Language Models can be Deductive Solvers

Jiazhan Feng!* Ruochen Xu?
Yelong Shen?

Junheng Hao?
Dongyan Zhao'?

Hiteshi Sharma?
Weizhu Chen?

'Wangxuan Institute of Computer Technology, Peking University, Beijing
2Microsoft Al, Redmond
3National Key Laboratory of General Artificial Intelligence, Beijing
{fengjiazhan, zhaody}@pku.edu.cn
{ruox, junhenghao,hitshar, yeshe,wzchen}@microsoft.com

Abstract

Logical reasoning is a fundamental aspect
of human intelligence and a key component
of tasks like problem-solving and decision-
making. Recent advancements have enabled
Large Language Models (LLMs) to potentially
exhibit reasoning capabilities, but complex log-
ical reasoning remains a challenge. The state-
of-the-art, solver-augmented language mod-
els, use LLMs to parse natural language log-
ical questions into symbolic representations
first and then adopt external logical solvers to
take in the symbolic representations and output
the answers. Despite their impressive perfor-
mance, any parsing errors will inevitably result
in the failure of the execution of external logi-
cal solvers and no answer to the logical ques-
tions. In this paper, we introduce LOGIPT,
a novel language model that directly internal-
izes and emulates the reasoning processes of
logical solvers and avoids parsing errors by
learning strict adherence to solver syntax and
grammar. LOGIPT is fine-tuned on a newly
constructed instruction-tuning dataset derived
from revealing and refining the invisible rea-
soning process of deductive solvers. Exper-
imental results on two public deductive rea-
soning benchmarks show that LOGIPT outper-
forms state-of-the-art solver-augmented LMs
and few-shot prompting methods on competi-
tive LLMs like GPT-4. This project is available
in https://github.com/Cyril-JZ/LoGiPT.

1 Introduction

Logical reasoning is a foundational element of hu-
man intelligence, holding a pivotal role in tasks
like problem-solving, decision-making, and criti-
cal thinking (Huang and Chang, 2023). Recently,
substantial advancements have been achieved in
the field of NLP through the development of large
language models (LLMs) (OpenAl, 2022, 2023;

* Work done during Jiazhan’s internship at Microsoft Al,

Redmond. Correspondence to: Ruochen Xu and Dongyan
Zhao.

Google, 2023; Touvron et al., 2023a,b). It has
been noted that language models (LMs) could po-
tentially display reasoning capabilities when they
reach a certain scale threshold (e.g., training com-
pute, model parameters, etc.) (Kaplan et al., 2020;
Wei et al., 2022a; Hoffmann et al., 2022). To this
end, LLMs can answer logical questions with ex-
plicit reasoning steps when prompted with a simple
snippet: “Let’s think step by step.” (Kojima et al.,
2022) or step-wise explanations of reasoning (i.e.,
“chain of thoughts™) (Wei et al., 2022b).

While LLMs have made significant progress,
complex logical reasoning remains challeng-
ing (Valmeekam et al., 2022; Liu et al., 2023b;
Luo et al., 2023). Some prior works (Tafjord et al.,
2022; Ling et al., 2023) aimed to enable LMs to
perform logical reasoning via specialized module
fine-tuning, where reasoning is in natural language
(NL). However, the ambiguity and complexity of
NL can lead to undesired issues such as halluci-
nations and unfaithful reasoning (Saparov and He,
2023; Gao et al., 2023). To this end, recent work
has begun to augment LL.Ms with access to exter-
nal Solvers (Chen et al., 2022; Ye et al., 2023; Pan
et al., 2023). In this paper, we focus on the log-
ical solvers, which are theorem provers that can
be any automated reasoning tool for checking the
truth value of logical formulas in symbolic lan-
guage (SL). Invoking logical solvers can guarantee
the accuracy of logical reasoning and relieve the
burden of LLMs to execute intricate and precise
deductive reasoning.

The workflow of the aforementioned solver-
augmented LMs is depicted in Figure 1(a). At
the outset, the information on the logical ques-
tions is stored in NL. It is subsequently fed into
a LM for parsing into a symbolic representation
suitable for solver-input format. Finally, the SL in-
formation is dispatched to a symbolic solver, which
yields the truth value of the logical question. How-
ever, during this process, any NL-to-SL parsing

4026

Findings of the Association for Computational Linguistics: NAACL 2024, pages 4026-4042
June 16-21, 2024 ©2024 Association for Computational Linguistics

https://github.com/Cyril-JZ/LoGiPT

If syntax
is valid

All furry people
are quiet.

Only Answers @ 3

1
1
i
1
! @ NL Context !

1 1

i i
® i Furry($x, True) - |

Quiet($x, True) 1
1

]
SL Facts/Rules/Query |

NL Logical (L ,Par,s,e, Symbolic
a) Solver- ‘ Questions L Eis Solvers Otherwise
augmented Remedial
LMs Measures
”””””””””” NLtoSL ifsymax
‘ NL Logical (LMs) Parse Symbolic is valid Revealed
Questions Solvers Reasoning Steps
b) LoGiPT b1) Our pipeline for developing LoGiPT Collect Instruction-tuning Data
NL Logical SL Reasoning
Questions LeCi} [& Answers -

] -~ \ LoGiPT

b2) Our pipeline for inference with LoGiPT

Figure 1: Workflow of current solver-augmented LMs (a), and our pipeline for LOGIPT (b). It is important to note
that the NL-to-SL parsing is solely utilized for constructing instruction-tuning data but not for inference process.

errors will inevitably result in the failure of the
reasoning process and no answer to the question.
In our preliminary experiments (refer to Table 1
in §2.3), we observe that the parsing successful
rate (i.e., percentage of executable logical formu-
lations) of Vicuna-13B (Chiang et al., 2023) on
ProofWriter (Tafjord et al., 2021) is only 17%. Cur-
rent methods for solving NL-to-SL parsing failures
have two main approaches: directly using LLMs to
reason in NL, or regenerating parsing results based
on the solver’s erroneous message. However, these
methods do not solve the problem fundamentally.

In this paper, we introduce LOGIPT, a novel
Logic-enhanced Pre-trained Transformer designed
to mimic the reasoning process of logical solvers,
enabling it to solve deductive reasoning tasks. We
first construct an instruction-tuning dataset contain-
ing NL logical questions and their corresponding
solver’s symbolic reasoning process. After filtering
out cases having invalid syntax, we fine-tune open-
source LMs like Vicuna or CodelLlama (Roziere
et al., 2023) with this data to create LOGIPT.
Then, LOGIPT can generate all implied facts given
premises and rules, allowing us to determine the
truth value of a logical query by matching it with
implied facts or outputting “unknown” if it cannot
be determined. Our pipeline is presented in Fig-
ure 1(b). We can avoid the syntax or grammatical
errors derived from NL-to-SL parsing by directly
outputting answers with LOGIPT.

Our approach is akin to the process of distilla-
tion (Hinton et al., 2015; Xu et al., 2024), whereby
we distill knowledge from a symbolic model (i.e.,
solver) into a neural network (i.e., LM). However,
the reasoning process of solvers is invisible to users
and we can only obtain the answers without inter-
mediate reasoning steps. We design a pipeline to

reveal and formalize solvers’ invisible reasoning
processes, creating instruction-tuning datasets with
visible and interpretable symbolic reasoning steps
(see Figure 3).

Our main contributions are three-fold:

* To the best of our knowledge, we are the
first to propose empowering LLMs to directly
learn the reasoning process of logical solvers,
thereby acquiring similar reasoning capability
for addressing deductive reasoning tasks.

* Our proposed LOGIPT, can directly act as a
deductive solver and output all facts implied
from NL logical questions while bypassing
the syntax or grammatical errors derived from
NL-to-SL parsing of solver-augmented LMs.

* Evaluation results on two public deductive rea-
soning datasets show that LOGIPT can outper-
form state-of-the-art solver-augmented LMs,
and few-shot prompting methods on competi-
tive LLMs like GPT-4.

2 Preliminary

2.1 Deductive Reasoning

Deductive reasoning is an essential type of logi-
cal reasoning problem. It typically commences
with known facts and rules from logical con-
text, then proceeds through a series of infer-
ence steps until the query can be proved or dis-
proved (Poole and Mackworth, 2010). We also
adopt the Prolog (Clocksin and Mellish, 2003)
language, which stands as the most prominent SL
for describing deductive reasoning problems. We
showcased a deductive reasoning question along
with its Prolog syntax representation in Figure 2.

For each question, we denote the NL description
as Context. The Context can further be parsed

4027

Context: Charlie is green. (...) All green, white people are nice. (...)
True, false, or unknown? Charlie is not green.
A 4

Facts: Green('Charlie, True) Query: Green('Charlie', False)

Rules: Green($x, True) A White($x, True) > Nice($x, True)

Figure 2: An example of deductive reasoning question
from ProofWriter and its parsed Facts, Rules, and Query.

into Facts, Rules, and Query‘. Specifically, a
Fact F = P(ay,--- ,a;) is a symbolic statement
with a predicate P and t arguments {ay,--- ,a;:}
where a; can be a variable, entity, number or bool.
For example, Green(’Charlie’, True) means
“Charlie is green”; Rules are presented in the form
of clauses F1 A --- AN Fpy = Fpp1 A - A Fy,
where F; is a Fact. The Rule means “if each
F; € {F1,---, F,,} is true, then we can imply that
all Facts in {F};,4+1,--- , Fy,} are also true.” For
example, Furry($x, True) - Quiet($x, True)
indicates if variable $x is furry, then $x is quiet; a
Query (@ is also in the format of a Fact that needs
to be proved based on Facts and Rules.

