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Abstract

Cognitive research indicates that abstraction
ability is essential in human intelligence, which
remains under-explored in language models. In
this paper, we present ABSPYRAMID, a unified
entailment graph of 221K textual descriptions
of abstraction knowledge. While existing re-
sources only touch nouns or verbs within sim-
plified events or specific domains, ABSPYRA-
MID collects abstract knowledge for three com-
ponents of diverse events to comprehensively
evaluate the abstraction ability of language
models in the open domain. Experimental re-
sults demonstrate that current LLMs face chal-
lenges comprehending abstraction knowledge
in zero-shot and few-shot settings. By train-
ing on our rich abstraction knowledge, we find
LLMs can acquire basic abstraction abilities
and generalize to unseen events. In the mean-
time, we empirically show that our benchmark
is comprehensive to enhance LLMs across two
previous abstraction tasks1.

1 Introduction

Abstraction is about finding common properties
among different things and forming a broader con-
cept, like the concept “furniture” subsuming “sofa”
and “table,” a key dimension of human cogni-
tion (Colung and Smith, 2003; Russell and Norvig,
2010). With this ability, we can smoothly handle
daily situations by learning from past experiences
and generalizing to new circumstances (Saitta and
Zucker, 2013). Substantively, Minsky (1980), in
his K-Theory, suggested that our minds organize
past experiences in a hierarchical pyramid, with
higher parts corresponding to greater abstraction.

The NLP community has recently explored di-
verse, impressive abilities of LLMs, such as in-
context learning (Brown et al., 2020), multi-step
reasoning (Wei et al., 2022b), and instruction fol-
lowing (Sanh et al., 2022). Meanwhile, the ability

1The code and data are available at https://github.com/
HKUST-KnowComp/AbsPyramid.
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Figure 1: An illustration of our ABSPYRAMID bench-
mark. We identify three components of events (i.e.,
Noun, Verb, and Event as a whole) and collect abstract
concepts entailed by them.

to abstract, a core dimension of human cognition,
has received less attention in the studies of LLMs.
Although sporadic works about abstraction knowl-
edge exist, they focus solely on nouns or verbs
within simplified events or specific domains, failing
to consider a broader picture of abstraction. One
category of works is building an entailment graph
of verbs, first proposed by Berant et al. (2011) with
several techniques to enhance it in the following
works (Hosseini et al., 2018; McKenna et al., 2023).
Those works consider events as a verb with two
arguments (i.e., subject and object) and limit argu-
ments to dozens of entity types to alleviate their
graphs’ sparsity issue. However, those simplifica-
tions considerably sacrifice the precise semantics
of events. For example, the event “a cat chased
a mouse into its burrow” in Figure 1 will be sim-
plified into a tuple (animal, chase, animal), losing
track of specific details of animals and location.
Other than verbs, He et al. (2022) annotated an
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abstraction dataset, AbstractATOMIC, about enti-
ties and events using the Probase taxonomy (Wu
et al., 2012). While their work curated thousands
of abstract concepts, it is limited to the social com-
monsense domain as base events are sampled from
ATOMIC (Sap et al., 2019).

Inspired by the cognitive study of abstraction
in the pyramid-like hierarchy of human experi-
ences (Minsky, 1980), we present ABSPYRAMID,
a unified entailment graph to comprehensively eval-
uate language models’ abstraction ability. We cu-
rated abstract concepts entailed by each of the three
components of an event2: nouns, verbs, and the
event as a whole, unifying scopes and domains
of all prior datasets. Specifically, we sample base
events in textual descriptions from ASER (Zhang
et al., 2020, 2022), an open-domain large-scale
eventuality graph. We design heuristic rules to
identify nouns and verbs from events and collect
abstract concepts with WordNet (Miller, 1995) and
LLMs prompting. Those concept candidates are
then crowdsourced for validity, resulting in a graph
of 221K examples. Compared with verb entailment
graphs (Berant et al., 2011), ABSPYRAMID retains
specific and accurate semantics of base events. Our
benchmark features a diverse array of syntactic
roles for real arguments instead of relying on (sub-
ject, verb, object) tuples with entity types. In con-
trast to AbstractATOMIC (He et al., 2022), our
benchmark covers abstraction knowledge beyond
the social commonsense thanks to the open do-
main corpora used in ASER. Also, we use LLMs to
broaden collected abstract concepts, complement-
ing the coverage of taxonomies.

On the ABSPYRAMID benchmark, we investi-
gate whether LLMs can (1) identify valid abstract
concepts and (2) generate abstract concepts. The
evaluation results on 26 popular language mod-
els reveal that: (1) LLMs encounter difficulties
understanding abstraction knowledge under both
zero-shot and in-context learning settings. (2) In
contrast, fine-tuned language models perform bet-
ter at comprehending abstraction knowledge, espe-
cially for nouns. (3) Our benchmark incorporates
comprehensive abstraction knowledge, which can
improve LLMs’ performance significantly across
verb entailment graphs and AbstractATOMIC. To
the best of our knowledge, ABSPYRAMID presents

2For readability, we use the term “event” in this paper.
More accurately, our sampled data involve state, activity, and
event, which can be summarized as a broader linguistic term:
eventuality (Mourelatos, 1978; Bach, 1986).

the first comprehensive evaluation of LLMs’ ab-
straction ability. Our benchmark and experiment
results provide valuable insights into the abstrac-
tion ability of language models and the progress of
artificial intelligence within LLM.

2 Related Work

While the NLP community has studied various abil-
ities of LLMs (Wei et al., 2022a; Chowdhery et al.,
2023; Ouyang et al., 2022; Chung et al., 2022; Zhou
et al., 2023), the abstraction ability of LLMs re-
mains insufficiently studied. Unlike existing works
that focus on entity-level abstraction (Clark et al.,
2000; Van Durme et al., 2009; Song et al., 2011,
2015; Gong et al., 2016), our research delves into
event-level abstraction with only a few works in-
vestigating some restricted aspects:

Verb Entailment Graph: Berant et al. (2011)
first proposed the task of entailment graph con-
struction of verbs. Following their work, various
methods have been proposed to build better verb en-
tailment graphs (Hosseini et al., 2018, 2019, 2021;
Guillou et al., 2020; Chen et al., 2022; Li et al.,
2022; McKenna et al., 2021, 2023). Nonetheless,
those works consider verbs as binary relations with
two arguments from a small set of entity types (e.g.,
49 types in FIGER (Hosseini et al., 2018)), distort-
ing the original semantics.

AbstractATOMIC: He et al. (2022) presented
an annotated abstraction dataset. They recognized
entities in head events from ATOMIC (Sap et al.,
2019) and crowdsourced abstract concepts from the
Probase taxonomy (Wu et al., 2012) for recognized
entities and head events. Even though they com-
piled a dataset comprising thousands of examples,
it is specific to the social commonsense domain
due to the base events sampled from ATOMIC.

Textual and Linguistic Entailment: Besides the
entailment between verbs, recognizing textual en-
tailment has long been a vital task in the realm of
NLP (Cooper et al., 1996; Dagan et al., 2005), also
known as natural language inference (NLI). Re-
searchers have built many large-scale datasets of
NLI (Conneau et al., 2018; Williams et al., 2018;
Nie et al., 2020) and its variants (Wang et al., 2019;
Dalvi et al., 2021; Chen et al., 2023).

While similar to our task, textual entailment
employs a relaxed definition of whether a human
reader would typically infer a hypothesis from a
given premise (MacCartney et al., 2007; Korman
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Head Event: Max is a playful puppy.

Instance: playful puppy Abstract Concept: dog

Tail Event: Max is a dog.

Noun-
Entail

Figure 2: An illustration of the structure of abstraction
knowledge, where entailment relation is Noun-Entail.

et al., 2018) instead of abstraction of the premise.
For example, in SNLI (Bowman et al., 2015), we
can infer a boy is holding his arms out from the
premise a boy looks down and spreads his arms
wide without any abstraction involved. In contrast,
our work follows the definition of linguistic entail-
ment (Beth, 1955), which arises from the semantics
of linguistic expressions and is enforced by lexical
meanings plus the laws of logic (Murphy, 2010;
Sauerland and Stateva, 2007). For instance, Max
is a playful puppy entails Max is a dog since one
cannot be a playful puppy without being a dog.

3 Abstraction Knowledge Structure

ABSPYRAMID represents a large-scale abstrac-
tion repository of events in textual descriptions.
This unified entailment graph contains 221K five-
element tuples with the format of (head event, en-
tailment relation, tail event, instance, abstract
concept). In each tuple, we identify an instance
in the head event and collect an abstract concept
for it. Particularly, instances are identified from
three components of the head event: nouns, verbs,
and head event as a whole. Then, we replace the
instance with its abstract concept to construct the
tail event, resulting in the tail event being linguis-
tically entailed by the head event. According to
three kinds of instances, we define three types of
entailment relation: Noun-Entail, Verb-Entail, and
Event-Entail. We elaborate on each tuple element
with a concrete example in Figure 2.

