1, C2, and BLICEr in subsequent sections. 117

3 Method 118

3.1 Retriever 119

We use the fastText-based C1 model described pre- 120

viously to retrieve top candidates for our reranker. 121

C2, which leverages both fastText and multilingual- 122

BERT, achieves better results both as a standalone 123

BLI system as well as when used as a retriever in 124

BLICEr. However, for simplicity, we only use the 125

static fastText-based C1 model in our system and 126

note that further improvement might be had from 127

utilizing C2 as the retriever. For the supervised and 128

semi-supervised systems, we utilize the C1 model 129

trained on 5k and 1k data respectively. Consistent 130

with recent work in BLI, we use the CSLS metric 131

to score the nearest neighbors. 132

3.2 Base Reranker 133

Our ranking approach closely follows BLICEr 134

in several respects. We score each source-target 135

candidate pair using xlm-roberta-large1. The 136

pairs are formatted – e.g., for English apple and 137

French pomme – as apple (english), pomme 138

(français)!. Also like BLICEr, we mine twenty 139

hard negatives for each positive example to train the 140

cross encoder for a binary classification objective. 141

While BLICEr demonstrated improvement in 142

the supervised setting through score polarization, 143

1Available via https://huggingface.co/xlm-roberta-large.
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en-de en-fi en-fr en-hr en-it en-ru en-tr de-* fi-* hr-* it-* ru-* tr-*
C1 50.4 42.15 61.65 35.65 59.60 42.50 38.15 41.89 35.81 40.26 65.63 48.61 32.06
C2 50.85 45 62.5 42.35 61.05 46.05 41.05 44.75 39.39 44.68 66.77 50.26 35.57
RCSLS+BLICEr 56.5 45.9 63.65 41.1 64.45 52.25 40.2 - - - - - -
C1+BLICEr 52.5 50.95 64.4 49.3 65.05 50.8 46.55 - - - - - -
C2(C1)+BLICEr 51.05 50.15 63 50.9 62.85 52.7 46.35 - - - - - -

1k XLM-R (Ours) 46.45 49.3 58.75 47.7 57.9 51.8 40.7 40.11 38.89 44.92 58.26 44.47 33.76
LETOR(XLM+CSLS) 52.75 50.7 63.15 49 62.55 52.75 45.4 45.24 43.18 48.79 63.57 51.22 38.22
LETOR+Freq 56.9 53 67.3 50.7 66.25 54.7 47.4 45.74 44.72 50.55 66.12 52.88 39.32
LETOR+POS+Freq 58.2 53.15 67.3 50.75 66.3 54.75 47.74 46.51 44.98 50.44 67.22 53.04 39.25
LETOR+POS+Freq+C1 58.9 53.45 68.5 51.9 67.8 56.45 49.2 48.88 46.47 51.54 68.61 54.79 40.97
C1 54.9 44.6 65.05 40.7 63.45 49.15 41.35 44.21 39.21 43.18 66.51 50.1 35.38
C2 57.75 47.17 67.2 47.2 65.6 50.5 44.74 47.17 42.71 48.22 67.86 52.33 38.66
RCSLS + BLICEr 64 53.6 71.75 53.15 70.5 60.45 50.35 - - - - - -
C1+BLICEr 62.75 54.25 70.75 55.4 70.05 59.25 51.05 - - - - - -
C2(C1)+BLICEr 63.45 55.95 70.90 57.55 70.25 60.4 52.85 - - - - - -

5k XLM-R (Ours) 52.8 49.45 59 49.45 60.04 54.5 41.75 41.96 39.04 43.26 54.6 45 30.91
LETOR(XLM+CSLS) 61.2 54.2 68.2 54.1 69.2 57.6 50.15 49.47 46.46 50.54 66.45 53.86 41.03
LETOR+Freq 64.75 56.05 71.45 55.9 71.6 59.95 51.55 50.42 48.6 52.26 68.6 54.97 42.62
LETOR+POS+Freq 64.75 57 72.4 56.65 72.6 61.05 52.35 51.57 48.6 53.1 69.96 56.08 42.57
LETOR+POS+Freq+C1 65.85 57.65 72.65 57.05 72.85 61.3 53.3 52.06 49.29 53.93 70.94 56.81 43.22

