
Read between the lines - Functionality Extraction From READMEs

Prince Kumar, Srikanth Tamilselvam, Dinesh Garg
IBM Research AI

prince.kumar12@ibm.com, {srikanth.tamilselvam, garg.dinesh}@in.ibm.com

Abstract

While text summarization is a well-known NLP
task, in this paper, we introduce a novel and
useful variant of it called functionality extrac-
tion from Git README files. Though this task
is a text2text generation at an abstract level, it
involves its own peculiarities and challenges
making existing text2text generation systems
not very useful. The motivation behind this
task stems from a recent surge in research and
development activities around the use of large
language models for code-related tasks, such as
code refactoring, code summarization, etc. We
also release a human-annotated dataset called
FuncRead, and develop a battery of models
for the task. Our exhaustive experimentation
shows that small size fine-tuned models beat
any baseline models that can be designed using
popular black-box or white-box large language
models (LLMs) such as ChatGPT (OpenAI,
2023) and Bard (Chowdhery et al., 2022). Our
best fine-tuned 7 Billion CodeLlama model ex-
hibit 70% and 20% gain on the F1 score against
ChatGPT and Bard respectively.

1 Introduction

Large Language Models (LLMs) are known to per-
form really well on many text2text (Yang and Flek,
2021) generation tasks such as summarization (Liu
and Lapata, 2019; El-Kassas et al., 2021)), trans-
lation (Wang et al., 2019; Maruf et al., 2021), etc.
Because of this success, there is a growing research
interest in applying LLMs in novel task settings
such as explaining complex codes, generating new
recipes, simplifying contents, etc1. In this paper,
we introduce another novel task called functionality
extraction from Git README files – a variant of text
summarization task (Prana et al., 2019) that detects
all the functionalities supported by the correspond-
ing application software. This task can also be seen
as a variation of a Question-Answering (QA) (Fan

1https://platform.openai.com/examples

et al., 2019; Soares and Parreiras, 2020) task where
the question like List all functionalities is fixed.

The motivation to introduce automatic function-
ality extraction from Git README files stems from
the requirement of application code refactoring to
decompose a monolith application into functional
microservices. Here each microservice is a collec-
tion of closely connected application artifacts (pro-
grams, tables etc.) supporting a common function-
ality (Lewis and Fowler, 2014; Richardson, 2018;
Newman, 2021). Current microservice recommen-
dation systems rely a lot on subject matter experts
(SMEs) and falls short to correctly group artefacts
since they do not have reference list of functional-
ities. But many application Git README files tend
to contain capture different functionalities 2 of the
underlying software code base3 along with other
implementation details like what it does, how oth-
ers can use it, licensing, etc.,(Prana et al., 2019;
Chen et al., 2021). As an example, the README file
of the Daytrader application4 discusses the applica-
tion overview, the technology used, licensing terms,
etc., and in between discusses four functionalities
as highlighted in Figure 1(a).

Recently, (Doan et al., 2023) focused on lever-
aging LLM to generate sections of README.md
like "About" section (brief 1-2 line summary of
repo) but they do not aim to list all the functional-
ities. Extraction of the application functionalities
from such README files is not straightforward. The
functionalities may not be always structured and
might spread across multiple paragraphs and lines.
Therefore, there is a need for an intelligent system
that can parse the text, understand functionality ex-
pressions, de-duplicate, and list them. To tackle
this first-of-its-kind task, we also introduce and re-

2Occasionally, we call functionality as feature
3https://docs.GitHub.com/en/repositories/

managing-your-repositorys-settings-and-features/
customizing-your-repository/about-readmes

4https://GitHub.com/WASdev/sample.daytrader7/

ar
X

iv
:2

40
3.

10
20

5v
1

 [
cs

.C
L

]
 1

5
M

ar
 2

02
4

https://docs.GitHub.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-readmes
https://docs.GitHub.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-readmes
https://docs.GitHub.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-readmes
https://GitHub.com/WASdev/sample.daytrader7/

Figure 1: Snapshot of Github README content of Daytrader, an online trading application is captured in (a). The
human annotated four functionalities based on the description are listed as golden truth along with the functionalities
generated by fine-tuned 7 billion CodeLlama model.

lease a new dataset called FuncRead that will help
the community to benchmark their functionality
understanding module and refactor monolith appli-
cations into discovered functional microservices.
The key contributions of this paper are as follows.