4 Data Curation Pipeline

To build ABSPYRAMID, we create a crowdsourc-
ing framework that allows for a scalable, broad
collection of abstraction knowledge in the above-
mentioned format.

4.1 Compiling Head Events

We randomly sample 17K base eventualities from
ASER as head events. Since ASER is an auto-
matically extracted graph, some noisy extraction
results may affect the quality of our benchmark.

Thus, we design elaborate rules to clean ASER
using lexical and dependency parsing features (De-
tails in Appendix A.1). Meanwhile, ASER is ex-
tracted from six open domain corpora spanning
Wikipedia3, NYT (Sandhaus, 2008), Yelp4, Red-
dit5, etc. We only sample eventualities from NYT
and Wikipedia due to the less formal nature of
other corpora, such as diverse styles of comments
on Yelp. To collect more general events, we replace
tokens referring to people with a Person variable
(e.g., replace I/we/she/... with PersonX/Y/Z), fol-
lowing previous work (Sap et al., 2019).

4.2 Identifying Instances

As mentioned earlier, our benchmark defines three
entailment relations. For Event-Entail, we can di-
rectly use head events as identified instances. More
intricately, we need to identify nouns and verbs
as instances within head events when dealing with
Noun-Entail and Verb-Entail. We design an al-
gorithm to heuristically match nouns and verbs
based on parsing results (e.g., POS-tags) provided
by ASER (Details in Appendix A.2).

4.3 Collecting Abstract Concepts

Then, we collect abstract concepts for those identi-
fied instances through two methods: (1) retrieving
from non-contextualized taxonomy and (2) prompt-
ing LLMs to generate candidates in free form.

Pilot Study: There are two taxonomies of words
containing abstract concepts: WordNet (Miller,
1995) and Probase (Wu et al., 2012). WordNet
contains hypernym relations, words with a broad
meaning that more specific words (i.e., hyponyms)
fall under. Probase automatically extracts instance-
concept relations of nouns from corpora. Both
aggregate all senses of each word without context.

Our pilot study reveals that WordNet effectively
covers more than 90% of verbs within head events.
Nonetheless, the coverage of nouns is unsatisfac-
tory, as we can build a gigantic space of nominal
phrases by adding modifiers. For example, we can
easily form numerous phrases of “dog” by adding
“guard,” “hunting,” or “white,” etc. Our pilot study
finds that only 6.3% of nominal phrases in head
events are covered by WordNet. Likewise, the cov-
erage of Probase is also unacceptable (29.6%).

3https://dumps.wikimedia.org/enwiki
4https://www.yelp.com/dataset/challenge
5https://www.reddit.com/r/datasets/comments/3bxlg7
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Abstract Concepts for Nouns: Due to the lim-
ited coverage of nouns in taxonomies, we collect
hypernyms for nouns by prompting an LLM. In
detail, we prompt ChatGPT under the in-context
learning setting with the standard task-instruction-
then-exemplar prompts (West et al., 2022):

<INSTRUCTION>

<EX1-IN><EX
(1)
1 -OUT> . . . <EX

(K)
1 -OUT>

. . .
<EXN-IN><EX

(1)
N -OUT> . . . <EX

(K)
N -OUT>

<EXN+1-IN>

where <INSTRUCTION> describes the task of find-
ing abstract concepts of a noun in our case. The
input <EXi-IN> is a head event with an identified
noun, with output <EX(k)i -OUT> being an abstract
concept. Given such a prompt, ChatGPT compactly
generates K abstract concepts for each testing in-
put. In the meantime, we design another prompt to
elicit challenging negative examples that are highly
related but not abstract concepts, such as “stream
course” for “stream” in “the stream creates a peace-
ful ambiance.” Prompts are shown in Appendix A.3
concretely, with N and K equal to 10.

Abstract Concepts for Verbs: We collect ab-
stract concepts for verbs using hypernyms from
WordNet, as verbs are well covered. We link verbs
into WordNet and employ GlossBERT (Huang
et al., 2019), a word-sense disambiguation (WSD)
model, to select each verb’s correct (at least most
probable) word sense. Then, hypernyms of the cor-
rect word sense are collected as abstract concepts.

Abstract Concepts for Events: Events are more
complex than nouns and verbs without relevant
taxonomy. Thus, we again prompt ChatGPT to
collect phrasal abstract concepts of each head event.
We use the prompts similar to nouns with slight
changes in verbalizing input tuples (More details
in Appendix A.3). N and K are equal to 10.

4.4 Dataset Annotation

The last step of our data curation pipeline is to
verify the validity of automatically collected ab-
stract concepts. We create an annotation task for
each entailment relation on Amazon Mechanical
Turk (MTurk). In those tasks, we first give an-
notators detailed instructions about the validity of
abstract concepts, like explanations of hypernyms.
We provide annotators with five-element tuples, as
mentioned in Section 3, asking them whether each
abstract concept is valid. For Verb-Entail, we also

REL. # Total # Train # Valid # Test % Pos

NOUN 98,783 79,034 9,874 9,875 58.98
VERB 59,542 47,669 5,939 5,934 52.29
EVENT 62,472 49,988 6,237 6,247 64.77
ALL 220,797 176,691 22,050 22,056 58.82

Table 1: Statistics of ABSPYRAMID. Pos denotes posi-
tive rates. REL. indicates entailment relations. We split
data into training, validation, and test sets (80:10:10).

provided meanings of each verb from WordNet for
better understanding. Meanwhile, to ensure anno-
tation quality, we introduce two qualification tests
and two rounds of annotation refinement. Details
of quality control and annotation agreements are
shown in Appendix A.4.

5 ABSPYRAMID Overview

In this section, we carry out a thorough analysis of
our benchmark ABSPYRAMID.

5.1 Benchmark Statistics

ABSPYRAMID is a large-scale benchmark com-
prising about 221K abstraction examples. Specific
details are shown in Table 1. For breakdown details,
we collected more than 98K, 59K, and 62K tuples
for Noun-Entail, Verb-Entail, and Event-Entail. To
better understand our benchmark, We compare it
with the Levy/Holt dataset (Levy and Dagan, 2016;
Holt, 2018), a dataset heavily used to evaluate verb
entailment graphs, and AbstractATOMIC (He et al.,
2022). Four statistical metrics are computed for
multi-dimensional comparison, including data size,
vocabulary size, percentage of unique abstract con-
cepts, and social domain proportions, with results
as follows.

Previous studies show that content generated
by LMs, ChatGPT in our case, might lack diver-
sity (Welleck et al., 2019). From Table 2, we can
find that our benchmark has a much larger data
size and vocabulary size than previous resources,
showing the lexical diversity of our benchmark. In
particular, the vocabulary size is more than three
times that of prior resources.

We also compute the percentage of unique
abstract concepts based on BLEU soft unique-
ness (Zhu et al., 2018; West et al., 2022). An ab-
stract concept x is unique if BLEU1(C, x) ≤ 0.5,
where C is all concepts that share the same head
event and identified instance with x, and 0.5 is an
empirical threshold. Our benchmark has a percent-
age on par with other datasets, showing the efficacy
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Dataset Data (K) Vocab. (K) Unique Social

NOUN 98.78 20.95 93.57 19.88
VERB 59.54 11.86 95.74 40.02
EVENT 62.47 19.04 73.43 36.15
ALL 220.80 29.42 88.26 32.19

AbsAtomic 92.23 8.99 89.42 100.00
Levy/Holt 18.41 5.62 87.85 38.17

Table 2: Dataset comparison. Data size, vocabulary
size, percentage of unique abstract concepts, and social
domain proportion are listed.

of our data curation pipeline. Last, we also report
the social domain proportions, where we count
head events with Person variables. As shown in
Table 2, all head events in AbstractATOMIC con-
tain Person variables since they are sampled from
ATOMIC. In contrast, 32.19% of head events in
ABSPYRAMID pertain to daily life experiences.

5.2 Evaluation Tasks

We study two tasks on our benchmark, abstrac-
tion detection and generation, to evaluate whether
LLMs can detect and generate abstraction knowl-
edge. In the detection task, models are given a five-
element tuple (in Section 3) and are asked to decide
if the abstract concept is valid. We split collected
abstraction knowledge into training, validation, and
test sets (80:10:10) to form the ABSPYRAMID[DET]
dataset (in Table 1). In the generation task, mod-
els are requested to generate abstract concepts for
a given tuple. We remove tuples with invalid
abstract concepts and form ABSPYRAMID[GEN]
dataset in Table 3. We ensure that tuples sharing
the same head event and identified instances are in
the same set for both datasets.