2.2 Solver-augmented LMs

Solver-augmented LMs excel in deductive reason-
ing tasks. As shown in Figure 1(a), they can be
generally divided into two stages: Problem For-
mulation and Symbolic Reasoning. In Problem
Formulation stage, an LM is used to parse an NL
logical question into symbolic representation (Fig-
ure 2). The process can be accomplished by provid-
ing LM with detailed instructions about the gram-
mar of Prolog, alongside a few demonstrations
as in-context examples. The LM is expected to
identify the symbolic Facts, Rules, and Query from
the NL question following the instructions; In Sym-
bolic Reasoning stage, a solver takes in the sym-
bolic representation obtained in the previous stage
and conducts symbolic reasoning. The reasoning
process of external off-the-shelf solver, e.g., pyke
expert system (Frederiksen, 2008), is deterministic
and invisible. Then, the truth value of the parsed
Query, which is the only output of the solver, can
be treated as the answer to the given question.

2.3 Analysis on the Parsing Successful Rate

Once the solver-augmented LMs correctly formu-
late the problem, the answers obtained through

'In this paper, the term ‘Query’ refers to a specific sentence
of statement or comment, while ‘question’ is used in a broader
sense to denote the description of a logical problem.

Model ProofWriter PrOntoQA
Vicuna-13B 17.00 40.80
CodeLlama-13B-Base 0.33 0.40
CodeLlama-13B-Instruct 71.33 77.80

Table 1: Parsing successful rate (%) of our selected
open-source LLMs on two deductive reasoning datasets.

symbolic reasoning will be faithful, attributed to
the deterministic nature of the solver. However,
this heavily relies on the in-context learning (ICL)
capabilities of LMs. Thus, we first calculate the
parsing successful rate of three selected open-
source LLMs on two deductive reasoning datasets
in Table 1. Firstly, we observe that CodeLlama-
13B-Base (CodelLlama-13b-hf) is unable to effec-
tively conduct NL-to-SL parsing due to the limited
ICL capabilities in NL. Then we can find that re-
placing the Base model with the Instruct version
(CodelLlama-13b-Instruct-hf) can alleviate this
issue, which may be attributed to the fact that the In-
struct version is further fine-tuned with approx. 5B
tokens to better follow human instructions. Overall,
open-source LMs still exhibit parsing performance
below expectations in certain situations.

3 LoGiPT

In this paper, we aim to remove the dependency
on unsatisfactory NL-to-SL parsing and present a
novel LM, LOGIPT instructed to imitate the logi-
cal reasoning process of Solvers for deductive rea-
soning tasks. To achieve this, we first reveal the
solver reasoning process when solving logical prob-
lems (§3.1). Then, we construct a solver-derived
instruction-tuning dataset, comprising NL logical
questions and corresponding SL reasoning steps
(§3.2). Finally, we fine-tune open-source LLMs
using this dataset to develop LOGIPT (§3.3).

3.1 Revealing the Solver Reasoning Process

Before operating on the solvers, we first adopt
gpt-4 as the problem formulator for NL-to-SL
parsing with instructions about the grammar and
few-shot demonstrations?, and obtain the SL repre-
sentations of all training questions of the given
logical datasets. Then, consistent with solver-
augmented LMs, we adopt pyke as the symbolic
solver in this work that can make inferences using
the Prolog SL. Given a logical question, pyke first
sets up a knowledge base and injects all known

’Detailed instructions for parsing are in Appendix A,B.

4028

“Turn-1 (from human):

Task Description: Given a statement containing logical facts
and rules in natural languages as context, the task is to:
1. define all the predicates in logic forms from the context
2. parse the statement into known facts and rules based on the
defined predicates

3. begin reasoning to obtain all implied facts

u

Context:

Charlie is green. Charlie is white. Dave is blue. Dave is
furry. Dave is white. Fiona is blue. Fiona is green. Fiona is
nice. Fiona is rough. Fiona is white. All furry people are
quiet. All green, white people are nice. If someone is blue
and quiet then they are green.

B

F

Reasoning:

Turn-2 (from LM):

We first define following predicates and corresponding natural
language explanations:

Green($x, bool) ::: Is x green?

(... more predicates here ...)

F
G

F

We have following known facts from the context:
Green(’Charlie’, True)

Q

(... more facts here ...) c
We have following known rules from the context: 0
rulel: Furry($x, True) - Quiet($x, True) A
rule2: Green($x, True) A White($x, True) - Nice($x, True) B
rule3: Blue($x, True) A Quiet($x, True) - Green($x, True) C

N

Now begin reasoning to obtain all implied facts:

Use rulel: Furry($x, True) - Quiet($x, True)
Bind $x to ’Dave’

Obtain a new implied fact: Quiet(’Dave’, True)
Unbind $x

Finish implied with rulel -

2
C

«

Use rule2: Green($x, True) A White($x, True) - Nice($x, True)
Bind $x to ’Charlie’
Obtain a new implied fact: Nice(’Charlie’, True)
Unbind $x
' Bind $x to ’Fiona’

T
A
T
S

Figure 3: A comprehensive 4-turn training example of

1

| Obtain an already known or implied fact: Nice(’Fiona’, True)
: Unbind $x

| Finish implied with rule2

1

Bind $x to ’Dave’

Obtain a new implied fact: Green(’Dave’, True)

Reuse rule2: Green($x, True) A White($x, True) - Nice($x, True)
Obtain a new implied fact: Nice(’Dave’, True)

Unbind $x

Bind $x to ’Fiona’

Unbind $x
Finish implied with rule3

(.nn

Turn-3 (from human):

1.
implied facts

Turn-4 (from LM):

se rule3: Blue($x, True) A Quiet($x, True) - Green($x, True)

ind $x to ’Dave’

inish implied with rule2

inally, we obtain following implied facts:
reen(’Dave’, True)
more facts here ...

)

inish reasoning

uestion: Based on the above information, is the following
omment true, false, or unknown? Dave is not green.

ptions:
) True
) False
) Unknown

ow you should:
reason first carefully with the above known facts and

. then output your answer strictly in the format of “So, the
orrect option is: X”. The X should be replaced by “A) True”,
B) False” or “C) Unknown”

he comment can be parsed into: Green(’Dave’, False)
ccording to the implied fact: Green(’Dave’, True)
he comment contradicts the fact.

o, the correct option is: B) False

. .

our instruction-tuning data. We highlight the initial

occurrences of each functionality described in §3.1 using the corresponding colors. We omit some predicates and

Facts in Turn-2 to save space. Note: The figure is best view

Facts and Rules (Figure 2) from solver’s inputs.
Then, it iteratively applies Rules on already known
or implied Facts, aiming at obtaining more implied
Facts until the Query is proved or disproved.

The reasoning process executed by pyke solver
is invisible to users and solver-augmented LMs
use the solver as a black-box. We hypothesis the
“chain-of-thought” reasoning process of the solver
is valuable and LLMs are able to learn from it. To
this end, we first modify the source code of pyke?
to achieve the following functionalities:

1. For each application of a Rule, explicitly state
the Rule being ‘Used’, or ‘Reused’ if the
Rule has been applied before.

2. When finishing the application of a Rule, ex-
plicitly state the ‘Finish’ action.

3. When assigning a value (e.g., an entity) to
a variable (e.g., $x) within a Fact in a Rule,
explicitly specify the variable being assigned
using ‘Bind’ and its corresponding value.

4. When the variable assignment is complete,

Shttps://pyke.sourceforge.net/

ed in color.

provide an explicit indication via ‘Unbind’.

5. When obtaining a new implied Fact, explicitly
state the ‘New Fact obtained’. If this Fact is
an ‘Already known or implied Fact’, this
should also be noted explicitly.

. Upon the completion of reasoning, explicitly
display ‘All newly implied Facts’ in the
knowledge base.

With the above instructions, we can obtain the
revealed solver’s reasoning process for the con-
struction of training data. We also highlighted the
initial occurrences of each functionality using the
corresponding colors in Figure 3 (Turn-2), where a
case will be described in detail in the next section.

3.2 Constructing the Instruction-tuning Data

However, as previously mentioned, we cannot guar-
antee that LMs can complete the NL-to-SL parsing
on any arbitrary questions. To this end, we first
filter out all unsuccessfully parsed training cases
that cannot be executed by pyke. Then we reorga-
nize and refine the filtered training data to enhance
the interpretability of the solver-derived reason-

4029

https://pyke.sourceforge.net/

ing steps. For each case, we divide the reasoning
process into four conversational turns (Turn-1&3
for human and Turn-2&4 for LM), which will be
described elaborately in the following paragraphs.
We also provide a comprehensive training example
of our instruction-tuning data* in Figure 3, and the
full version is also included in Appendix C.