1. We introduce a novel functionality extraction
from Git README files task and human-annotated
dataset called FuncRead. This dataset captures
the human-annotated lists of the functionalities
in both extractive and abstractive forms for each
of 2101 different GitHub README files following
permissible licenses.

2. We perform a comparative analysis of genera-
tive models to reason out the gap in performance
between different baselines on the FuncRead
dataset. To enable comparison, we perform bi-
partite matching (one-to-one, many-to-one, and
weighted many-to-one) to align generated func-
tionalities with the gold functionalities.

3. We present smaller fine-tuned generative mod-
els 1&7 billion StarCoderbase, 2.7 billion phi-2,
7 billion Llama-2 & CodeLlama which give su-
perior results compared to ChatGPT and Bard.

2 FuncRead Dataset

The FuncRead dataset is a first-of-its-kind dataset
that consists of functionalities described in the
README files. These functionalities were hand-
curated by human annotators after carefully reading
the file. For each README file, the functionalities
are annotated in two formats - extractive and ab-
stractive. Extractive functionalities are segments
of the text or span from the README file; whereas
abstractive functionalities are the self-explained
versions of the corresponding extractive functional-
ities, written in the annotator’s own words. Each of
these format outputs are presented in the form of

a list. The dataset consists of unique 2101 human
annotated GitHub README files.

2.1 Dataset Collection
We used GitHub provided APIs to randomly se-
lect a subset of public repositories that comes with
a permissible licenses. Further, we manually in-
spected the README files of these repositories and
retained only the ones that comprised of at least two
functionalities. Note, we do not store the README
files for the crawled repositories, we only extracted
the README content and other metadata like license
information. We also removed markdown tags
and any Personal Identifiable Information (PII) like
names, email addresses etc. before further process-
ing. The license distribution for the 2101 README
files are as follows MIT (1436), Apache (334) ,
BSD (334), and EPL (6) licenses. We found that
the majority of the repositories consist of 10 or
lesser functionalities with an average being 5 func-
tionality per repository. Some repository has as
many as 34 different functionalities.

2.2 Dataset Annotation
We had a total of seven annotators involved in the
initial data annotation process. Each annotator was
asked to read the whole README file and perform
both the annotations – extractive and abstractive.
For extractive annotation, annotators were asked to
select text spans from the README file which they
felt were describing functionalities, and note them
in the form of a numbered list. For abstractive an-
notation, each annotator was asked to describe the
functionalities in their own words. All the annota-
tors were given a disjoint set of README files.

2.3 Annotation Validation
We employed two new independent annotators for
the purpose of human validation of the dataset ob-

tained from the previous step. We randomly sam-
pled 200 README files from each of these two anno-
tators out of which 50 README files were common
for both the annotators. Both of these annotators
were instructed to read extractive as well as ab-
stractive functionalities and check whether all the
functionalities were included. Based on their ob-
servation, they were tasked to give a rating from
1 to 4 based on the degree of strictly necessary
functionalities annotated. These ratings were used
to calculate the inter-annotator agreement. We ob-
served a Kappa score of 0.873. Figure 2 describes
the ratings and the rating score distribution for both.

More details on the dataset characteristics and
annotation procedure can be found in appendix.

Figure 2: Ratings distribution of the two annotators
during the verification step of the FuncRead dataset.

3 Task Modelling

For modeling purposes, one can view the func-
tionality extraction as a generation task. In the
generation mode, the goal is to generate a list of
functionalities from a given README file. As ours
is the first-of-its-kind dataset, we used ChatGPT
and Bard models known to perform really well on
most NLP and code tasks even in zero-shot setting
as a baseline for our task. Among many prompts,
the following prompt “List all the features from
above text. Each features should be in individual
line without headings. Each features should be in
individual line without headings. Do not include
features related to license” provided the best re-
sults. The actual list of prompts tried on ChatGPT
and Bard can be found in section 6.5.