6 Abstraction Detection Experiment

In this section, we conduct extensive experiments
on the ABSPYRAMID[DET] dataset to evaluate an
abundance of language models and provide com-
prehensive analyses.

6.1 Experiment Setup

Evaluation Metric: We calculate Accuracy,
Macro F1-score, and ROC-AUC between predicted
and ground-truth labels to evaluate all models.

Models We evaluate four categories of LMs.
(1) PLM + FT: We fine-tune pre-trained LMs:
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and DeBERTa (He et al., 2020), in the base

REL. # Total # Train # Valid # Test Avg-Ref

NOUN 58,266 52,440 2,910 2,916 5.58
VERB 31,132 28,018 1,556 1,558 2.90
EVENT 40,466 36,446 2,006 2,014 4.57
ALL 129,864 116,904 6,472 6,488 4.33

Table 3: The statistics of generation data. Avg-Ref
means the average references per identified instance.
REL. stands for entailment relations. Tuples are split
into training, validation, and test sets (90:5:5).

and large sizes. (2) NLI + Zero&FT: We include
four models fine-tuned on NLI data: BART-large-
mnli (Lewis et al., 2020a), RoBERTa-base/large-
mnli (Liu et al., 2019), and DeBERTa-large-
mnli (He et al., 2020). We assess the zero-shot ca-
pability of those models and fine-tune them on our
dataset. (3) LLM + LoRA: We fine-tune represen-
tative LLMs with LoRA (Hu et al., 2021): Llama2
(7B, 13B) and Llama2-Chat (7B, 13B) (Touvron
et al., 2023), Falcon (7B) and Falcon-Instruct
(7B) (Penedo et al., 2023), and Mistral (7B) and
Mistral-Instruct (7B) (Jiang et al., 2023). (4) LLM
API: We assess a series of closed-source LLMs
under the zero-shot and in-context learning se-
tups, covering GPT3.5 (Ouyang et al., 2022), Chat-
GPT (OpenAI, 2022), and GPT4 (OpenAI, 2023).
We use a standard and a CoT prompt (Kojima et al.,
2022). See implementation details in Appendix B.

6.2 Main Evaluation

We train LMs on each entailment relation sepa-
rately and present results on ABSPYRAMID[DET]
in Table 4. We observe that fine-tuned LMs can
detect abstraction knowledge of Noun-Entail with
impressive performance. For example, Llama2-
Chat (13B) correctly classifies 88.20% of the test
data. Meanwhile, models struggle to achieve simi-
lar scores on Verb-Entail relation. The difficulty of
Verb-Entail might come from the diversity of word
senses we collected from WordNet.

NLI models show some zero-shot ability, espe-
cially on Noun-Entail and Event-Entail. For in-
stance, DeBERTa-large-mnli achieves an accuracy
of 73.18% on Noun-Entail higher than that of “ran-
dom” and “majority vote.” This finding might be
due to some similarity between NLI and our task.
Moreover, fine-tuning NLI models cannot improve
performance compared with LMs in PLM + FT.

Besides, fine-tuned LLMs can obtain scores com-
parable to or even higher than fully fine-tuned mod-
els, whilst we only tuned 0.3-0.5% parameters with
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Methods Backbone Noun Verb Event
Acc Ma-F1 AUC Acc Ma-F1 AUC Acc Ma-F1 AUC

Random - 50.00 49.56 50.00 50.00 49.95 50.00 50.00 48.98 50.00
Majority Vote - 59.30 - 50.00 53.15 - 50.00 64.14 - 50.00

NLI + Zero

BART-large-mnli 71.24 68.13 75.67 56.25 47.17 62.33 70.69 65.81 69.33
RoBERTa-large-mnli 68.66 63.18 75.42 55.73 45.54 61.27 70.47 63.07 68.60
DeBERTa-base-mnli 68.77 65.81 72.79 56.42 48.08 61.55 66.30 62.88 66.40
DeBERTa-large-mnli 73.18 71.08 78.12 56.93 49.28 63.16 66.82 64.03 68.27

NLI + FT

BART-large-mnli 85.75 85.12 90.80 64.96 64.96 68.60 74.61 69.75 77.71
RoBERTa-large-mnli 86.15 85.34 90.87 64.61 64.26 69.46 76.88 70.73 77.94
DeBERTa-base-mnli 85.59 84.61 90.43 65.50 65.47 69.87 76.98 70.12 77.90
DeBERTa-large-mnli 86.62 85.83 91.00 66.04 65.96 70.51 76.48 69.96 77.42

PLM + FT

BERT-base 85.09 84.14 89.94 64.26 64.20 68.06 76.45 69.94 78.22
BERT-large 85.94 85.12 90.37 63.58 63.58 68.03 75.27 69.61 77.57
RoBERTa-base 84.23 83.25 89.58 63.55 63.53 68.12 76.53 70.41 77.62
RoBERTa-large 85.27 84.44 90.59 64.98 64.98 69.23 77.09 70.56 78.07
DeBERTa-base 84.09 83.03 89.74 63.50 63.45 68.03 75.75 69.57 77.30
DeBERTa-large 86.89 86.11 90.98 65.54 65.52 69.11 76.69 70.31 78.06

LLM + LoRA

Falcon (7B) 87.06 86.36 91.42 63.92 63.79 68.06 75.83 70.51 77.77
Falcon-Ins (7B) 86.04 85.43 91.10 64.00 63.96 68.53 76.50 70.72 77.50
Mistral (7B) 87.62 87.05 91.53 65.08 64.66 69.58 77.24 70.57 77.97
Mistral-Ins (7B) 87.59 86.99 91.42 64.81 64.78 69.51 77.22 70.69 78.52
Llama2 (7B) 87.56 86.82 91.52 65.07 64.79 69.27 76.45 70.53 78.28
Llama2-Chat (7B) 86.71 86.17 91.79 64.96 64.54 68.95 76.80 70.15 77.92
Llama2 (13B) 88.03 87.40 92.31 65.13 64.64 69.50 76.87 70.83 79.34
Llama2-Chat (13B) 88.20 87.49 92.05 65.07 65.00 69.74 77.27 70.82 78.60

LLM API

GPT 4 80.50 78.70 - 56.30 53.84 - 71.30 66.89 -
GPT 3.5 67.00 62.45 - 56.30 55.90 - 65.60 58.23 -
ChatGPT 74.00 72.27 - 56.30 55.71 - 68.20 63.22 -
ChatGPT (CoT) 62.90 62.88 - 56.20 53.89 - 67.30 61.47 -
ChatGPT (10-shot ICL) 76.10 74.60 - 58.60 58.51 - 68.90 60.51 -
ChatGPT (CoT + 10-shot) 75.40 74.08 - 59.20 58.91 - 68.20 62.70 -

Table 4: Performance on the test set of ABSPYRAMID[DET]. We trained models on three entailment relations
separately. We bold the best score and underline the second-best score. Acc, Ma-F1, and AUC denote Accuracy,
Macro F1-score, and ROC-AUC. See the performance on the validation set in Appendix C.1.

LoRA. The performance only improves marginally
when we increase the parameters, such as Llama2
(7B) to Llama2 (13B). Meanwhile, the instruction-
tuned counterparts cannot lead to distinct increases
but some fluctuations as they learned more about
the instruction following and conversations, which
are irrelevant to our task.

6.3 Analysis of ChatGPT Series Models

We can see that ChatGPT and GPT3.5 obtain ac-
ceptable performance on ABSPYRAMID[DET] in
the zero-shot scenario (Table 4), such as accu-
racy scores of 74.00% and 67.00% on Noun-Entail.
However, the ChatGPT series models still lag be-
hind fine-tuned LMs by a large margin, although
GPT4 performs better than ChatGPT. Meanwhile,
we tested the performance of ChatGPT with ten
exemplars under the in-context learning setup, de-
noted as “ChatGPT (10-shot ICL).” With exem-
plars, the scores of ChatGPT are raised by 2-3

points but not a substantial improvement since the
answer format (i.e., “Yes” or “No”) is simple to
understand without exemplars.