Turn-1: Instructions & NL logical Context.
For each NL logical question within the training
set, we begin by stripping away the specific Query
statement while retaining the question Context and
subsequently integrating it with elaborately crafted
instructions. Taking the case in Figure 3 as an ex-
ample, we temporarily exclude the Query ‘Dave
is not green’ from the ‘Context’ field. Here, we
only consider Query-agnostic question description
to ensure that LMs initially focus on the logical
background itself. This is because sometimes the
ground-truth answer is “Unknown” (e.g., cases in
ProofWriter). The truth value of the Query can-
not be inferred from the Context, and therefore we
need to deduce all implied Facts first.

Turn-2: Query-agnostic Solver-derived Reason-
ing. As we have acquired the solver’s symbolic
reasoning data in the revealing phase, our goal in
Turn-2 is to further refine and enhance the reason-
ing process to achieve a more readable form of the
solver’s reasoning process. Specifically, for each
question, we first define all necessary predicates
and append the corresponding NL explanations.
Then we list the known Facts and Rules extracted
from the Context with interleaved NL comments.
After that, we represent the application of each
Rule by utilizing separate blocks, line by line. We
strive to preserve as many solver actions as possi-
ble, such as ‘Binding’ and ‘Unbinding’, as well as
the acquisition of new implied Facts, and so forth.
Noting that this information has already been ob-
tained during the revealing phase, we focus on the
refinement of the solver-derived reasoning process.
Finally, we enumerate all newly implied Facts to
enable the model to perform an interim review.

Turn-3: Query & Answering Instructions. In
Turn-3, we present instructions for answering a
given Query. Following prior works (Ceri et al.,
1989; Tafjord et al., 2021), a Query can be con-
sidered true within a certain logical context if it
is explicitly mentioned or if it can be implied

“In the original case, the Query is ‘Charlie is not green.’.
We replace it with ‘Dave is not green.’ for better illustration.

through several Rule applications. To handle nega-
tion, we consider two distinct assumptions: 1) the
open-world assumption (OWA) that treats any fact
that cannot be provable as special truth value “un-
known”; 2) the closed-world assumption (CWA)
where any fact not provable is assumed “false”. Fol-
lowing both assumptions, we adjust the answering
instructions, particularly the “Options” part.

Turn-4: Query-based Reasoning & Formatted
Answer. In final Turn-4, we compare the parsed
Query with all known Facts and implied Facts, ex-
pecting model to perform basic language inference
and generate answer options in desired format.

3.3 Fine-tuning Open-source LL.Ms

After obtaining the refined deductive reasoning
instruction-tuning dataset, we can fine-tune open-
source LLMs with the expectation that the trained
model (i.e., LOGIPT) can possess reasoning abili-
ties similar to those of solvers. Consequently, for
any given Query, we can bypass the syntax or gram-
matical errors derived from NL-to-SL parsing by
directly generating answers with LOGIPT.

4 Experiments

We construct our instruction-tuning data on the
training sets of two public deductive reasoning
datasets and evaluate LOGIPT on their test sets.

4.1 Datasets

ProofWriter (Tafjord et al., 2021) is a commonly
employed dataset for deductive reasoning. Follow-
ing Pan et al. (2023), we adopt the open-world as-
sumption (OWA) subset where the answer of each
example is one of {True, False, Unknown}. The
original dataset is partitioned into 5 subsets where
each part requiring 0, <1, <2, <3, and <5 hops of
reasoning, respectively. For evaluation, we adopted
the version provided by Pan et al. (2023), which
comprises 600 samples from the most challeng-
ing 5-hop subsets with balanced label distribution.
For training, we merged all training subsets and
obtained 41,433 examples after construction.

PrOntoQA (Saparov and He, 2023) is a synthetic
logical reasoning dataset created recently to test
the general deductive reasoning capacity of LLMs.
We adopt the hardest fictional characters version
following Pan et al. (2023) where the entities of
Facts are fictional concept names (e.g., ‘wumpus’
instead of ‘cat’), to avoid any confounding effects

4030

Model Prompting Methods ProofWriter PrOntoQA
Random Answering - 33.33 50.00
closed-source LMs

ChatGPT (gpt-3.5-turbo) Few-shot Standard 35.50 47.40
ChatGPT (gpt-3.5-turbo) Few-shot CoT 49.17 67.80
GPT-3.5 (text-davinci-003) Few-shot Standard 36.16 51.80
GPT-3.5 (text-davinci-003) Few-shot CoT 48.33 83.00
GPT-4 (gpt-4) Few-shot Standard 52.67 77.40
GPT-4 (gpt-4) Few-shot CoT 68.11 98.79
open-source LMs

Vicuna-13B (vicuna-13b-v1.5-16k) Few-shot Standard 35.50 53.80
Vicuna-13B (vicuna-13b-v1.5-16k) Few-shot CoT 41.50 37.40
CodeLlama-13B-Base (CodelL1lama-13b-hf) Few-shot Standard 0.00 0.00
CodeLlama-13B-Base (CodelL1lama-13b-hf) Few-shot CoT 36.00 50.00
CodeLlama-13B-Instruct (CodeL1ama-13b-Instruct-hf) Few-shot Standard 36.83 52.20
CodeLlama-13B-Instruct (CodeLlama-13b-Instruct-hf) Few-shot CoT 32.67 66.40
solver-argumented LMs

LogicLLM (gpt-3.5-turbo) Few-shot CoT 58.33 61.00
LogicLM (text-davinci-003) Few-shot CoT 71.45 85.00
LogicLM (gpt-4) Few-shot CoT 79.66 83.20
ours

LOGIPT (vicuna-13b-v1.5-16k) No ICD Provided 81.17 96.40
LOGIPT (CodeLlama-13b-hf) No ICD Provided 89.50 95.60
LOGIPT (CodelLlama-13b-Instruct-hf) No ICD Provided 81.67 96.20

Table 2: Main results on two evaluation datasets. The best results of LOGIPT are in bold and the best results within
each dataset are underlined. ‘ICD’ denotes ‘In-Context Demonstrations’.

from knowledge acquired during the pretraining
phase. Similar to ProofWriter, PrOntoQA is or-
ganized into several subsets based on the number
of required reasoning steps. We use the hardest
5-hop subset for evaluation, which comprises 500
samples. Contrary to ProofWriter, PrOntoQA is
in a closed-world assumption (CWA) subset where
the answer of each example is one of {True, False}.
For training, we merely merge all subsets and ob-
tain 15,940 training cases after filtering out syntax-
invalid ones.

4.2 Baselines

Closed-source LMs: We include the Chat-
GPT (gpt-3.5-turbo) (OpenAl, 2022), GPT-3.5
(text-davinci-@03) (Ouyang et al., 2022) and
GPT-4 (gpt-4) (OpenAl, 2023) as closed-source
LMs for evaluation following Pan et al. (2023).

Open-source LMs: We also evaluate open-
source LMs for research community. Specifically,
we choose Vicuna-13B (vicuna-13b-v1.5-16k),
a chatbot trained by fine-tuning LLaMA-2 (Tou-
vron et al., 2023b) on user-shared conversations col-
lected from ShareGPT, and CodelLlama-13B, foun-
dation models for code tasks. We select the base

version (CodelLlama-13b-hf), and instruction fine-
tuned version (CodelLlama-13b-Instruct-hf).

Solver-argumented LMs: Finally, we compare
our model against the solver-argumented LMs.
We focus on the representative LogicLM (Pan
et al., 2023) with underlying LLMs ChatGPT
(gpt-3.5-turbo), GPT-3.5 (text-davinci-003)
and GPT-4 (gpt-4), which serve as the state-of-the-
art deductive reasoning methods.

Prompting Methods: Apart from the LMs, we
also analyze two types of prompting methods for
baselines: i) Standard prompting that uses ICL
with few-shot demonstrations to directly answer the
given question; ii) Chain-of-Thought (CoT) that uti-
lizes step-by-step problem-solving process to gen-
erate explanations where few-shot demonstrations
are also provided, and then outputs the final answer.
For a fair comparison, we use the same in-context
examples for NL-to-SL parsing when evaluating
all models on the same dataset, consistent with Pan
et al. (2023). To enhance the clarification, we also
provide a specific baseline ‘Random Answering’
that randomly outputs answer options. During the
testing of LOGIPT, we did not employ few-shot
demonstrations for in-context learning.

4031

4.3 Implementation Details

In fine-tuning, we use a batch size of 32 per GPU
and a learning rate of 1e-5 for all open-source LMs.
We train our model on 8 Nvidia A100-80G GPUs
with DeepSpeed ZeRO-3 (Rasley et al., 2020) for
12 hours on 2 epochs. For reproducibility, we use
greedy decoding and set the temperature to 0 and
the maximum context length to 8192. As for base-
lines, we strictly follow the setting of Pan et al.
(2023). Given that all instances are presented in the
form of multiple-choice questions, we assess the
model performance by the accuracy of selecting
the correct answer option.

4.4 Main Results

We report the results of LOGIPT and baselines on
Table 2 and have following main findings:

1) When prompting with few-shot examples,
open-source LMs exhibit notably poor deductive
reasoning capabilities, with their outputs closed to
random answering. Even the Standard prompting
models of ChatGPT (gpt-3.5-turbo) and GPT-
3.5 (text-davinci-003) exhibit a similar perfor-
mance to random answering. This once again
demonstrates that it is considerably difficult for
many LLMs to solve logical reasoning tasks.