We wanted to study if task specific small sized
models can provide competitive results. For this we
considered mix of NL and code model variants like
1b and 7b StarCoderbase, 2.7b phi-2 and 7b llama-2
and CodeLlama. For fine-tuning, we pre-processed
the README data through the steps listed in section
2.1. Next, we append it with “\n##FEATURES##\n”
as the task designator prompt followed by the hu-

man annotated list of functionalities corresponding
to that README file. For inference, we simply ap-
pended the task designator prompt to the README
text and then allowed the model to complete se-
quence to generate list of functionalities.

4 Experiments and Results

For our experiments, we divided the FuncRead
dataset into train, validation, and test sets com-
prising 1801, 100, and 200 samples respectively.

binding for tokenizer of SQLite Full-
Text search (FTS3/4) and FTS5

Gold Functionalities
Generated Functionalities

it allows you to write tokenizers in
Python

ranking functions based on
peewee

utility function to add FTS5
auxiliary functions

utility function to add FTS5
auxiliary functions

SQLite has Full-Text search feature
FTS3/FTS4 and FTS5 along with some
predefined tokenizers for FTS3/4.

It allows you to write tokenizers in
Python.

It also has ranking functions based
on peewee, utility function to add
FTS5 auxiliary functions, and an FTS5
aux function implementation.

The module has a sample
tokenizer for FTS3,4 and FTS5.One-to-one matching

Many-to-one matching

Figure 3: One-to-One bipartite matching (red color) and
Many-to-one bipartite matching (blue color). Edges are
established based on cosine similarity

4.1 Evaluation Metrics

To evaluate the quality of the generated function-
alities, we align them to the gold annotated func-
tionalities via bipartite matching. We perform three
kinds of bipartite matching: i) one-to-one, ii) one-
to-many, and iii) weighted one-to-many.

In any of these bipartite graphs, we have model-
generated functionalities as nodes on one side and
gold (ground truth) functionalities as nodes on the
other side. The presence or absence of an edge
in this bipartite graph is decided by the similarity
scores between the corresponding sentences. In
our experiments, we found threshold 0.3 similar-
ity matches the most with the human judgment.
We did maximum bipartite matching to compute
Precision (P), Recall (R), and F1 scores based on
matched pairs to measure the generation capability.

For fine-tuning the models, we used extractive
functionalities as gold, and because of it, we em-
ployed ROUGE-1, ROUGE-2, ROUGE-L scores
to check the lexical matching quality of generated
functionalities at an individual level. Since all the
considered models are generative models, there is
a high chance that it would introduce new tokens
while generating functionalities. Hence, we also

Model F#
1 P# R# F ∗

1 P ∗ R∗ F+
1 P+

ChatGPT 0.459 0.336 0.900 0.431 0.303 0.922 0.406 0.282
Bard 0.653 0.611 0.806 0.649 0.573 0.858 0.612 0.528

StarCoderbase-1b 0.772 0.816 0.786 0.808 0.788 0.876 0.754 0.711
StarCoderbase-7b 0.743 0.797 0.754 0.787 0.777 0.844 0.734 0.698

Phi-2 0.231 0.172 0.656 0.226 0.159 0.733 0.207 0.144
Llama2-7b 0.698 0.748 0.715 0.715 0.700 0.795 0.658 0.622

CodeLlama-7b 0.784 0.827 0.794 0.816 0.801 0.877 0.770 0.738

Table 1: Result comparison for various fine-tuned models against out-of-the box large models for threshold = 0.3.
represents one-to-one bipartite matching, * represents many-to-one bipartite matching, + represents weighted
many-to-one bipartite matching.