To explore if the ChatGPT can explain its own
decisions, we examine ChatGPT with zero-shot
chain-of-thought prompting signified as “ChatGPT
(CoT),” where it is asked to explain given words
first and then give the answer. Each metric exhibits
varying levels of decline, with particular emphasis
on Noun-Entail. This indicates that ChatGPT can-
not explain and provide an answer simultaneously.
We conduct an error analysis, as illustrated in Fig-
ure 3, to unravel why. The examples show that
ChatGPT can explain the meanings of given words
but yields hallucinations (Ji et al., 2023; Huang
et al., 2023) when concluding. We discover that
providing a few exemplars can assist, indicated as
“ChatGPT (CoT + 10-shot)” in Table 4. We present
all prompts and verify the robustness of zero-shot
and CoT prompts in Appendix C.2.
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LLM + LoRA Noun Verb Event All
Acc Ma-F1 AUC Acc Ma-F1 AUC Acc Ma-F1 AUC Acc Ma-F1 AUC

Falcon (7B) 87.11 86.31 91.26 64.68 64.34 69.50 76.55 70.47 78.52 78.15 76.53 84.78
Falcon-Ins (7B) 87.07 86.30 90.91 64.71 64.70 69.16 77.22 70.95 78.26 78.28 76.92 84.64
Mistral (7B) 87.77 87.01 91.68 65.96 65.60 70.34 76.61 70.91 78.88 78.71 77.15 85.40
Mistral-Ins (7B) 87.80 87.09 91.47 65.44 65.35 69.94 77.08 71.08 79.50 78.75 77.37 85.38
Llama2 (7B) 87.92 87.09 91.80 64.95 64.47 69.59 77.16 71.05 78.75 78.69 76.95 85.39
Llama2-Chat (7B) 87.56 86.79 91.79 64.11 63.98 69.48 76.55 70.53 77.84 78.09 76.98 85.00
Llama2 (13B) 88.02 87.41 91.73 65.84 65.84 70.16 77.11 71.13 78.93 78.99 77.83 85.73
Llama2-Chat (13B) 87.76 87.00 91.59 65.08 64.87 70.02 76.98 71.16 79.39 78.67 77.17 85.49

Table 5: The performance of LLMs on the test set of ABSPYRAMID[DET] under the multi-relation setting. We bold
the best score and underline the second-best score. See Appendix C.1 for performance on validation sets.

Models Acc Ma-F1 AUC APS

Aug MC - - - 18.70
CNCE MC - - - 19.50
EGT2 - - - 31.90

Falcon (7B) 67.55 63.82 80.06 39.97↑8.07
Mistral (7B) 79.32 72.66 81.42 53.25↑21.35
Llama2 (7B) 78.69 71.07 79.51 44.25↑12.35
Llama2 (13B) 82.11 71.25 79.84 45.11↑13.21

Table 6: Zero-shot performance on Levy/Holt dataset
with LLMs fine-tuned on our dataset. APS is average
precision score when precision > 0.5 and shows im-
provements compared with EGT2.

6.4 Multi-Relation Learning
While prior experiments treated each relation sep-
arately, we train all entailment relations jointly in
this section. The results in Table 5 show that LLMs
can learn abstraction knowledge of multiple rela-
tions, with performance comparable to that of train-
ing on each relation separately (Table 4). Generally,
Llama2 (13B) performs best on the merged test set,
while varying models get higher performance on
each entailment relation. Comparing Llama2 (7B)
with Llama2 (13B), we again affirm that scaling up
models only leads to marginal improvements.

6.5 Transferring to Other Sources
This section investigates whether the abstraction
knowledge from our benchmark can be transferred
to other tasks that require the abstraction knowl-
edge (Berant et al., 2011; He et al., 2022).

Verb Entailment Graph: In this task, we eval-
uate models on the primarily used Levy/Holt
dataset (Levy and Dagan, 2016; Holt, 2018), whose
statistics are shown in Table 2. We directly experi-
ment with the LLMs fine-tuned on our data (under
the multi-relation setting in Section 6.4) to test the
zero-shot transferring ability. Following previous
works (Hosseini et al., 2021), we also compute the

Head Event: The oil futures began trading on exchange. 
Abstract Concept: Derivatives

ChatGPT CoT:
 1. Oil futures: contracts to buy or sell a specified 

quantity of oil at a future date...
 2. Derivatives: financial contracts whose value is 

derived from an underlying asset...
 3. Answer: No, “derivatives” is not broader.

Head Event: PersonX always slept sitting up. 
Abstract Concept: Sleeping style

ChatGPT CoT:
 1. PersonX always slept sitting up: describes the 

sleeping habit of PersonX... 
 2. Sleeping style: a way or pattern in which a 

person sleeps...
 3. Answer: No.

Figure 3: Error Analysis. We find hallucinations within
zero-shot CoT of ChatGPT with correct explanations
but wrong conclusions.

metric “average precision score” when precision is
higher than 50%. As shown in Table 6, LLMs fine-
tuned on our dataset surpass previous works a lot,
including Aug MC (Hosseini et al., 2018), CNCE
MC (Hosseini et al., 2019), and EGT2 (Chen et al.,
2022). For example, Mistral (7B) achieves the best
APS of 53.25, higher than the strongest baseline,
EGT2, by over 20 points. For a complete compari-
son, we also test instruction-tuned LLMs as another
baseline in Appendix C.3.

We further test whether knowledge can be trans-
ferred in the fine-tuning setup. We continually
fine-tune with LoRA LLMs that are first trained on
our dataset. They are compared with LLMs fine-
tuned from pre-trained configurations. Since the
Levy/Holt dataset does not own a training set, we
treat the validation set as the training set and do not
tune hyperparameters. From Figure 4, the results
show that training on our benchmark significantly
boosts the performance of LLMs on all metrics.
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Figure 4: The fine-tuning performance on the Levy/Holt
dataset. CF stands for continually fine-tuning.
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Figure 5: Few-shot performance on AbstractATOMIC.
CF stands for continually fine-tuning.

Particularly, the average precision score of Llama2
(7B) rises from 61.0 to 75.8 if we first fine-tune it
on our benchmark. These experiments demonstrate
that our benchmark is comprehensive to boost per-
formance in both zero-shot and fine-tuning setups.

AbstractATOMIC To further verify the com-
prehensiveness of our benchmark, we fine-tuned
LLMs under the few-shot setting on the Abstrac-
tATOMIC dataset, where we start from 20% of
training data and increase the proportion by 20%
each time. Similarly, we fine-tuned two categories
of LLMs: pre-trained models and models initially
trained on our dataset. While only a modest frac-
tion of our dataset falls under the social domain
(in Table 2), we discover that our dataset still
can significantly enhance performance on Abstrac-
tATOMIC, as displayed in Figure 5. The results
show that our dataset contains comprehensive ab-
stract knowledge, which can help models general-
ize to a specific domain. We include full results
of more LLMs on both Levy/Holt and Abstrac-
tATOMIC datasets in Appendix C.3.

7 Abstraction Generation Experiment

In this section, we evaluate representative LMs on
the ABSPYRAMID[GEN].

Models B-1 B-2 R-2 R-L Meteor

GPT2 27.42 10.56 4.34 25.03 21.72
GPT2-medium 33.86 15.52 6.64 31.37 25.30
GPT2-large 49.23 29.64 16.80 48.36 35.44
GPT2-XL 53.90 32.39 18.54 53.73 38.45

GPT-J (6B) 55.65 31.19 15.20 54.42 36.70
Falcon (7B) 54.63 30.64 14.46 54.15 36.36
Falcon-Ins (7B) 53.18 30.15 14.96 51.90 35.17
Llama2 (7B) 56.56 33.03 16.48 56.37 37.67
Llama2-Chat (7B) 57.11 34.42 16.31 54.87 37.34
Llama2 (13B) 58.73 36.28 17.63 57.45 39.47
Llama2-Chat (13B) 58.46 34.54 16.39 56.47 37.95

Table 7: Results on the test set of ABSPYRAMID[GEN].
B-1/2, R-2/L denote BLEU-1/2, ROUGE-2/L.

7.1 Experiment Setup
Evaluation Metric BLEU-1, BLEU-2 (Papineni
et al., 2002), ROUGE-2, ROUGE-L (Lin, 2004),
and Meteor (Banerjee and Lavie, 2005) are com-
puted to automatically evaluate all models.

Language Models We evaluated representative
LMs, including GPT-J (6B) (Wang and Komat-
suzaki, 2021), Falcon (7B) and Falcon-Instruct
(7B) (Penedo et al., 2023), Llama2 (7B, 13B) and
Llama2-Chat (7B, 13B) (Touvron et al., 2023),
GPT2, and GPT2-medium/large/XL (Radford et al.,
2019). See implementation details in Appendix B.