2) LOGIPT is significantly superior to the
state-of-the-art solver-augmented LMs by a large
margin on both deductive reasoning bench-

marks. In ProofWriter, our best-performing model,
LOGIPT (CodeLlama-13b-hf), outperforms the
currently state-of-the-art LogicLM (gpt-4) by
an absolute improvement of 9.84%. Mean-
while, in PrOntoQA, our best-performing model
LOGIPT (vicuna-13b-v1.5-16k) exhibits an
even higher absolute improvement of 13.20% than
LogicLM (gpt-4). The improvement of both
LOGIPT models is statistically significant com-
pared with the baseline LogicLM (gpt-4) (t-test,
p-value < 0.05). This indicates that our approach is
better than the pipeline of problem formulation first
and then reasoning with solvers, and fine-tuning
with solver-derived reasoning data can facilitate the
deductive reasoning capacity of LMs.

3) LOGIPT significantly outperforms all se-

lected open/closed-source LMs on both datasets,
except for the CoT experiment on the PrOntoQA
data where LOGIPT achieves comparable results
with GPT-4 CoT. This is surprising considering that
our underlying open-source LMs are merely 13B
parameters in size. As for the baseline experiments

Model Accuracy
LOGIPT (vicuna-13b-v1.5-16k) 81.17
+ (w/o ‘unbind’ statements) 80.67
+ (w/o ‘fail & backtrack’ statements) 84.00
+ (w/ NL representation) 66.33
LOGIPT (CodeLlama-13b-hf) 89.50
+ (w/o ‘unbind’ statements) 93.33
+ (w/o ‘fail & backtrack’ statements) 87.17
+ (w/ NL representation) 52.33
LOGIPT (CodeLlama-13b-Instruct-hf) 81.67
+ (w/o ‘unbind’ statements) 79.00
+ (w/o ‘fail & backtrack’ statements) 84.83
+ (w/ NL representation) 66.33

Table 3: The accuracy of the variations on solver-derived
reasoning format, and replacing SL representations with
NL on ProofWriter. The best results on each LMs are
underlined.

of GPT-4, our performance on ProofWriter also sig-
nificantly surpasses that of GPT-4’s Standard and
CoT prompting versions, as well as the Standard
version of PrOntoQA. These results further demon-
strate that open-source LMs, when coupled with
solver-simulated reasoning capacity, can achieve
performance on par with or even superior to closed-
source GPT models.

4) The accuracy of CodeLlama-13B-Base with
Standard prompting was 0.00, and the performance
of the CoT version was close to random answering.

By examining the outputs, we found that this is due
to the CodeLlama-13B-Base’s inability to follow
the provided few-shot demonstrations, resulting in
outputting no answering options. The introduction
of the Instruct version of CodeLlama-13B mitigates
this issue to some extent. However, after training
with LOGIPT, the CodeLLlama models far less en-
counter this issue (i.e., following the right answer-
ing format in both test sets) and even achieve better
performance than the Vicuna version of LOGIPT.
This demonstrates the potential of code foundation
models in logical reasoning tasks, consistent with
the finding on prior work (Yue et al., 2023).

4.5 Further Analysis

Impact of Solver-derived Reasoning Formats
We further investigate the impact of different solver-
derived reasoning formats on the model’s perfor-
mance. Specifically, we consider the following
format variations: 1) w/o ‘unbind’ statements that
we remove all ‘Unbind’ statements from Turn-2
to investigate the utility of the explicit retention

4032

of this action from the solver; 2) w/o ‘fail & back-
track’ statements that we removing all ‘Fail &
backtrack’ statements from Turn-2. During the
solver’s reasoning process, it is expected to en-
counter situations in which, after binding a value,
the solver realizes that not all premises are satis-
fied (e.g., ‘Fiona is blue’ but ‘Fiona is not
quiet’ for application of Rule3 in Figure 3). Con-
sequently, a ‘Fail & backtrack’ operation occurs
(highlighted in color in Figure 3). We explore the
effectiveness of explicitly stating these operations.

Table 3 presents the accuracy on ProofWriter
where several observations can be made: 1)
regardless of using the default format, remov-
ing ‘Unbind’ statements, or removing ‘Fail &
backtrack’ statements, it can not be determined
which format guarantees the optimal results. To
retain the maximum amount of action information
that the solver can provide, we still adopt the de-
fault settings in LOGIPT; 2) whether ‘Unbind’
statements are removed or ‘Fail & backtrack’
statements are removed, there is always an experi-
ment under each open-source LMs that can surpass
the default LOGIPT results. This further enhances
the best performance of LOGIPT shown in Table 2.

Impact of SL Reasoning Representations We
are also curious about the impact of SL reason-
ing representations. Thus, we include additional
experiments in Table 3, denoted as w/ NL represen-
tation that we re-translate the symbolic representa-
tion (e.g., Green(’Charlie’, True)) back to its
original NL version (e.g., Charlie is green.)
and replace the original symbolic representation in
Turn-2. From the table, we can find that replacing
SL representations with NL results in a significant
decrease in model performance, further emphasiz-
ing that symbolic representations are superior to
NL representations in deductive reasoning tasks.

Case Study We also present three typical in-
stances of symbolic reasoning steps generated by
LOGIPT (CodelLlama-13b-hf) from Proof Writer
in Figure 5,6,7 of Appendix E. Overall, after
fine-tuning with our constructed solver-derived
instruction-tuning dataset, LOGIPT demonstrates
a satisfactory ability to mimic the reasoning pro-
cess of logical solvers, as illustrated in Figure 5.
Nevertheless, there are still certain difficulties in
rigorously conducting logical reasoning entirely in
accordance with the rationality of the solvers.

In Figure 6, we observe that the symbolic rea-
soning process in Turn-2 is accurate. However, in

Turn-4, the model erroneously identifies a Fact that
aligned with the predicate of the Query (“Young’),
yet it notes inconsistency in their first arguments
(‘Bear’ and ‘Cat’). Then, the model erroneously
considers them contradictory, leading to the incor-
rect answer option ‘B) False’. While in this case,
the semantic contradiction occurs only when there
is a conflict in boolean values (i.e., Young(‘Bear’,
False)). So the correct option should be ‘C) Un-
known’. Another typical error case is shown in Fig-
ure 7, where the model exhibits an erroneous back-
tracking behavior in Turn-2 (specifically during the
reuse of rules) and omits the necessary steps for rea-
soning utilizing rule7. Consequently, in Turn-4 the
essential Fact, Chases(‘Bear’, ‘BaldEagle’, True),
is missing, leading to an incorrect conclusion.

We also explore merging data from different rea-
soning assumptions in Appendix D.

5 Related Work

Logical Reasoning with LMs. Recent efforts in
adapting LLMs for logical reasoning tasks gen-
erally adopt direct fine-tuning specialized mod-
ules (Clark et al., 2020; Tafjord et al., 2021, 2022;
Yang et al., 2022) or ICL (Zhou et al., 2022; Lyu
et al., 2023; Ling et al., 2023; Liu et al., 2023c),
where reasoning in NL is used by both groups of
methods. Fine-tuning approaches involve training
the full model or specialized modules, enhancing
LLMs with module-level logical reasoning skills
like proof, enumeration, and abduction (Tafjord
et al.,, 2021). The ICL approaches create spe-
cific prompts to encourage LLLMs’ step-by-step rea-
soning skills. Common methods encompass CoT
prompting (Wei et al., 2022b; Chen et al., 2023),
which produces explanations before delivering a
final answer, and least-to-most prompting (Zhou
et al., 2022), which deconstructs a problem into
simpler components that can be resolved individ-
ually. Some recent work has focused on combin-
ing neural networks with symbolic reasoning (Tian
et al., 2022; Pryor et al., 2022; Pan et al., 2023;
Yang et al., 2023), especially the solver-augmented
LMs that parse NL questions into symbolic repre-
sentations, then utilizing external logical solvers for
answering. Despite their impressive performance,
parsing errors can lead to solver execution failure
and logical question-answering issues.

Augmented LMs for Reasoning. Recent work
has begun to augment LMs to overcome their in-
herent limitations such as the incapacity to access

4033

up-to-date information or conduct accurate math-
ematical reasoning. They augment with external
tools and resources, such as the information re-
triever (Shi et al., 2023; Lazaridou et al., 2022),
planner (Liu et al., 2023a) and other pre-trained
models (Shen et al., 2023). Specifically, to en-
hance the reasoning capacity, recent work resort to
external off-the-shelf Solvers including program-
matic interpreters (Chen et al., 2022; Gao et al.,
2023), satisfiability solvers (Ye et al., 2023), logical
solvers (Pan et al., 2023) or their hybrids (Poesia
et al., 2023). Most of them utilize the LMs to parse
the NL question to symbolic representations and
then invoke solvers to reason in SL. In this paper,
we concentrate on logical solvers, automated tools
for validating the truth value of logical formulas.

6 Conclusion

In this paper, we propose a novel LOGIPT that can
directly act as a logical solver for deductive rea-
soning tasks. LOGIPT can output all facts implied
from NL logical questions, while bypassing the syn-
tax or grammatical errors derived from NL-to-SL
parsing of solver-augmented LMs. We conducted
numerous analytical experiments on two public de-
ductive reasoning benchmarks. Evaluation results
show that LOGIPT can significantly outperform
state-of-the-art solver-augmented LMs, and surpass
or be comparable with few-shot prompting meth-
ods on competitive LLMs like GPT-4.