Model
ROUGE-1 ROUGE-2 ROUGE-L

F1 P R F1 P R F1 P R

ChatGPT 0.423 0.404 0.564 0.301 0.291 0.391 0.410 0.390 0.549
Bard 0.616 0.648 0.673 0.511 0.542 0.549 0.609 0.640 0.666

StarCoderbase-1b 0.759 0.750 0.845 0.676 0.667 0.755 0.757 0.747 0.842
StarCoderbase-7b 0.754 0.790 0.802 0.640 0.663 0.688 0.752 0.788 0.800

Phi-2 0.665 0.677 0.765 0.567 0.571 0.658 0.663 0.674 0.762
Llama2-7b 0.755 0.787 0.810 0.659 0.688 0.706 0.752 0.783 0.806

CodeLlama-7b 0.778 0.815 0.820 0.684 0.710 0.725 0.777 0.813 0.818

Table 2: Results for one-to-one matched pairs of different models generation and ground truth for threshold = 0.3.

Model
BERTScore

F1 P R

ChatGPT 0.895 0.889 0.902
Bard 0.912 0.910 0.916

StarCoderbase-1b 0.945 0.940 0.951
StarCoderbase-7b 0.938 0.938 0.940

Phi-2 0.928 0.925 0.933
Llama2-7b 0.936 0.935 0.939

CodeLlama-7b 0.946 0.946 0.947

Table 3: Results for one-to-one matched pairs for thresh-
old = 0.3.

used BERTScore (Zhang et al., 2019) to capture
the semantic similarity between the matched pairs.

4.2 Results

Overall, we find fine-tuned models specifically
code models are reliable for this novel task. From
table 1, we can observe fine-tuned models have a
tendency to combine multiple functionalities into a
single sentence but F1, P , and R scores of many-

to-one bipartite matching indicates that it still does
less frequently. But all the fine-tuned models sig-
nificantly outperform ChatGPT, Bard on P and F1

measures. Due to inherent verbosity, R is higher for
the latter models. Table 2 ROUGE scores demon-
strates that the functionalities generated by the fine-
tuned models have a relatively higher token simi-
larity when matched one-to-one (it is consistent for
the other two schemes as can be seen in appendix).
Table 3 BERTScores are also consistent with the
claims showing better semantic similarity for the
fine-tuned models. We suspect code models ten-
dency to outperform NL models can be due to their
stronger exposure to Git data. In few instances the
models did not list any functionalities which can be
attributed to complexity and lack in standardization
of GitHub README files. Please refer to appendix
for in-depth comparisons and discussions.

5 Conclusion

We introduced a novel task functionality extraction
from Git README files and studied on a new dataset
curated from public repositories to demonstrate
reliability of small sized fine-tuned LLMs.

References
Mark Chen, Jerry Tworek, Heewoo Jun, Qiming

Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways.

Thu TH Doan, Phuong T Nguyen, Juri Di Rocco, and
Davide Di Ruscio. 2023. Too long; didn’t read: Au-
tomatic summarization of github readme. md with
transformers. In Proceedings of the 27th Interna-
tional Conference on Evaluation and Assessment in
Software Engineering, pages 267–272.

Wafaa S El-Kassas, Cherif R Salama, Ahmed A Rafea,
and Hoda K Mohamed. 2021. Automatic text sum-
marization: A comprehensive survey. Expert Systems
with Applications, 165:113679.

Angela Fan, Yacine Jernite, Ethan Perez, David Grang-
ier, Jason Weston, and Michael Auli. 2019. Eli5:
Long form question answering. arXiv preprint
arXiv:1907.09190.

J. Lewis and M. Fowler. 2014. www.martinfowler.com/
articles/microservices.html. www.martinfowler.
com/articles/microservices.html.

Yang Liu and Mirella Lapata. 2019. Text summariza-
tion with pretrained encoders. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3730–3740.

Sameen Maruf, Fahimeh Saleh, and Gholamreza Haffari.
2021. A survey on document-level neural machine
translation: Methods and evaluation. ACM Comput-
ing Surveys (CSUR), 54(2):1–36.

Sam Newman. 2021. Building microservices. "
O’Reilly Media, Inc.".

OpenAI. 2023. Chatgpt (sep 25 version) [large language
model].

Gede Artha Azriadi Prana, Christoph Treude, Ferdian
Thung, Thushari Atapattu, and David Lo. 2019. Cat-
egorizing the content of github readme files. Empiri-
cal Software Engineering, 24(3):1296–1327.