Table 1: Results of our LETOR Method on XLING with 5k (supervised) and 1k (semi-supervised) data.

we maintain the simple binary objective in all our144

experiments. In the semi-supervised set, we use145

an additional 4k high-confidence pairs from C1 to146

augment the initial 1k seed dictionary. The model147

is fine tuned for one epoch on each language pair.148

3.3 LETOR with XGBoost149

We model our additional features through a Learn-150

ing to Rank (Cao et al., 2007) objective using XG-151

Boost (Chen and Guestrin, 2016). Each group con-152

sists of features belonging to the source word and153

all of its candidates. We use the following features154

as inputs to our LETOR model:155

POS features: Source and candidate POS (cate-156

gorical), and a binary label indicating a POS match.157

Frequency features: Frequency ranks for the158

source and candidate described in section 1. In ad-159

dition, we use the log-normalized raw frequency of160

source and candidate using wordfreq (Speer, 2022)161

which is derived from 8 different monolingual text162

corpora. We separately include the difference in163

frequency of the source-candidate pair.164

Retriever & Reranker features: Raw logits re-165

turned from the base reranker (XLM-R) and CSLS166

score from the retriever (C1) for each pair.167

Due to polysemy and synonymy, a group of can-168

didates can consist of multiple positives as a result169

of synonymy in the target language. The listwise170

learning objective effectively shepherds our model171

into making better choices by taking into account172

relative candidate scores, their frequency alignment173

with the source and the part-of-speech information.174

4 Results175

We conduct our experiments on XLING which is176

a widely-used standard for BLI comprising 28 lan-177

guage pairs from 8 different languages. We choose 178

XLING for its good mix of languages of differing 179

typological similarities to compared to previous 180

benchmarks (Conneau et al., 2017). The results 181

from our modelling are presented in Table 1. We 182

benchmark our results against BLICEr used in con- 183

junction with different retrieval backbones - RC- 184

SLS (Joulin et al., 2018), C1, and C2. BLICEr only 185

reports results on en-* XLING pairs, but we also 186

report mean unidirectional accuracy of all other 187

language pairs and compare results with C1 and C2 188

which are the best reported results on those pairs. 189

LETOR-* rows use as input the raw logits from 190

our own version of the fine-tuned XLM-R cross- 191

encoder model. While this model is competitive 192

with other baselines in the semi-supervised task, its 193

standalone results are less impressive on the fully 194

supervised set. This difference may be attributed to 195

a more sophisticated sampling strategy and score 196

polarization in BLICEr. We report results with a 197

simple LETOR model using just the XLM-R log- 198

its and CSLS score, and also incremental changes 199

from incorporating each of the features. 200

While we used XLM-R base, our final model 201

still outperforms BLICEr in all en-* pairs on the 1k 202

set, and 6 out of 7 pairs on the 5k set. Due to a more 203

competitive cross-encoder baseline, the difference 204

is more pronounced on the 1k set. We observe re- 205

sults from incorporating only the frequency-based 206

features, as well as both POS and term frequency in 207

our reranker. Part-of-speech information improves 208

model accuracy in most cases, albeit marginally, 209

however, best results are obtained when both fea- 210

tures are used in conjunction. We further analyzed 211

improvements on a per-POS basis and discovered 212

the largest gains for nouns (7.3%) from amongst 213
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Figure 2: (LEFT) Nearest Neighbours, source and target. (RIGHT) Transparency signifies frequency difference of
source-candidate pair, with point size indicating the likelihood of matching POS between source and target.

the most frequent POS types. This is consistent214

with our expectations in 1. Finally BLICEr re-215

ports results from using a linear combination of216

similarity scores using the cross-encoder as well as217

the CLWE backbone. For a more direct compari-218

son, we do the same with our CLWE retriever (C1)219

which helps improve model performance across the220

board. Our approach yields improved results even221

in the absence of this additional step.222

In Figure 2, we visualize a random sample of 50223

baseline error cases in the en-de test set corrected224

by our LETOR model with (right) and without225

(left) the additional lexical features. Through the226

re-scaling of size of points with the probability of227

the POS matching, and transparency by frequency228

difference between source and candidate pairs, we229

observe how these features help the target stand230

out better in the right panel. This illustrates how231

our method tackles the hubness issue. While it is232

hard to disambiguate between close candidates in233

the embedding space, the LETOR model is able to234

turn to external cues in the form of these lexical235

features to help it make better predictions.236

Figure 3: Mean absolute difference of term frequency.