Limitations

Besides its merits, this work still has two main
limitations that could be further explored. Firstly,
in this paper, we mainly focus on exploring how
to empower LMs to directly learn or emulate the
reasoning process of logical solvers. Hence, we
choose deductive reasoning as a starting point for
research. Our proposed LOGIPT is also mainly
used for deductive reasoning and thus cannot han-
dle more complex logical problems such as con-
straint satisfaction problems and first-order logic
reasoning problems. Plus, we employ forward-
chaining reasoning while backward-chaining is
also an efficient reasoning approach (Kazemi et al.,
2023). Fortunately, our approach is not confined
solely to specific logical tasks. Therefore, in the
future, we aim to endow the LMs with more rea-
soning abilities by revealing the reasoning process
of corresponding solvers for other logical tasks.
Secondly, we observe limited diversity in the

Rule formats of the two datasets utilized in this
paper (e.g., in PrOntoQA, the majority of Rules
are in the format of ‘Every/Each A is (not) B’ or ‘A
are (not) B’. Please refer to Appendix D for more
details). Consequently, LMs trained on our con-
structed instruction-tuning data may not be able to
generalize to more complex logical Rules. As a
potential solution, future works could explore the
enhancement of the style/genre of logical context
by paraphrasing with prompting small-scale LMs,
or augmenting training data with synthetic data.

Ethics Statement

This paper introduces LOGIPT, a novel LM de-
signed to mimic the reasoning process of logical
solvers, enabling it to solve deductive reasoning
tasks. The data-collecting APIs and closed- or
open-source LMs are only strictly used for aca-
demic purposes. The proposed method does not
introduce ethical or social bias into the collected
data.

Acknowledgements

We would like to thank the anonymous reviewers
for their constructive comments and suggestions.
This work was supported by the National Key R&D
Program of China (No.2022YFC3301900).

References

Stefano Ceri, Georg Gottlob, Letizia Tanca, et al. 1989.
What you always wanted to know about datalog(and
never dared to ask). IEEE transactions on knowledge
and data engineering, 1(1):146—166.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Zhipeng Chen, Kun Zhou, Beichen Zhang, Zheng Gong,
Wayne Xin Zhao, and Ji-Rong Wen. 2023. Chat-
cot: Tool-augmented chain-of-thought reasoning on
chat-based large language models. arXiv preprint
arXiv:2305.14323.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, lon
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2020.
Transformers as soft reasoners over language. In Pro-
ceedings of the Twenty-Ninth International Joint Con-
ference on Artificial Intelligence, IJCAI-20, pages

4034

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.24963/ijcai.2020/537

3882-3890. International Joint Conferences on Arti-
ficial Intelligence Organization. Main track.

William F Clocksin and Christopher S Mellish. 2003.
Programming in PROLOG. Springer Science & Busi-
ness Media.

Bruce Frederiksen. 2008. Applying expert system tech-
nology to code reuse with pyke. PyCon: Chicago.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764-10799. PMLR.

Google. 2023. Google bard. https://bard.google.com/.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

Jie Huang and Kevin Chen-Chuan Chang. 2023. To-
wards reasoning in large language models: A survey.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 1049—-1065, Toronto,
Canada. Association for Computational Linguistics.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Mehran Kazemi, Najoung Kim, Deepti Bhatia, Xin
Xu, and Deepak Ramachandran. 2023. LAMBADA:
Backward chaining for automated reasoning in nat-
ural language. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 6547-6568,
Toronto, Canada. Association for Computational Lin-
guistics.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in

neural information processing systems, 35:22199—
22213.

Angeliki Lazaridou, Elena Gribovskaya, Wojciech
Stokowiec, and Nikolai Grigorev. 2022. Internet-
augmented language models through few-shot
prompting for open-domain question answering.
arXiv preprint arXiv:2203.05115.

Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang,
Mingu Lee, Roland Memisevic, and Hao Su. 2023.
Deductive verification of chain-of-thought reasoning.
arXiv preprint arXiv:2306.03872.

Bo Liu, Yugian Jiang, Xiaohan Zhang, Qiang Liu,
Shiqi Zhang, Joydeep Biswas, and Peter Stone.
2023a. Llm+ p: Empowering large language models
with optimal planning proficiency. arXiv preprint
arXiv:2304.11477.

Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji
Zhou, and Yue Zhang. 2023b. Evaluating the logical
reasoning ability of chatgpt and gpt-4. arXiv preprint
arXiv:2304.03439.

Hanmeng Liu, Zhiyang Teng, Leyang Cui, Chaoli
Zhang, Qiji Zhou, and Yue Zhang. 2023c. Logi-
CoT: Logical chain-of-thought instruction tuning. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 2908-2921, Singapore.
Association for Computational Linguistics.

Man Luo, Shrinidhi Kumbhar, Mihir Parmar, Neeraj
Varshney, Pratyay Banerjee, Somak Aditya, Chitta
Baral, et al. 2023. Towards logiglue: A brief sur-
vey and a benchmark for analyzing logical reason-
ing capabilities of language models. arXiv preprint
arXiv:2310.00836.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning. arXiv preprint arXiv:2301.13379.

OpenAl. 2022. Chatgpt: Optimizing language models
for dialogue. https://openai.com/blog/chatgpt/.

OpenAl. 2023.
abs/2303.08774.

Gpt-4 technical report. ArXiv,

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730-27744.

Liangming Pan, Alon Albalak, Xinyi Wang, and
William Yang Wang. 2023. Logic-lm: Empower-
ing large language models with symbolic solvers
for faithful logical reasoning. arXiv preprint
arXiv:2305.12295.

Gabriel Poesia, Kanishk Gandhi, Eric Zelikman, and
Noah D Goodman. 2023. Certified reasoning with
language models. arXiv preprint arXiv:2306.04031.

David L Poole and Alan K Mackworth. 2010. Artificial
Intelligence: foundations of computational agents.
Cambridge University Press.

Connor Pryor, Charles Dickens, Eriq Augustine, Alon
Albalak, William Wang, and Lise Getoor. 2022. Ne-
upsl: Neural probabilistic soft logic. arXiv preprint
arXiv:2205.14268.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th

4035

https://bard.google.com/
https://doi.org/10.18653/v1/2023.findings-acl.67
https://doi.org/10.18653/v1/2023.findings-acl.67
https://doi.org/10.18653/v1/2023.acl-long.361
https://doi.org/10.18653/v1/2023.acl-long.361
https://doi.org/10.18653/v1/2023.acl-long.361
https://doi.org/10.18653/v1/2023.findings-emnlp.191
https://doi.org/10.18653/v1/2023.findings-emnlp.191
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/

ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 3505-3506.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Abulhair Saparov and He He. 2023. Language models
are greedy reasoners: A systematic formal analysis
of chain-of-thought. In The Eleventh International
Conference on Learning Representations.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in
huggingface. arXiv preprint arXiv:2303.17580.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Min-
joon Seo, Rich James, Mike Lewis, Luke Zettle-
moyer, and Wen-tau Yih. 2023. Replug: Retrieval-
augmented black-box language models. arXiv
preprint arXiv:2301.12652.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021.
ProofWriter: Generating implications, proofs, and
abductive statements over natural language. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 3621-3634, Online.
Association for Computational Linguistics.

Oyvind Tafjord, Bhavana Dalvi Mishra, and Peter Clark.
2022. Entailer: Answering questions with faithful
and truthful chains of reasoning. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2078-2093, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Jidong Tian, Yitian Li, Wenqing Chen, Ligiang Xiao,
Hao He, and Yaohui Jin. 2022. Weakly supervised
neural symbolic learning for cognitive tasks. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pages 5888—5896.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan,
and Subbarao Kambhampati. 2022. Large language
models still can’t plan (a benchmark for llms on plan-
ning and reasoning about change). arXiv preprint
arXiv:2206.10498.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022a. Emergent abilities of large language models.
Transactions on Machine Learning Research.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022b. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824-24837.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen,
Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao,
and Tianyi Zhou. 2024. A survey on knowledge dis-
tillation of large language models. arXiv preprint
arXiv:2402.13116.

Kaiyu Yang, Jia Deng, and Danqi Chen. 2022. Gen-
erating natural language proofs with verifier-guided
search. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 89—105, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Sen Yang, Xin Li, Leyang Cui, Lidong Bing, and
Wai Lam. 2023. Neuro-symbolic integration brings
causal and reliable reasoning proofs. arXiv preprint
arXiv:2311.09802.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. 2023.
Satisfiability-aided language models using declara-
tive prompting. arXiv preprint arXiv:2305.09656.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.
2023. Mammoth: Building math generalist models
through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, et al. 2022.
Least-to-most prompting enables complex reasoning
in large language models. In The Eleventh Interna-
tional Conference on Learning Representations.

4036

https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2022.emnlp-main.134
https://doi.org/10.18653/v1/2022.emnlp-main.134
https://doi.org/10.18653/v1/2022.emnlp-main.7
https://doi.org/10.18653/v1/2022.emnlp-main.7
https://doi.org/10.18653/v1/2022.emnlp-main.7

A Instructions for NL-to-SL Parsing on
ProofWriter

Task Description: You are given a problem description
and a question. The task is to:

1) define all the predicates in the problem

2) parse the problem into logic rules based on the defined
predicates

3) write all the facts mentioned in the problem

4) parse the question into the logic form

Problem:
Anne is quiet. Erin is furry. (... more context here ...) All
red people are young.