Chris Richardson. 2018. Microservices patterns: with
examples in Java. Simon and Schuster.

Marco Antonio Calijorne Soares and Fernando Silva
Parreiras. 2020. A literature review on question an-
swering techniques, paradigms and systems. Journal
of King Saud University-Computer and Information
Sciences, 32(6):635–646.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,
Changliang Li, Derek F Wong, and Lidia S Chao.
2019. Learning deep transformer models for ma-
chine translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1810–1822.

Diyi Yang and Lucie Flek. 2021. Towards user-centric
text-to-text generation: A survey. In International
Conference on Text, Speech, and Dialogue, pages
3–22. Springer.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
www.martinfowler.com/articles/microservices.html
www.martinfowler.com/articles/microservices.html
www.martinfowler.com/articles/microservices.html
www.martinfowler.com/articles/microservices.html
https://chat.openai.com/chat
https://chat.openai.com/chat

6 Appendix

We organize the appendix to cover the following :

• Limitations - Discuss four key limitations with
this work that we plan to address in our future
studies.

• Dataset - Discuss the crawled github data charac-
teristics in detail

• Annotator Profile - Discuss the demography and
key details of annotators who helped prepare the
study dataset

• Annotator Instruction - Discuss in detail the in-
structions and guidance provided to annotators

• Annotation Validation - Discuss in detail the
steps taken to review annotations

• Task Modelling using Baseline Models - List
all the prompts tried to get the most accurate
functionalities

• Model Hyperparameters - Key hyper-parameters
used to reproduce results

• Quantitative Results - Discuss results in detail
for the different settings and thresholds

6.1 Limitations
There are four major limitations in this work that
could be addressed in future research. First, the
study focused on 2101 samples, there could be
more unknown ways of describing functionalities
that the current models may not be able to handle.
This can be addressed by increasing the dataset size.
Second, as shown in Figure 2, we found human er-
rors during the annotation process where, for a few
samples, unwanted functionalities were added and
some wanted functionalities were missed. But this
can be handled by expanding the validation efforts
to the rest of the samples. Third, handling very long
README files is a challenge as we have a maximum
of 2048 token limit for models. There is promising
research in this direction to support longer token
limit. Fourth, defining the reference set of function-
alities is sometimes an ill-posed problem because
different humans may perceive the README differ-
ently and they may conceive the set of functionali-
ties differently. But we hope to educate annotators
by discussing more number of ground truth sam-
ples.

6.2 Dataset
Table 4 shows the license distribution for the 2101.
Figure 4 represents the functionalities count distri-
bution for the repositories. README files. We plan
to release this dataset post review period.

License Count Count Percentage(%)

MIT 1436 68.34
Apache 334 15.90
BSD 325 15.47
EPL 6 0.29

Table 4: License-wise split of FuncRead dataset.

Number of functionalities

Figure 4: Functionalities count distribution of the
FuncRead dataset.

6.3 Annotators Profile
To prepare the dataset, we requested participation
from nine software engineers based out of Asia.
The participants were identified based on their prior
experience working on application modernization
projects listed on their profile page. On an aver-
age, the participants had industrial experience of
13 years in different software engineering roles.
We requested seven participants to annotate the
2101 different GitHub README files. Once extrac-
tive and abstractive functionalities were annotated,
we employed 2 new participants to perform the ver-
ification step. We individually discussed the task
details, expectations, the tentative average time that
might be needed (5 minutes per annotation), and
the research goal and got their consensus before
providing them with the annotation instruction.

6.4 Annotation Instructions
Following were the instructions given to the seven
annotators :

• We thank you for agreeing to annotate. An
excel sheet will be given with the following
information

– Repository id
– Readme URL
– Extractive functionalities

– Abstractive functionalities

• First row will be filled for convenience.

• For each repository id two types of annota-
tions are requested to be done

– Extractive: Copy and paste the function-
alities as numbered lists.

– Abstractive: Write the functionality in
your own words.