7.2 Main Evaluation
We present the overall performance of all language
models in Table 7. We ascertain that fine-tuned
language models can perform fairly well on our
generation dataset. For example, Llama2 (13B)
achieves the best BLEU-2 score, where 36.28%
of generated bi-grams are covered by the refer-
ences. Unlike abstraction detection, increasing
the number of parameters exerts a more signifi-
cant effect on abstraction generation. For exam-
ple, GPT2-XL (1.56B) gets the highest ROUGE-2
score, which is times higher than GPT2 (117M)
and GPT2-medium (345M). Also, the performance
of Llama2 (13B) is 1-3 points higher on all met-
rics than Llama2 (7B). Another noteworthy point
is that instruction tuning does not help abstraction
generation, exemplified by Llama2 (13B) getting
higher metrics scores than Llama2-Chat (13B). We
also include the performance on data of each entail-
ment relation and conduct a human evaluation in
Appendix C.4. Similar to abstraction detection, we
can find that models perform better on Noun-Entail
than other relations. Meanwhile, the human evalu-
ation shows that automatic metrics highly correlate
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with human judgment. Then, we also list three
kinds of generation errors of the fine-tuned Llama2
(13B) in Appendix C.4.

8 Conclusion

In this paper, we introduce ABSPYRAMID to eval-
uate LLMs’ abstraction ability. A scalable pipeline
is designed to curate abstraction knowledge for
three components of events. We carry out extensive
experiments to demonstrate the comprehensiveness
of our benchmark and provide valuable insights
into the abstraction abilities of LLMs.

Limitations

Our ABSPYRAMID incorporates extensive abstrac-
tion knowledge of events from ASER for nouns,
verbs, and events. An open question is how to
interleave the abstraction knowledge into the even-
tuality knowledge represented as explicit discourse
relations in ASER. For the same event, we can have
different levels of abstraction depending on the cur-
rent context provided by eventuality knowledge. In
the event “I drink milk,” “milk” can be abstracted
as “beverage” under the situation that “I am thirsty.”
In contrast, “milk” is better to be considered a kind
of “dairy product” if “I want to get more nutrition.”
Other knowledge can also be considered, such as
factual knowledge (Sun et al., 2023) and common-
sense knowledge (Sap et al., 2019; Hwang et al.,
2021; West et al., 2022).

Representative LLMs are evaluated in our exper-
iments. We leave for future work about building
models with stronger abstraction abilities, includ-
ing some sophisticated prompting methods (Yao
et al., 2023; Long, 2023; Besta et al., 2023), com-
bining LLMs with smaller LMs (Xu et al., 2023),
semi-supervised learning (Wang et al., 2023), re-
trieval augmented generation (Lewis et al., 2020b).

Ethics Statement

When constructing ABSPYRAMID, we sample head
events from ASER (Zhang et al., 2020, 2022), an
open-sourced eventuality graph. We only sampled
eventualities extracted from Wikipedia and NYT,
which are open-access. We carried out human an-
notation on Amazon Mechanical Turk (MTurk).
Our payment rate is 1.2 USD for each HIT, which
fulfills the minimum wage requirement and shows
that annotators are fairly paid.
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A Data Curation Details

A.1 ASER Cleaning
Since ASER is an eventuality graph automatically
extracted from diverse corpora, some noisy extrac-
tion results exist. Thus, we design a few rules to
clean some frequent noise categories in ASER.

First, we found that many eventualities are noisy
due to incompleteness. For example, “the norman
army weakened,” an eventuality extracted from
Wikipedia, misses the linking verb “was” in the
passive voice. To solve this, we re-parse each even-
tuality and remove eventualities whose dependency
graph changes in the re-parsing stage. With this
rule, we remove a lot of incomplete eventualities.

Then, we design four lexical rules for noisy even-
tualities: (1) We find that many eventualities with
the s-v pattern (see (Zhang et al., 2022) for defini-
tion) contain light verbs. We remove those eventu-
alities since they lack semantic meanings, such as
“they do.” (2) We find that the parsing algorithm of
ASER can extract eventualities from subordinate
clauses but cannot link relatives to antecedents. For
example, “who won the competition” is extracted
from the sentence “Bob is a painter who won the
competition” without replacing “who” with “Bob.”
We remove all eventualities starting with relatives.
(3) ASER also contains some eventualities that are
totally composed of stopwords. We remove them
since they also do not have too many semantic
meanings, such as “She just won.” (4) We remove
eventualities containing URLs and HTML tags.

In detail, the light verbs we use are do, give,
have, make, get, and take, as well as their inflec-
tions, such as doing and has. The relatives we
use are how, what, when, where, which, who, why,
whatever, whose, whom, and if. The stopword list
is accessed by NLTK (Bird et al., 2009).

A.2 Matching Nouns and Verbs
In our benchmark, the abstraction knowledge of
Noun-Entail and Verb-Entail involves identifying
nouns and verbs from events. In ASER, each word
in the syntactic pattern is classified into word types
according to their POS tags, including noun, verb,
be, and preposition. We use those word types to
identify the nouns and verbs. For example, the pat-
tern subject-verb-object has word types noun,
verb, and noun for each word. Also, we identify
modifiers to complete each noun by collecting all
words dependent on the noun in the dependency
parsing graph, such as “fluffy” in “fluffy cat.”

Task Instruction: In this task, you need to list the hyper-
nyms of an instance. Hypernyms are words that represent
broader categories or concepts.

Exemplar Input: 1. Given the sentence “the clinic
had resumed its work,” what is the list of hypernyms
of “clinic?”
Exemplar Output: (1) medical facility, (2) healthcare
center, . . . , (10) diagnostic center.

Following Exemplars: Exemplar 2, Exemplar 3, . . . ,
Exemplar 10

Testing Input: 11. Given the sentence [HEAD], what is
the list of hypernyms of [INSTANCE]?

(a) Noun-Entail

Task Instruction: In this task, you need to list some
abstract descriptions of an event.

Exemplar Input: 1. Which abstract descriptions can the
event “PersonX surfs the web” be summarized as?
Exemplar Output: (1) surfing, (2) surfing the internet,
. . . , (10) browsing the internet.

Following Exemplars: Exemplar 2, Exemplar 3, ..., Ex-
emplar 10

Testing Input: 11. Which abstract descriptions can the
event [HEAD] be summarized as?

(b) Event-Entail

Table 8: The prompt we used to collect abstract con-
cepts from ChatGPT for Noun-Entail and Event-Entail
relations. Two placeholders [HEAD] and [ISNTANCE]
will be replaced with real head events and instances. We
present the prompt in the dialogue format. Please con-
catenate all utterances to form the prompt of GPT3.5.

We also take care of some special cases where
eventualities contain some transparent nouns (Mey-
ers), such as “I have a lot of food.” In this case,
we identify “food” as an instance instead of “lot.”
Verbs also have similar constructions, such as “I
am going to sleep.” In this example, we identify
“sleep” as an instance instead of “going.”

A.3 Prompts for Collecting Data

We provide the prompt template used in collect-
ing abstract concepts in Table 8 and the prompt
template used in collecting negative examples in
Table 9.

A.4 Annotation Details

There are two qualification tests to choose workers
to maintain rigorous quality control. First, we in-
vited annotators who meet the following conditions
to take our qualification examinations: 1) an ap-
proval rate of above 95% and 2) at least a thousand
approved HITs. In the second round, qualification
questions, including effortless and tricky examples,
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Task Instruction: In this task, you need to list some
related nouns but not hypernyms. Hypernyms are words
that represent broader categories or concepts.

Exemplar Input: 1. Given the sentence “the clinic had
resumed its work,” please list related nouns of “clinic”
but not hypernyms.
Exemplar Output: (1) patients, (2) doctors, . . . , (10)
mask.

Following Exemplars: Exemplar 2, Exemplar 3, ...,
Exmplar 10

Testing Input: 11. Given the sentence [HEAD], please
list related nouns of [INSTANCE] but not hypernyms.

(a) Noun-Entail

Task Instruction: In this task, you need to list some
related phrases but not abstract descriptions of an event.

Exemplar Input: 1. Please list related phrases of the
event “PersonX surfs the web” but not abstract descrip-
tions of it.
Exemplar Output: (1) typing a URL, (2) website, . . . ,
(10) bandwidth.

Following Exemplars: Exemplar 2, Exemplar 3, ..., Ex-
emplar 10

Testing Input: 11. Please list related phrases of the event
[HEAD] but not abstract descriptions of it.

(b) Event-Entail

Table 9: The prompt we used to collect challenging
negative examples from ChatGPT for Noun-Entail and
Event-Entail relations.

are collected by this paper’s authors, who clearly
understand abstract tuples. The experts annotate
200 tuples for each relation. An annotator should
correctly answer 18 of 20 questions to pass the
second round test.