Question:
Based on the above information, is the following statement
true, false, or unknown? Anne is white.

Predicates:

Quiet($x, bool) ::: Is x quiet?
Furry($x, bool) ::: Is x furry?
(... more predicates here ...)
Young($x, bool) ::: Is x young?

Facts:

Quite(Anne, True) ::: Anne is quiet.
Furry(Erin, True) ::: Erin is furry.

(... more facts here ...)

Quite(Harry, True) ::: Harry is quiet.
White(Harry, True) ::: Harry is white.

Rules:

Young($x, True) >>> Furry($x, True) ::: Young people
are furry.

Quite(Anne, True) >>> Red($x, True) ::: If Anne is quiet
then Anne is red.

(... more rules here ...)

Red($x, True) >>> Young($x, True) ::: All red people
are young.

Query:
White(Anne, True) ::: Anne is white.

Problem:
(new problem here)
Question:
(new question here)

B Instructions for NL-to-SL Parsing on
PrOntoQA

Task Description: You are given a problem description
and a question. The task is to:

1) define all the predicates in the problem

2) parse the problem into logic rules based on the defined
predicates

3) write all the facts mentioned in the problem

4) parse the question into the logic form

Problem:
Each jompus is fruity. Every jompus is a wumpus. (...
more context here ...) Alex is a tumpus.

Question:
True or false: Alex is not shy.

Predicates:

Jompus($x, bool) ::: Does x belong to Jompuses?
Fruity($x, bool) ::: Is x fruity?

(... more predicates here ...)

Liquid($x, bool) ::: Is x liquid?

Zumpus($x, bool) ::: Does x belong to Zumpuses?

Facts:
Tumpus(Alex, True) ::: Alex is a tumpus.

Rules:

Jompus($x, True) >>> Fruity($x, True) ::: Each jompus
is fruity.

Jompus($x, True) >>> Wumpus($x, True) ::: Every
jompus is a wumpus.

(... more rules here ...)

Rompus($x, True) >>> Liquid($x, True) ::: Each rompus
is liquid.

Rompus($x, True) >>> Zumpus($x, True) ::: Rompuses
are zumpuses.

Query:
Shy(Alex, False) ::: Alex is not shy.

Problem:
(new problem here)
Question:
(new question here)

C A Comprehensive Training Example of
our Instruction-tuning Data

We present in Figure 4 the full version of the
comprehensive 4-turn training example of our
instruction-tuning data shown in Figure 3.

D Effectiveness of Merging Data from
Different Reasoning Assumptions

Since ProofWriter is an open-world assumption
and PrOntoQA is labeled within a closed-world
assumption, we also perform a further investiga-
tion on whether both reasoning assumptions can
benefit each other. Specifically, we first merge both
constructed training data and then test LOGIPT on
each test set. The experimental results are shown

4037

‘Turn-1 (from human):

Task Description: Given a statement containing logical facts
and rules in natural languages as context, the task is to:

1. define all the predicates in logic forms from the context
2. parse the statement into known facts and rules based on the
defined predicates

3. begin reasoning to obtain all implied facts

Context:

Charlie is green. Charlie is white. Dave is blue. Dave is
furry. Dave is white. Fiona is blue. Fiona is green. Fiona is
nice. Fiona is rough. Fiona is white. All furry people are
quiet. All green, white people are nice. If someone is blue
and quiet then they are green.

Reasoning:
Turn-2 (from LM):
We first define following predicates and corresponding natural
language explanations:
Green($x, bool) ::: Is x green?
White($x, bool) ::: Is x white?

Blue($x, bool) ::: Is x blue?
Furry($x, bool) ::: Is x furry?
Nice($x, bool) ::: Is x nice?

Rough($x, bool) :::
Quiet($x, bool) :::

Is x rough?
Is x quiet?

We have following known facts from the context:
Green(’Charlie’, True)
Green(’Fiona’, True)
White(’Charlie’, True)
White(’Dave’, True)
White(’Fiona’, True)
Blue(’Dave’, True)
Blue(’Fiona’, True)
Furry(’Dave’, True)
Nice(’Fiona’, True)
Rough(’Fiona’, True)

We have following known rules from the context:

rulel: Furry($x, True) - Quiet($x, True)

rule2: Green($x, True) A White($x, True) - Nice($x, True)
rule3: Blue($x, True) A Quiet($x, True) - Green($x, True)

Now begin reasoning to obtain all implied facts:

Use rulel: Furry($x, True) - Quiet($x, True)
Bind $x to ’Dave’

Obtain a new implied fact: Quiet(’Dave’, True)
Unbind $x

Finish implied with rulel

g

Use rule2: Green($x, True) A White($x, True) - Nice($x, True)
Bind $x to ’Charlie’

Obtain a new implied fact: Nice(’Charlie’, True)

Unbind $x

Bind $x to ’Fiona’

Obtain an already known or implied fact: Nice(’Fiona’, True)
Unbind $x

Finish implied with rule2

Use rule3: Blue($x, True) A Quiet($x, True) - Green($x, True)
Bind $x to ’Dave’

Obtain a new implied fact: Green(’Dave’, True)

Reuse rule2: Green($x, True) A White($x, True) - Nice($x, True)
Bind $x to ’Dave’

Obtain a new implied fact: Nice(’Dave’, True)

Finish implied with rule2

Unbind $x

Bind $x to ’Fiona’

Unbind $x

Finish implied with rule3

Finally, we obtain following implied facts:
Green(’Dave’, True)

Nice(’Charlie’, True)

Nice(’Dave’, True)

Quiet(’Dave’, True)

Finish reasoning

Turn-3 (from human):
Question: Based on the above information, is the following
comment true, false, or unknown? Dave is not green.

1
1
1
1
1
i
Options: i
A) True :
B) False .
C) Unknown !
1
1
1
1
1
1
1
1
1
1
1
1

Now you should:

1. reason first carefully with the above known facts and
implied facts

2. then output your answer strictly in the format of “So, the
correct option is: X”. The X should be replaced by “A) True”,
“B) False” or “C) Unknown”

Turn-4 (from LM):

The comment can be parsed into: Green(’Dave’, False)
According to the implied fact: Green(’Dave’, True)
The comment contradicts the fact.

So, the correct option is: B) False

Figure 4: The full version of the comprehensive 4-turn training example of our instruction-tuning data shown in

Figure 3.

Train set Test Set VCN CLB CLI

PrOntoQA PrOntoQA 9640 95.60 96.20
Both PrOntoQA 91.00 87.00 89.00
Both (Reformat) PrOntoQA 90.00 87.00 77.80
ProofWriter ProofWriter 81.17 89.50 81.67
Both ProofWriter 79.33 87.17 79.67
Both (Reformat) ProofWriter 79.00 90.83 84.50

Table 4: The accuracy of LOGIPT trained with merged
data and tested on single data with different underlying
LMs. ‘VCN’, ‘CLB’, and ‘CLI respectively represent
Vicuna-13B, CodelLlama-13B-Base, and Codel.lama-
13B-Instruct. ‘Both’ means ‘ProofWriter + PrOntoQA’.

in Table 4. We can conclude that if we directly mix
the two types of data for training, the results on
their respective test sets will be slightly lower than
those obtained from training solely on their respec-
tive datasets. Therefore, we conducted an in-depth

analysis of the underlying reasons and observed
that in PrOntoQA, the majority of Rules are in the
format of ‘Every/Each A is (not) B’ or ‘A are (not)
B’. While in ProofWriter, the predominant structure
of Rules consists of: ‘If someone is A, then they
are B’ or ‘If something is A, then it is B’. Therefore,
we conducted an additional set of experiments in
which the Rule format of two training sets was ran-
domly reformatted into the four aforementioned
types using regular expression (denoted as ‘Both
(Reformat)’). Then, we test the model on the orig-
inal test sets. We can observe that by employing
this approach, the code models yield improved per-
formance on ProofWriter. Thus, the style/genre of
logical context must also be taken into considera-
tion to maximize the efficacy of transfer learning
in logical reasoning.

4038

E Typical Instances of Generated
Symbolic Reasoning Steps

We also showcase three typical instances
of symbolic reasoning steps generated by
LOGIPT (CodelLlama-13b-hf) from the test set
of ProofWriter in Figure 5, 6 and 7.

4039

Turn-1 (from human):

Task Description: Given a statement containing logical facts

and rules in natural languages as context, the task is to:

1. define all the predicates in logic forms from the context
2. parse the statement into known facts and rules based on the

defined predicates
3. begin reasoning to obtain all implied facts

Context:

Bob is big. Bob is green. Dave is kind. Dave is white. Erin is

Bind $x to 'Bob’

Obtain an already known or
Finish implied with rule3

Unbind $x

Bind $x to 'Erin’

Obtain a new implied fact:

Bind $x to 'Erin'

Reuse rule3: Furry($x, True) - Green($x,

Reuse rule3: Furry($x, True) - Green($x,

True)

implied fact: Green('Bob', True)

Furry('Erin', True)

True)

Obtain an already known or implied fact:
Finish implied with rule3
Unbind $x

Bind $x to 'Fiona’

Obtain an already known or

green. Erin is kind. Erin is smart. Fiona is big. Fiona is Green('Erin', True)

blue. Fiona is furry. White, blue things are furry. All big,
white things are smart. Furry things are green. Kind things

are blue. All green things are furry. Green things are big.

implied fact: Furry('Fiona', True)

Reasoning:

Turn-2 (from LM):

We first define following predicates and corresponding natural

language explanations:

Big($x, bool) ::: Is x big?
Green($x, bool) : Is x green?
Kind($x, bool) Is x kind?
White($x, bool) : Is x white?
Smart($x, bool) : Is x smart?
Blue($x, bool) : Is x blue?
Furry($x, bool) ::: Is x furry?