* NOTE: Please do not copy-paste for
this. Please try to be as descrip-
tive as possible i.e., introduce new
words to describe instead of reusing
the same set of words.

• Please write/copy-paste each functionality in
the new line as a numbered list.

• Please make sure that number of abstractive
and extractive functionalities are the same.

• Few things to take care

– Do not include future/expected function-
alities/roadmap/TODO/planned

– Please do not click on any link to find
more functionalities. Whatever function-
alities are present in the README, please
include those only.

– Do not include application – meaning
what is possible with that functionality
or repository.

– In Progress/partial functionalities can be
included.

All the annotators were given the same set of
instructions so as to maintain consistency. Anno-
tators’ doubts were clarified on regular basis. The
generated dataset was reviewed by the authors in-
ternal review board and was deemed suitable to be
published for research.

6.4.1 Annotator Validation Example
Let us understand above ratings via an example.
For the README given in Figure 1, suppose follow-
ing extractive functionalities were annotated by an
annotator:

• allow users to login
• lookup stock quotes
• buy or sell stock shares
• provides a real-world java EE workload

It is now clear that the annotator in this specific case
has missed one of the functionality, namely “view
their portfolio” and added an extra functionality
namely “provides a real-world java EE workload”.
Therefore, a rating of 4 would be assigned during
the human validation step.

6.5 Task Modelling using ChatGPT, Bard
To understand what prompts helps best to list the
functionalities, we tried various prompt on Chat-
GPT and Bard baseline models. Some of them are
as follows:

• List all the features for the above text.
• List all the functionalities for the above text.
• List all the features from above text. Each fea-

tures should be in individual line without head-
ings.

• List all the features from above text. Each fea-
tures should be in individual line without head-
ings. Each features should be in individual line
without headings.

• List all the features from above text. Each fea-
tures should be in individual line without head-
ings. Each features should be in individual line
without headings. Do not include features related
to license

6.6 Evaluation Metrics
To evaluate the quality of the generated function-
alities, we align them to the gold annotated func-
tionalities via bipartite matching. We perform three
kinds of bipartite matching: i) one-to-one, ii) one-
to-many, and iii) weighted one-to-many.

In any of these bipartite graphs, we have model-
generated functionalities as nodes on one side and
gold (ground truth) functionalities as nodes on the
other side. The presence or absence of an edge
in this bipartite graph is decided by the similarity
scores between the corresponding sentences. Fig-
ure 3 captures an illustration. For computing the
similarity score, we used SentenceTransformer5

and generated the sentence embeddings for both
model-generated and gold functionalities sentences.
Next, we computed a cosine similarity between
these two vectors, and experimented with multiple
thresholds to decide whether the edge should be
present in the bipartite graph. In our experiments
we found threshold 0.3 matches the most with the
human judgment. A lower threshold was giving
poor-quality mapping with excessively matched

5https://www.sbert.net/

https://www.sbert.net/

pairs. A higher value was giving high-quality map-
ping but the number of matched pairs was very
less. We used the maximum_bipartite_matching6

function from SciPy library to perform the maxi-
mum (weighted or unweighted) bipartite matching.
Based on the matched pairs, we compute Preci-
sion (P), Recall (R), and F1 scores to measure the
generation capability.

For fine-tuning the models, we used extractive
functionalities as gold, and because of it, we em-
ployed ROUGE-1, ROUGE-2, ROUGE-L scores
to check the lexical matching quality of generated
functionalities at an individual level. Since all the
considered models are generative models, there is
a high chance that it would introduce new tokens
while generating functionalities. Hence, we also
used BERTScore (Zhang et al., 2019) to capture
the semantic similarity between the matched pairs.