To hone in on how the use of these lexical fea- 237

tures affects a model, we do a post-hoc error analy- 238

sis of our model on the test set using mean absolute 239

difference of term frequency. Figure 3 shows the 240

frequency difference in en-* pairs for the gold set 241

and all error cases of XLM-R and LETOR. XLM- 242

R consistently has higher frequency difference be- 243

tween source-predicted pairs. Conversely, predic- 244

tions from the LETOR model have a frequency 245

deviation that is more in-line with the gold distri- 246

bution illustrating the models’ higher proclivity to 247

choose candidates with similar frequency. 248

5 Conclusion 249

Approaches to BLI have evolved to include full 250

transformer based reranking methods. However, 251

results on recent benchmarks indicate consider- 252

able scope of improvement still, particularly for 253

low-resource or lexically dissimilar language pairs. 254

While embeddings afford a rich semantic represen- 255

tation of individual words, we look towards sup- 256

plementary features derived from individual mono- 257

lingual corpora. Owing to the hubness issue we 258

often retrieve many close candidates highlighting 259

the need for better reranking and additional tools to 260

deduce the correct correspondence. Our simple-yet- 261

effective strategy of modeling lexical features using 262

a ranking objective yields significant improvement 263

over baselines. We are able to quantify their impact 264

and demonstrate the efficacy of our approach across 265

a wide array of language pairs. We hope this work 266

inspires further research into both the acquisition 267

and modelling of such features to further advance 268

state of the art on bilingual lexicon induction. 269
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6 Limitations270

Our proposed approach uses a relatively simple271

learning-to-rank approach with XGBoost. This272

might be less effective at capturing complex, non-273

linear interactions between our features (POS types,274

term frequency, score from upstream models) than275

more sophisticated approaches such as Neural Net-276

works. Also, as noted previously, we do not use277

the SOTA bi-encoder based model (C2) during our278

retrieval step due to compute and time constraints279

of training BERT-based bi-encoders for each in-280

dividual language pair. Similarly we do not use281

scores from the SOTA cross-encoder, BLICEr, as282

input to the LETOR model. For these reasons, our283

approach might not fully exploit the extent of im-284

provements made possible by incorporating such285

lexical features in the BLI task.286

Another limitation of our work stems from ambi-287

guity in the evaluation set of our benchmark dataset288

- XLING. Samples in XLING are constructed using289

word tuples derived from Google Translate. This290

approach does not account for issues arising due to291

polysemy and synonymy. The test set consists of a292

single target correspondence for each source word293

when, in practice, multiple correspondences might294

exist. Thus, a performance measure of any model295

evaluated on this test set, while indicative, does not296

fully reflect its efficacy on this task.297
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A Qualitative Examples422

In Table 2, we show select examples from the en-423

de test set where the LETOR model is able to suc-424

cessfully map source words to the correct target425

correspondences. The words predicted with the426

baseline C1 model are very close alternatives from427

the target languages which translate to rotations,428

monochromatic, and sword for the source words429

motions, coloured, and spear respectively.430

src motions coloured spear
ranksrc 15490 8450 13647
possrc NOUN VERB NOUN

predletor bewegungen farbig speer
rankletor 5855 19410 15249
posletor NOUN ADV PROPN
predc1 rotationen einfarbigen schwert
rankc1 122792 111085 7149
posc1 NOUN ADJ VERB

Table 2: Sample LETOR and C1 predictions (en-de)

The target words are much closer to the source 431

words in relative frequency as shown by their ranks. 432

The extra features help steer the LETOR model 433

towards better predictions from amongst retrieved 434

candidates that are very close in embedding space. 435

We also plot the "motion" example in Figure 4. The 436

correct translation "bewegungen" is better high- 437

lighted after applying transparency and size re- 438

scaling to indicate frequency difference and proba- 439

bility of part-of-speech match. 440

Figure 4: Example of BLI for "motion" without (top)
and with (bottom) term frequency and POS information
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