We have following known facts from the context:
Big('Bob', True)
Big('Fiona', True)
Green('Bob', True)
Green('Erin', True)
Kind('Dave', True)
Kind('Erin', True)
White('Dave', True)
Smart('Erin', True)
Blue('Fiona', True)
Furry('Fiona', True)

We have following known rules from the context:

rulel: White($x, True) A Blue($x, True) - Furry($x, True)
rule2: Big($x, True) A White($x, True) - Smart($x, True)
rule3: Furry($x, True) - Green($x, True)

rule4: Kind($x, True) - Blue($x, True)

rule5: Green($x, True) - Furry($x, True)

rule6: Green($x, True) - Big($x, True)

Now begin reasoning to obtain all implied facts:

Use rule3: Furry($x, True) - Green($x, True)
Bind $x to 'Fiona’

Obtain a new implied fact: Green('Fiona', True)
Unbind $x

Finish implied with rule3

Use rule4: Kind($x, True) - Blue($x, True)
Bind $x to 'Dave’
Obtain a new implied fact: Blue('Dave', True)

Reuse rulel: White($x, True) A Blue($x, True) - Furry($x, True)

Bind $x to 'Dave’

Obtain a new implied fact: Furry('Dave', True)
Reuse rule3: Furry($x, True) - Green($x, True)
Bind $x to 'Dave’

Obtain a new implied fact: Green('Dave', True)
Finish implied with rule3

Finish implied with rulel

Unbind $x

Bind $x to 'Dave’

Obtain an already known or
Unbind $x

Finish implied with rule5

1

1

1

1

i

1

| Use rule6: Green($x, True)
1 Bind $x to 'Bob’

| Obtain an already known or
| Unbind $x

: Bind $x to 'Erin’

1 Obtain a new implied fact:
| Reuse rule2: Big($x, True)
! Bind $x to 'Erin'

Finish implied with rule2
Unbind $x

Bind $x to 'Fiona'

Obtain an already known or
Unbind $x

Bind $x to 'Dave’

Obtain a new implied fact:
Reuse rule2: Big($x, True)
Bind $x to 'Dave’

Obtain a new implied fact:
Finish implied with rule2
Unbind $x

Finish implied with rule6

Big('Erin', True)
Big('Dave', True)
Green('Fiona', True)
Green('Dave', True)
Smart('Dave', True)
Blue('Dave', True)
Blue('Erin', True)
Furry('Dave', True)
Furry('Bob', True)
Furry('Erin', True)

Finish reasoning

Turn-3 (from human):

Options:
A) True
B) False
C) Unknown

Now you should:

implied fact: Furry('Dave', True)

> Big($x, True)

implied fact: Big('Bob', True)

Big('Erin', True)

A White($x, True) - Smart($x, True)

implied fact: Big('Fiona', True)

Big('Dave', True)

A White($x, True) - Smart($x, True)

Smart('Dave', True)

Finally, we obtain following implied facts:

Question: Based on the above information, is the following
comment true, false, or unknown? Dave is not furry.

1. reason first carefully with the above known facts and
implied facts

2. then output your answer strictly in the format of "So, the
correct option is: {X}". The {X} should be replaced by "A)
True", "B) False" or "C) Unknown"

Unbind $x

Bind $x to 'Erin'

Obtain a new implied fact: Blue('Erin', True)

Reuse rulel: White($x, True) A Blue($x, True) - Furry($x, True)
Bind $x to 'Erin'

Finish implied with rulel

Unbind $x

Finish implied with rule4

Turn-4 (from LM):

The comment can be parsed into: Furry('Dave', False)
According to the implied fact: Furry('Dave', True)
The comment contradicts the fact.

So, the correct option is: B) False

Use rule5: Green($x, True) - Furry($x, True)
Bind $x to 'Bob’

Obtain a new implied fact: Furry('Bob', True)
<

Figure 5: An instance where LOGIPT (CodeLlama-13b-hf) successfully emulates a logical solver to conduct
reasoning and arrive at the correct answer, originates from the test set of ProofWriter.

4040

Reuse rule2: Likes($x, Cat, True) - Visits($x, Dog, True) ™
Bind $x to 'Cat"'

Obtain a new implied fact: Visits('Cat’, 'Dog', True)

Reuse rulel: Visits($x, Mouse, True) A Visits(Mouse, Dog, True)
> Cold($x, True)

Bind $x to 'Cat’

Finish implied with rulel

Reuse rulel: Visits($x, Mouse, True) A Visits(Mouse, Dog, True)
- Cold($x, True)

Finish implied with rulel

Finish implied with rule2

Finish implied with rule3

Unbind $x

Bind $x to 'Dog’

Obtain a new implied fact: Cold('Dog', True)

Reuse rule3: Cold($x, True) - Likes($x, Cat, True)

Bind $x to 'Dog’

Obtain a new implied fact: Likes('Dog', 'Cat', True)

Reuse rule2: Likes($x, Cat, True) - Visits($x, Dog, True)

Bind $x to 'Dog’

Obtain a new implied fact: Visits('Dog', 'Dog', True)

Reuse rulel: Visits($x, Mouse, True) A Visits(Mouse, Dog, True)
- Cold($x, True)

Bind $x to 'Dog’

Finish implied with rulel

Reuse rulel: Visits($x, Mouse, True) A Visits(Mouse, Dog, True)
- Cold($x, True)

Finish implied with rulel

Finish implied with rule2

Finish implied with rule3

Unbind $x

Finish implied with rulel

Unbind $x

Bind $x to 'Cat’

Turn-1 (from human):

Task Description: Given a statement containing logical facts
and rules in natural languages as context, the task is to:

1. define all the predicates in logic forms from the context
2. parse the statement into known facts and rules based on the
defined predicates

3. begin reasoning to obtain all implied facts

Context:

The bear is green. The bear likes the cat. The bear likes the
dog. The bear visits the dog. The cat is young. The cat sees
the bear. The cat sees the dog. The cat visits the bear. The
cat visits the mouse. The dog is round. The dog likes the
bear. The dog likes the mouse. The dog visits the mouse. The
mouse is big. The mouse is cold. The mouse is round. If
something visits the mouse and the mouse visits the dog then
it is cold. If something likes the cat then it visits the dog.
If something is cold then it likes the cat. If something is
green then it sees the dog. If something likes the mouse then
it sees the cat. If something is green and cold then it likes
the cat. If something is big and it visits the bear then the
bear is green.

Reasoning:
Turn-2 (from LM):
We first define following predicates and corresponding natural
language explanations:
Green($x, bool) ::: Is x green?
Likes($x, $y, bool) ::: Does x like y?
Visits($x, $y, bool) ::: Does x visit y?
Young($x, bool) ::: Is x young?
Sees($x, $y, bool) ::: Does x see y?

g

Round($x, bool) ::: Is x round? Obtain an already known or implied fact: Likes('Cat', 'Cat’,
Big($x, bool) : Is x big? True)
Cold($x, bool) ::: Is x cold? Unbind $x

Bind $x to 'Dog’
We have following known facts from the context: Obtain an already known or implied fact: Likes('Dog', 'Cat’,
Green('Bear', True) True)
Likes('Bear', 'Cat', True) Unbind $x

Likes('Bear', 'Dog', True)
Likes('Dog', 'Bear', True)
Likes('Dog', 'Mouse', True)
Visits('Bear', 'Dog', True)
Visits('Cat', 'Bear', True)
Visits('Cat', 'Mouse', True)
Visits('Dog', 'Mouse', True)
Young('Cat', True)
Sees('Cat', 'Bear', True)
Sees('Cat', 'Dog', True)
Round('Dog"’, True)
Round('Mouse’, True)
Big('Mouse', True)
Cold('Mouse', True)

Finish implied with rule3

Use rule4: Green($x, True) - Sees($x, Dog, True)
Bind $x to 'Bear’

Obtain a new implied fact: Sees(‘Bear’,
Unbind $x

Finish implied with rule4

‘Dog', True)

Use rule5: Likes($x, Mouse, True) - Sees($x, Cat, True)
Bind $x to 'Dog’

Obtain a new implied fact: Sees('Dog’,
Unbind $x

Finish implied with rule5

‘Cat', True)

Finally, we obtain following implied facts:

We have following known rules from the context: Likes('Mouse', 'Cat', True)
rulel: Visits($x, Mouse, True) A Visits(Mouse, Dog, True) - Likes('Cat', 'Cat', True)
Cold($x, True) Likes('Dog', 'Cat', True)
rule2: Likes($x, Cat, True) - Visits($x, Dog, True) Visits('Mouse', ‘Dog', True)
rule3: Cold($x, True) - Likes($x, Cat, True) Visits('Cat', 'Dog', True)
rule4: Green($x, True) - Sees($x, Dog, True) Visits('Dog', 'Dog', True)
rule5: Likes($x, Mouse, True) - Sees($x, Cat, True) Sees('Bear', 'Dog', True)
rule6: Green($x, True) A Cold($x, True) - Likes($x, Cat, True) Sees('Dog', 'Cat', True)
rule7: Big($x, True) A Visits($x, Bear, True) - Green(Bear, Cold('Cat', True)