In our main annotation, we assign each tuple to
5 annotators in the first round of annotations. We
manually inspect their annotation quality and dis-
qualify those annotators who cannot continue to
annotate with high accuracy. The annotations from
those disqualified annotators are then discarded for
quality control. For higher quality, we also intro-
duce two rounds of refinement. We reannotate the
discarded votes in the first round of refinement. In
the second round, we request annotators to reanno-
tate the tuples that do not reach an agreement (i.e.,
2 or 3 out of 5 annotators vote for valid). After
this, we discard examples that annotators still do
not agree on. We show the full text of instructions
provided to annotators in Figure 6.

During our massive annotation process, 5153
annotators participated in qualification tests, with
551 (10.7%) annotators passing them. The IAA
score of pairwise agreement proportion is 77.62%,

LLMs Noun Verb Event

Acc Ma-F1 Acc Ma-F1 Acc Ma-F1

GPT 4 62.70 62.47 57.70 57.54 66.20 64.06
GPT 3.5 66.10 62.72 54.10 53.94 67.40 59.57

ChatGPT 67.40 66.04 55.20 55.04 67.60 63.36
+ CoT 56.70 56.67 54.00 52.39 61.30 60.13

Table 10: Results of NLI prompt on ABSPYRAMID[DET].
We mark scores higher than scores of Abs. prompt in
Table 4 with red color. We can see that most scores are
inferior.

Noun-Entail, Verb-Entail and Event-Entail: Identify
entailment and provide a “Yes” or “No” response. Entail-
ment is about determining whether a “hypothesis” is true
given a “premise.” Given the premise [HEAD], can we
know the hypothesis [TAIL]?

(a) Zero-Shot Prompt

Noun-Entail, Verb-Entail and Event-Entail: Identify
entailment, which is about determining whether a “hy-
pothesis” is true given a “premise.” Given the premise
[HEAD], can we know the hypothesis [TAIL]? Step 1:
Let’s think about meanings of those sentences. Step 2:
Provide a “Yes” or “No” response.

(b) CoT Prompt

Table 11: The NLI-format prompt. Results of this
prompt is shown in Table 10. Placeholders [HEAD]
and [TAIL] will be replaced with real head events and
tail events.

and Fleiss’s κ (Fleiss, 1971) is 0.54.

B Implementation Details

First, we discuss details shared in both abstrac-
tion detection and abstraction generation experi-
ments. We access open-source language models
using Transformers (Wolf et al., 2020) and fine-
tune them on 8 NVIDIA A100 (80G) GPUs. LLMs
with 7B and 13B parameters are loaded with BF16.
The best checkpoint is selected according to the
sum of all metrics on the validation set. When
fine-tuning LLMs with LoRA, we only add new
parameters to attention layers with the rank and α
equal to 64 and 128. We grid search the learning
rate of 5e-6, 1e-5, 5e-5, and batch sizes of 64 and
128.

Here are some details specific to abstraction
detection experiments. When fine-tuning NLI
models, we re-use the classification layer with
“Entailment” and “Neutral” for valid and invalid,
respectively. We access ChatGPT, GPT4, and
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Noun-Entail: Identify the hypernym of a specific noun
and provide a “Yes” or “No” response. Hypernyms are
words with a broad meaning, which more specific words
fall under. In the sentence [HEAD], does the meaning of
[CONCEPT] encompass [INSTANCE]?

Verb-Entail: Identify the hypernym of a specific verb
and provide a “Yes” or “No” response. Hypernyms are
words with a broad meaning, which more specific words
fall under. In the sentence [HEAD], does the meaning of
[CONCEPT] encompass [INSTANCE]?

Event-Entail: Identify abstract descriptions of specific
sentences, and provide a “Yes” or “No” response. Can
we consider [CONCEPT] as an abstract description of
the sentence [HEAD]?

(a) Zero-Shot Prompt

Noun-Entail: Identify the hypernym of a specific noun.
Hypernyms are words with a broad meaning, which more
specific words fall under. In the sentence [HEAD], does
the meaning of [CONCEPT] encompass [INSTANCE]?
Step 1: Let’s think about the meanings of those words.
Step 2: Provide a “Yes” or “No” response.

Verb-Entail: Identify the hypernym of a specific verb.
Hypernyms are words with a broad meaning, which more
specific words fall under. In the sentence [HEAD], does
the meaning of [CONCEPT] encompass [INSTANCE]?
Step 1: Let’s think about the meanings of those words.
Step 2: Provide a “Yes” or “No” response.

Event-Entail: Identify abstract descriptions of specific
sentences. Can we consider [CONCEPT] as an abstract
description of the sentence [HEAD]? Step 1: Let’s think
about the meanings of the sentence and the abstract de-
scription. Step 2: Provide a “Yes” or “No” response.

(b) CoT Prompt

Table 12: The default prompt we used (i.e., Abs. prompt)
to test GPT3.5, ChatGPT, and GPT4. The results of this
prompt are shown in Table 4. Placeholders [HEAD],
[INSTANCE], and [CONCEPT] will be replaced with
real head events, instances, and abstract concepts.

GPT3.5 via OpenAI API6, with specific versions
being gpt-3.5-turbo-0613, gpt-4-0613, and
gpt-3.5-turbo-instruct-0914. They are evalu-
ated on one thousand examples that we randomly
sampled from the testing set of each relation due to
the trade-off between API expenses and our evalua-
tion’s precision. In addition, we provide ChatGPT
with ten exemplars for in-context learning.

C Experimental Results

In this appendix, we collect supplementary abstrac-
tion detection and generation results.

6https://platform.openai.com/docs/api-reference

Models Acc Ma-F1 AUC APS

Falcon (7B) 82.93 74.57 86.55 57.46
Mistral (7B) 84.56 76.67 88.60 62.78
Llama2 (7B) 84.20 74.81 87.75 60.98
Llama2 (13B) 84.47 76.28 86.27 58.69

CF-Falcon (7B) 87.19 80.52 91.21 71.21
CF-Mistral (7B) 88.28 82.14 92.64 77.78
CF-Llama2 (7B) 88.55 83.04 92.83 75.83
CF-Llama2 (13B) 87.70 81.48 92.33 74.51

Table 13: The fine-tuning performance of LLMs on
the Levy/Holt dataset. CF stands for continually fine-
tuning.

Models Acc Ma-F1

Falcon-Ins (7B) 73.30 42.66
Mistral-Ins (7B) 72.40 57.81
Llama2-Chat (7B) 71.30 45.65
Llama2-Chat (13B) 71.70 42.77

Table 14: The zero-shot performance of instruction-
tuned LLMs on the Levy/Holt dataset.

C.1 Validation Results on Abstraction
Detection

We collect the performance of LMs trained on each
entailment relation separately on the validation set
of the ABSPYRAMID[DET] in Table 23. Then, we
present the performance of LMs trained on merged
data of all entailment relations on the validation set
in Table 22.

C.2 ChatGPT Prompt Robustness
First, we ask GPT3.5, ChatGPT, and GPT4 whether
an abstract concept is valid as the default prompt
(denoted as Abs. prompt). The prompt is pre-
sented in Table 12, and its results are shown in
Table 4. Meanwhile, we design another prompt in
NLI format, treating the head and tail events as the
premise and hypothesis (denoted as NLI prompt).
This prompt is presented in Table 11. As shown in
Table 10, the performance of the NLI prompt is in-
ferior to the Abs. prompt on most metrics, showing
the robustness of the Abs. prompt.

C.3 Full Results of Transferring to Other
Sources

For the zero-shot study on the Levy/Holt dataset,
we also provide the zero-shot performance of
instruction-tuned LLMs for a complete compar-
ison. As shown in Table 14, the performance of
instruction-tuned models is much lower than mod-
els fine-tuned on our benchmark, showing the com-
prehensiveness of our benchmark.
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Models Shot Acc Ma-F1 AUC

Falcon (7B)

0% 59.39 41.01 61.18
20% 73.41 72.36 80.20
40% 81.17 80.36 88.73
60% 82.37 81.76 89.73
80% 83.13 82.71 91.20

Mistral (7B)

0% 41.88 31.44 53.71
20% 83.14 82.64 90.56
40% 84.12 83.90 92.57
60% 85.66 85.30 92.98
80% 85.72 85.42 93.66

Llama2 (7B)

0% 59.39 41.01 61.18
20% 80.28 79.61 87.89
40% 82.93 82.33 90.96
60% 83.12 82.76 91.41
80% 85.67 85.19 92.97

Llama2 (13B)

0% 55.94 38.81 43.41
20% 75.59 74.56 82.19
40% 81.87 81.30 89.71
60% 82.98 82.28 90.44
80% 84.93 84.31 92.39

Table 15: The few-shot performance on the test set of
AbstractATOMIC dataset. LLMs are loaded from pre-
trained configurations.