True)
Now begin reasoning to obtain all implied facts:

Use rule2: Likes($x, Cat, True) - Visits($x, Dog, True)
Bind $x to 'Bear’

Cold('Dog', True)
Finish reasoning

Turn-3 (from human):
Question: Based on the above information, is the following

Obtain an already known or implied fact: Visits('Bear', 'Dog', comment true, false, or unknown? The bear is young.
True)
Unbind $x Options:
Finish implied with rule2 A) True
. B) False
Use rule3: Cold($x, True) - Likes($x, Cat, True)) Unknown

Bind $x to 'Mouse’

Obtain a new implied fact: Likes('Mouse', 'Cat', True)
Reuse rule2: Likes($x, Cat, True) - Visits($x, Dog, True)
Bind $x to 'Mouse’

Obtain a new implied fact: Visits('Mouse', 'Dog', True)

Reuse rulel: Visits($x, Mouse, True) A Visits(Mouse, Dog, True)

> Cold($x, True)
Bind $x to 'Mouse’
Finish implied with rulel

Reuse rulel: Visits($x, Mouse, True) A Visits(Mouse, Dog, True)

- Cold($x, True)

Now you should:
1. reason first carefully with the above known facts and
implied facts

correct option is: {X}". The {X} should be replaced by "A)
True", "B) False" or "C) Unknown"

2. then output your answer strictly in the format of "So, the

Turn-4 (from LM):
The comment can be parsed into: Young('Bear', True)
-

. A el +o—the| £ VAPPENN. J 3}
Bind $x to 'Cat’' | S T
Obtain a new implied fact: Cold('Cat', True) S o oy foa

5 P +

Reuse rule3: Cold($x, True) - Likes($x, Cat, True)
Bind $x to 'Cat’
Obtain a new implied fact: Likes('Cat’,

According to the above known facts and implied facts, we can

not determine whether the comment is true or false.

So, the correct option is: C) Unknown ’

Figure 6: An error case from the test set of ProofWriter where LOGIPT (Codel1ama-13b-hf) fails to identify the
reference Fact to judge the truth value of the Query (‘The bear is young’). The incorrect reasoning steps are marked
in yellow, and the correct revisions or missing steps are marked in green.

4041

Turn-1 (from human):

Task Description: Given a statement containing logical facts
and rules in natural languages as context, the task is to:

1. define all the predicates in logic forms from the context
2. parse the statement into known facts and rules based on the
defined predicates

3. begin reasoning to obtain all implied facts

Context:

The bald eagle is big. The bald eagle is not green. The bald
eagle likes the bear. The bald eagle likes the squirrel. The
bear chases the lion. The bear is green. The bear visits the
bald eagle. The bear visits the squirrel. The lion is not
green. The lion likes the bear. The lion visits the squirrel.
The squirrel chases the bald eagle. The squirrel is cold. The
squirrel visits the bald eagle. If someone is cold then they
are not young. All big people are not green. If the lion is
big and the lion is green then the lion chases the bald eagle.
If someone chases the bald eagle then they like the bear. If
someone is round and they visit the bald eagle then the bald
eagle likes the squirrel. If someone visits the lion then they
like the bald eagle. If the lion visits the squirrel and the
squirrel chases the bear then the bear chases the bald eagle.
If someone visits the lion then they are cold. If someone
likes the bear then they chase the bear.

Reasoning:

Turn-2 (from LM):

We first define following predicates and corresponding natural
language explanations:

Big($x, bool) ::: Is x big?

Green($x, bool) ::: Is x green?
Likes($x, $y, bool) ::: Does x like y?
Chases($x, $y, bool) Does x chase y?
Visits($x, $y, bool) ::: Does x visit y?
Cold($x, bool) ::: Is x cold?

Young($x, bool) : Is x young?
Round($x, bool) ::: Is x round?

We have following known facts from the context:
Big('BaldEagle', True)
Green('BaldEagle', False)
Green('Bear', True)

Green('Lion', False)
Likes('BaldEagle', 'Bear', True)
Likes('BaldEagle', 'Squirrel', True)
Likes('Lion', 'Bear', True)
Chases('Bear', 'Lion', True)
Chases('Squirrel', 'BaldEagle', True)
Visits('Bear', 'BaldEagle', True)
Visits('Bear', 'Squirrel', True)
Visits('Lion', 'Squirrel’, True)
Visits('Squirrel', 'BaldEagle', True)
Cold('Squirrel', True)

We have following known rules from the context:

rulel: Cold($x, True) - Young($x, False)

rule2: Big($x, True) - Green($x, False)

rule3: Big(Lion, True) A Green(Lion, True) - Chases(Lion,
BaldEagle, True)

rule4: Chases($x, BaldEagle, True) - Likes($x, Bear, True)
rule5: Round($x, True) A Visits($x, BaldEagle, True) -
Likes(BaldEagle, Squirrel, True)

rule6: Visits($x, Lion, True) - Likes($x, BaldEagle, True)
rule7: Visits(Lion, Squirrel, True) A Chases(Squirrel, Bear,
True) » Chases(Bear, BaldEagle, True)

rule8: Visits($x, Lion, True) - Cold($x, True)

rule9: Likes($x, Bear, True) - Chases($x, Bear, True)

Now begin reasoning to obtain all implied facts:

Use rulel: Cold($x, True) - Young($x, False)

Bind $x to 'Squirrel’

Obtain a new implied fact: Young('Squirrel', False)
Unbind $x

Finish implied with rulel

Use rule2: Big($x, True) - Green($x, False)

Bind $x to 'BaldEagle’

Obtain an already known or implied fact: Green('BaldEagle’,
False)

Unbind $x

Finish implied with rule2

Fmmmmmmmmmmmme——mao

Use rule4: Chases($x, BaldEagle, True) - Likes($x, Bear,
True)

Bind $x to 'Squirrel’

Obtain a new implied fact: Likes('Squirrel', 'Bear', True)
Unbind $x

Finish implied with rule4

Use rule9: Likes($x, Bear, True) - Chases($x, Bear, True)
Bind $x to 'BaldEagle’
Obtain a new implied fact: Chases('BaldEagle', 'Bear', True)

{EHSE Hle + G ESES($H, BaldEagle) He) Ei Ee5($ii, Bea 7
Bind 3 ‘BaldEsale’
R laZ: \icitcl]l 3 < 1 T AY Ch LS. 1
N AY Bl Al El l Bl
RBaap Trua) Ch (B =y BaldEaal Trua)
3 < g+
Unbind $x

Bind $x to 'Lion’
Obtain a new implied fact: Chases('Lion', 'Bear', True)

Reu rulead: Chac (9 BaldEagl True) 13k (g Beapr
+ $¥5 SEacs) $5
Bind < o
- isd i 3 J 3
B. =y Trua) Ch (R =y RaldEaal Terua)
5 € 3 g+e5
Unbind $x
Bind $x to 'Squirrel’
Obtain a new implied fact: Chases('Squirrel', 'Bear', True)
Ray rulad: Ch (g BaldEaaol True) () (g Beoap
+ $35 g+ 7 3 3
Bind$ T —
Reuse—puleZVisits{lion—Squirrel;—True)-A—Chases{Squirrel;
B. =y Trua) Ch (B. =y RaldEaal Teua)
El 7 AY k] o)
Unbind $x

Finish implied with rule9

Use rule7: Visits(Lion, Squirrel, True) A Chases(Squirrel,
Bear, True) - Chases(Bear, BaldEagle, True)

Obtain a new implied fact: Chases('Bear', 'BaldEagle', True)
Finish implied with rule7

Finally, we obtain following implied facts:
Likes(', 'Bear', True)
Chases('BaldEag'Squirrelle’, 'Bear', True)
Chases('Lion', 'Bear', True)
Chases('Squirrel’, 'Bear', True)
Chases('Bear', 'BaldEagle', True)
Young('Squirrel', False)

Finish reasoning

Turn-3 (from human):

Question: Based on the above information, is the following
comment true, false, or unknown? The bear chases the bald
eagle.

Options:
A) True
B) False
C) Unknown

Now you should:

1. reason first carefully with the above known facts and
implied facts

2. then output your answer strictly in the format of "So, the
correct option is: {X}". The {X} should be replaced by "A)
True", "B) False" or "C) Unknown"

Turn-4 (from LM):
The comment can be parsed into: Chases('Bear’,

True)
A V-El

‘BaldEagle’,

+o—thet fact:—Ch VAT 'l ient
15 ¥ 5 5
+ tradicts—the—faet

EP Y

Th

S £h

3
According to the
True)

The comment is consistent with the fact.
So, the correct option is: A) True

s £ = BY Fal

B
implied fact: Chases('Bear', 'BaldEagle’,

Figure 7: Another error case from the test set of ProofWriter where LOGIPT (CodeLlama-13b-hf) fails to backtrack
in Turn-2 accurately and omits some necessary reasoning steps, leading to missing essential reference Fact in Turn-4.
The incorrect reasoning steps are marked in yellow, and the correct revisions or missing steps are marked in green.

4042