Meanwhile, the full fine-tuning performance of
all LLMs on the Levy/Holt dataset is shown in
Table 13. Also, we provide the full results of all
pre-trained LLMs on AbstractATOMIC in Table 15
and results of LLMs that initially fine-tuned on our
dataset in Table 16.

Models Shot Acc Ma-F1 AUC

Falcon (7B)

0% 64.22 64.22 72.80
20% 81.11 80.54 89.01
40% 83.49 82.98 91.11
60% 83.95 83.45 91.66
80% 84.67 84.22 92.24

Mistral (7B)

0% 64.81 64.78 73.60
20% 84.43 84.03 91.73
40% 85.85 85.40 92.88
60% 86.24 85.75 93.23
80% 86.61 86.20 93.71

Llama2 (7B)

0% 62.40 62.13 71.65
20% 82.70 82.32 90.43
40% 84.51 84.06 91.90
60% 84.91 84.50 92.26
80% 85.97 85.59 93.13

Llama2 (13B)

0% 64.28 64.25 71.35
20% 82.76 82.30 90.23
40% 84.50 84.00 91.88
60% 84.91 84.48 92.22
80% 85.87 85.46 93.01

Table 16: The few-shot performance on the test set of
AbstractATOMIC dataset. LLMs are initially trained on
ABSPYRAMID[DET].

Example #1

Head Event: PersonX snared the important wicket of Per-
sonY.
Instance: important wicket of PersonY
Entailment Relation: Noun-Entail
Generated Concept: This means the wicket of PersonY
Expert Explanation: The generation is an explanation of
the meaning instead of some abstract concepts.

Example #2

Head Event: PersonX lived for decades.
Instance: lived
Entailment Relation: Verb-Entail
Generated Concept: lived
Expert Explanation: The generation is the instance itself,
not an abstract concept for it.

Example #3

Head Event: Each squadron meets its specific mission-
oriented needs.
Instance: each squadron meets its specific mission-oriented
needs
Entailment Relation: Event-Entail
Generated Concept: mission-specific requirements
Expert Explanation: The sentence emphasizes that the
needs are met, not only the needs themselves. So, a correct
generation should be "requirement satisfaction," "needs
fulfillment," etc.

Table 17: Error analysis of generated concepts from
Llama2 (13B).

C.4 Full Results of Abstraction Generation
To carry out a more thorough evaluation of LMs’
ability to generate abstraction knowledge, we also
provide performance by entailment relations Noun-
Entail, Verb-Entail, and Event-Entail in Tables 19
to 21, respectively.

Meanwhile, we conduct the human evaluation of
GPT2 and Llama2 (13B) on 50 examples for each
relation (150 in total). The annotation is conducted
by an expert about whether a given generated con-
cept is valid. From the results in Table 18, we can
find that the automatic evaluation results correlate
with the human evaluation, showing the effective-
ness of the automatic metrics.

Further, we also provide error analyses of three
concepts generated by Llama2 (13B), shown in Ta-
ble 17. These cases show that fine-tuned LLMs can
be wrong when (1) generating word meanings in-
stead of concepts, (2) repeating the given instance,
and (3) generating related phrases (but not abstract
concepts).
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Models Noun Verb Event All

GPT2 48.00 26.00 44.00 39.33
Llama2 (13B) 90.00 66.00 74.00 76.67

Table 18: Human evaluation of GPT2 and Llama2
(13B).

Models B-1 B-2 R-2 R-L Meteor

GPT2 33.67 11.63 3.35 30.75 20.04
GPT2-medium 39.15 15.64 6.09 39.43 24.82
GPT2-large 55.79 30.16 15.18 57.31 37.93
GPT2-XL 62.47 33.94 18.70 64.67 42.30

GPT-J (6B) 67.47 35.65 15.47 67.17 41.32
Falcon (7B) 68.67 36.48 16.25 71.62 43.63
Falcon-Ins (7B) 63.92 32.08 13.51 65.31 39.49
Llama2 (7B) 65.80 33.73 17.28 70.29 43.47
Llama2-Chat (7B) 70.07 39.08 18.12 71.51 45.00
Llama2 (13B) 68.81 34.91 18.02 71.04 45.17
Llama2-Chat (13B) 68.71 33.60 16.67 70.54 43.79

Table 19: Generation results on data of Noun-Entail in
the test set of ABSPYRAMID[GEN]. B-1/2, R-2/L denote
BLEU-1/2, ROUGE-2/L, respectively.

Models B-1 B-2 R-2 R-L Meteor

GPT2 5.44 0.00 0.00 5.79 18.21
GPT2-medium 11.46 1.25 0.18 11.77 21.00
GPT2-large 40.34 44.37 12.23 36.98 30.58
GPT2-XL 44.14 39.47 10.77 42.62 31.99

GPT-J (6B) 40.82 31.46 5.11 40.33 27.66
Falcon (7B) 36.88 28.77 3.83 37.01 26.06
Falcon-Ins (7B) 38.49 38.38 6.93 36.68 26.30
Llama2 (7B) 43.92 36.47 5.29 41.94 27.45
Llama2-Chat (7B) 36.68 26.58 3.83 36.79 24.32
Llama2 (13B) 45.18 43.53 6.75 43.90 29.85
Llama2-Chat (13B) 42.25 35.16 5.84 41.94 27.76

Table 20: Generation results on data of Verb-Entail in
the test set of ABSPYRAMID[GEN]. B-1/2, R-2/L denote
BLEU-1/2, ROUGE-2/L, respectively.

Models B-1 B-2 R-2 R-L Meteor

GPT2 35.24 10.93 10.86 42.19 28.06
GPT2-medium 44.12 17.54 15.28 46.23 31.19
GPT2-large 50.39 25.52 24.38 52.01 38.57
GPT2-XL 53.92 29.73 27.98 54.69 41.96

GPT-J (6B) 56.28 29.24 27.38 56.96 42.51
Falcon (7B) 55.15 28.24 25.53 54.96 40.63
Falcon-Ins (7B) 54.90 27.88 26.63 55.10 41.10
Llama2 (7B) 57.48 32.16 29.40 58.00 43.56
Llama2-Chat (7B) 60.18 33.52 29.66 57.84 44.51
Llama2 (13B) 59.34 35.82 30.66 58.36 44.74
Llama2-Chat (13B) 61.06 34.88 29.13 58.04 43.74

Table 21: Generation results on data of Event-Entail in
the test set of ABSPYRAMID[GEN]. B-1/2, R-2/L denote
BLEU-1/2, ROUGE-2/L, respectively.
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LLM + LoRA Noun Verb Event All
Acc Ma-F1 AUC Acc Ma-F1 AUC Acc Ma-F1 AUC Acc Ma-F1 AUC

Falcon (7B) 88.12 87.55 92.60 64.42 64.15 68.92 77.54 71.84 80.38 78.76 77.38 85.95
Falcon-Ins (7B) 87.62 87.09 92.44 64.61 64.59 69.23 77.39 71.44 80.29 78.52 77.37 85.88
Mistral (7B) 88.90 88.38 92.86 64.61 64.30 69.75 77.95 72.56 81.07 79.28 77.96 86.73
Mistral-Ins (7B) 88.57 88.09 92.77 64.49 64.40 68.76 77.78 72.10 81.02 79.04 77.86 86.50
Llama2 (7B) 88.85 88.29 92.97 64.17 63.84 68.95 77.97 71.95 80.97 79.15 77.71 86.59
Llama2-Chat (7B) 88.37 87.82 92.86 64.07 63.94 68.93 77.39 71.53 79.68 78.78 77.82 86.04
Llama2 (13B) 88.26 87.83 92.85 65.20 65.20 69.48 77.65 71.95 80.57 79.06 78.08 86.57
Llama2-Chat (13B) 88.62 88.09 92.77 65.47 65.31 69.71 77.65 72.11 81.31 79.25 78.01 86.60

Table 22: The performance of LLMs on the validation set of ABSPYRAMID[DET] under the multi-relation setting.

Methods Backbone Noun Verb Event
Acc Ma-F1 AUC Acc Ma-F1 AUC Acc Ma-F1 AUC

Random - 50.00 49.67 50.00 50.00 49.97 50.00 50.00 49.01 50.00
Majority Vote - 58.11 - 50.00 52.40 - 50.00 63.94 - 50.00

NLI + Zero

BART-large-mnli 70.44 67.65 75.47 54.84 45.89 62.54 71.32 66.65 71.06
RoBERTa-large-mnli 67.76 62.61 74.70 54.10 43.55 61.51 70.40 62.65 70.62
DeBERTa-base-mnli 67.77 65.05 72.35 54.72 46.35 61.34 66.14 62.52 67.21
DeBERTa-large-mnli 72.85 70.95 78.23 55.68 48.23 62.34 68.35 65.30 70.55

NLI + FT

BART-large-mnli 86.47 86.03 91.92 64.47 64.47 68.53 75.58 71.02 79.63
RoBERTa-large-mnli 86.93 86.35 91.92 65.16 64.83 69.06 77.75 71.42 80.25
DeBERTa-base-mnli 86.17 85.42 91.24 64.64 64.61 68.96 77.36 70.66 79.50
DeBERTa-large-mnli 86.92 86.30 91.78 64.15 64.08 69.30 77.47 71.07 79.65

PLM + FT

BERT-base 85.47 84.78 91.02 63.38 63.32 68.35 77.33 71.06 80.27
BERT-large 86.65 86.03 91.37 62.96 62.95 67.02 76.16 70.84 79.73
RoBERTa-base 85.01 84.31 90.76 62.62 62.61 67.04 77.25 71.37 79.75
RoBERTa-large 86.35 85.80 91.29 62.91 62.91 67.64 77.86 71.53 79.89
DeBERTa-base 85.22 84.51 90.31 62.28 61.89 67.34 76.85 71.25 79.55
DeBERTa-large 87.77 87.23 91.91 64.79 64.79 68.49 77.75 71.58 80.05

LLM + LoRA

Falcon (7B) 87.49 86.97 92.33 63.56 63.43 68.13 76.45 71.49 79.50
Falcon-Ins (7B) 86.57 86.11 92.07 64.15 64.09 68.46 76.17 70.53 78.89
Mistral (7B) 88.50 88.08 92.63 63.29 62.90 68.16 77.91 71.52 80.58
Mistral-Ins (7B) 88.31 87.90 92.60 63.71 63.65 68.77 77.91 72.00 80.72
Llama2 (7B) 88.57 88.06 92.84 63.71 63.32 68.75 76.91 71.36 80.18
Llama2-Chat (7B) 87.87 87.48 92.92 63.53 63.09 67.79 77.91 71.58 79.79
Llama2 (13B) 88.64 88.16 93.09 64.08 63.57 69.03 77.43 71.68 80.61
Llama2-Chat (13B) 88.59 88.03 92.89 64.32 64.23 68.89 77.89 71.62 80.70

Table 23: Performance on the validation set of our ABSPYRAMID[DET]. We trained models on the three entailment
relations separately.
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Survey Instructions (Click to Collapse)

Noun/Noun Phrase Substitution
Welcome to this project! This is an easy annotation project with ~50k HITs to be released while only requires you to read and answer a few questions
according to the instructions described below.
Please don't hesitate to give us advice on the instructions and the questions. Bonus will be given if your advice is helpful.

Task Objective
 In this task, we will give you a base sentence with a highlighted part and then a noun or noun phrase (i.e., a concept). Your job is to determine if

the given noun or noun phrase is a more general concept that encompasses the meaning of the highlighted part in the base sentence.
Note that: The given sentences, nouns, and noun phrases are case-insensitive and involve some people or certain groups of people, denoted as
PersonX, PersonY, PersonZ, etc.

Valid Concept Example
For example, given a base sentence:
PersonX buys a hot dog
and the concept of the yellow part: "food." You are required to choose it as correct because PersonX indeed buys food, so the concept correctly
describes the meaning of the highlighted part of the base sentence, though more precisely, PersonX buys a hot dog. Therefore, the original meaning is

encompassed by the meaning of the given concept. We call this a valid concept.
Similarly, concepts such as "street food," "meat product," "sausage," or even "hot dog" itself encompass the original meaning, and we consider them
valid.

Invalid Concepts
There are many possible reasons that make a concept invalid. For example:
(1) "dog" is an invalid concept: as its meaning has nothing to do with the original sentence: PersonX buys a hot dog.

(2)"spicy hot dog" is an invalid concept: a non-spicy hot dog is common, so this concept doesn't cover the original meaning.
To conclude, the meaning of the given concept should be typical.

A concept can be the same as or more general than the original part in the base sentence, but should not be more specific than or
totally different from the original one.

Context Matters!
Whether a concept is valid depends on the context. In PersonX eats an apple, there are several possible concepts:
(1) "fruit". Correct: because apple is a kind of fruit, and fruit is more general.
(2) "Company" (Apple is a company of iPhone, iPad). In this case, it's wrong. Apple here is not standing as the Apple company. However, "company" is
a good concept for "apple" in PersonX buys stocks of apple.

Hypernyms! Not hyponyms:
We found that some workers mixed up hypernyms and hyponyms. Hypernym refers to a generic word encompassing the original word's meaning, which
can be a more general category or the original word itself. Hyponym refers to a more specific word. For example, in the sentence many analysts were
disappointed by earnings, "financial analyst" is a hyponym of "analyst," and hypernyms of "analyst" can be "specialist" and "expert." Our annotation is
about identifying hypernyms, not hyponyms. Please keep this in mind.

Other Reminders
The given concept may have absent or incorrect determiners (a, the, some, one's, etc.) and the number of the noun (singular or plural).
We care about the general meaning of the given concept but not the form of the concept itself. Therefore, in the above eat-an-apple example, concepts
such as "a fruit," "fruits," and "kind of fruits" are ALL considered VALID.
You may try to consider different modifiers: the, a, some, the event of, the action of ...

Pair 1: ${q1_id}

Base Sentence: ${q1_instance_sentence}

Given Noun (Phrase): ${q1_concept}

Is the given noun (phrase) the same as or a more general concept encompassing the
highlighted part?

Yes

No

Pair 2: ${q2_id}

Base Sentence: ${q2_instance_sentence}

Given Noun (Phrase): ${q2_concept}

Is the given noun (phrase) the same as or a more general concept encompassing the
highlighted part?

Yes

No

Pair 3: ${q3_id}

Base Sentence: ${q3_instance_sentence}

Given Noun (Phrase): ${q3_concept}

Is the given noun (phrase) the same as or a more general concept encompassing the
highlighted part?

Yes

No

Pair 4: ${q4_id}

Base Sentence: ${q4_instance_sentence}

Given Noun (Phrase): ${q4_concept}

Is the given noun (phrase) the same as or a more general concept encompassing the
highlighted part?

Yes

No

Pair 5: ${q5_id}

Base Sentence: ${q5_instance_sentence}

Given Noun (Phrase): ${q5_concept}

Is the given noun (phrase) the same as or a more general concept encompassing the
highlighted part?

Yes

No

Pair 6: ${q6_id}

Base Sentence: ${q6_instance_sentence}

Given Noun (Phrase): ${q6_concept}

Is the given noun (phrase) the same as or a more general concept encompassing the
highlighted part?

Yes

No

Pair 7: ${q7_id}

Base Sentence: ${q7_instance_sentence}

Given Noun (Phrase): ${q7_concept}

Is the given noun (phrase) the same as or a more general concept encompassing the
highlighted part?

Yes

No

Pair 8: ${q8_id}

Base Sentence: ${q8_instance_sentence}

Given Noun (Phrase): ${q8_concept}

Is the given noun (phrase) the same as or a more general concept encompassing the
highlighted part?

Yes

No

Pair 9: ${q9_id}

Base Sentence: ${q9_instance_sentence}

Given Noun (Phrase): ${q9_concept}

Is the given noun (phrase) the same as or a more general concept encompassing the
highlighted part?

Yes

No

Pair 10: ${q10_id}

Base Sentence: ${q10_instance_sentence}

Given Noun (Phrase): ${q10_concept}

Is the given noun (phrase) the same as or a more general concept encompassing the
highlighted part?

Yes

No

The base sentence is ungrammatical or meaningless. It is of low quality and hard for me to understand.

The base sentence is ungrammatical or meaningless. It is of low quality and hard for me to understand.

The base sentence is ungrammatical or meaningless. It is of low quality and hard for me to understand.

The base sentence is ungrammatical or meaningless. It is of low quality and hard for me to understand.

The base sentence is ungrammatical or meaningless. It is of low quality and hard for me to understand.

The base sentence is ungrammatical or meaningless. It is of low quality and hard for me to understand.

The base sentence is ungrammatical or meaningless. It is of low quality and hard for me to understand.

The base sentence is ungrammatical or meaningless. It is of low quality and hard for me to understand.

The base sentence is ungrammatical or meaningless. It is of low quality and hard for me to understand.

The base sentence is ungrammatical or meaningless. It is of low quality and hard for me to understand.

Previewing Answers Submitted by Workers
This message is only visible to you and will not be shown to Workers.
You can test completing the task below and click "Submit" in order to preview the data and format of the submitted results.

Submit

Figure 6: The full text of instructions provided to annotators on Amazon Mechanical Turk (MTurk). There are ten
questions in a Human Intelligence Task (HIT), and we only display one here for brevity.
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