After analyzing the generated functionalities, we
realized that the model sometimes combines mul-
tiple functionalities into a single generated sen-
tence (see Figure 3). Therefore, there is a need
for many-to-one bipartite matching where multiple
gold functionalities are allowed to map into a sin-
gle generated functionality. There are two kinds of
results we show in many-to-one bipartite matching.
The first one is many-to-one P , R, and F1 scores,
where all the edges in the bipartite matching are
given a score of 1. The second is weighted many-
to-one P , R, and F1 scores, where for each of the
model-generated functionality that is matched with
multiple gold functionalities, each matched edge
is assigned a weight that is inversely proportional
to the number of functionalities matched. We take
the reciprocal of the number of matched edges and
assign that as a weight to all the incoming edges for
that particular model-generated functionality. For
example, consider the third functionality sentence
generated by the model in Figure 3, which reads

“It also has ranking functions based on peewee, util-
ity function to add FTS5 auxiliary functions and
an FTS5 aux function implementation.” Now, each
matched edge incident on this node gets a weight of
1/3 for weighted many-to-one bipartite matching.

6.7 Model Hyperparameters

Table 17 shows the important hyperparamters that
can be used to reproduce results. Rest of the hyper-
paramters are the default ones present in Hugging-

6https://docs.scipy.org/doc/scipy/reference/
generated/scipy.sparse.csgraph.maximum_
bipartite_matching.html

face Trainer API.

6.8 Quantitative Results
All experiments were performed on an A100
80GB GPU machine.

We report results on the discussed metrics for all
the fine-tuned models and compare them against
the ChatGPT and Bard. Table 1 shows the P ,
R, and F1 scores for the three bipartite matching
schemes. We do not report R for weighted many-
to-one bipartite matching as it is the same as R
for many-to-one bipartite matching. Results in ta-
bles 1, 2, and 3, are restricted over that subset of
test samples for which each of these models out-
puts a nonempty string and also yields at least one
matched pair during the bipartite matching proce-
dure. The total comparable test samples thus came
down to 69.

From table 1, we can observe that all the fine-
tuned models significantly outperform ChatGPT
and Bard across P , R, and F1 measures. We can
see that the F1 score of one-to-one bipartite match-
ing for ChatGPT is 0.459 and for Bard is 0.653
which are much smaller as compared to code mod-
els. Table 2 further shows the ROUGE scores for
one-to-one matched pairs. Again we see that the
functionalities generated by the fine-tuned models
have a relatively higher lexical similarity. Table 3
shows BERTScore which is again higher than Chat-
GPT and Bard. Tables 5 and 6 shows many-to-one
results for threshold = 0.3. The rest of the tables
show results for other threshold values 0.4 and 0.5
and matching schemes. Count of common test sam-
ples across various models which have non-empty
generations and have at least one matched pair are
85 and 98 for threshold values 0.4 and 0.5 respec-
tively. An increase in ROUGE and BERTScore
gives the illusion that a higher threshold value
should be preferred but as mentioned earlier the
number of functionalities generated/classified de-
creases too which is not much helpful as we lose
out on many functionalities. We recorded the re-
sponses from ChatGPT and Bard on November 25,
2023 for our experiments.

For the different task types and for threshold 0.4,
please refer tables 7-11. For threshold 0.5, please
refer tables 12-16.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.maximum_bipartite_matching.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.maximum_bipartite_matching.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.maximum_bipartite_matching.html

Model
ROUGE-1 ROUGE-2 ROUGE-L

F1 P R F1 P R F1 P R

ChatGPT 0.607 0.576 0.792 0.467 0.448 0.604 0.589 0.558 0.772
Bard 0.687 0.719 0.764 0.583 0.617 0.636 0.681 0.711 0.758

StarCoderbase-1b 0.765 0.752 0.868 0.677 0.664 0.772 0.763 0.750 0.864
StarCoderbase-7b 0.742 0.766 0.813 0.626 0.639 0.688 0.739 0.762 0.809

Phi-2 0.664 0.667 0.775 0.567 0.567 0.662 0.661 0.663 0.769
Llama2-7b 0.734 0.762 0.806 0.637 0.655 0.699 0.732 0.758 0.802

CodeLlama-7b 0.772 0.797 0.833 0.681 0.699 0.735 0.770 0.795 0.830

Table 5: Results for many-to-one matched pairs with threshold = 0.3.

Model
BERTScore

F1 P R

ChatGPT 0.918 0.909 0.929
Bard 0.920 0.917 0.924

StarCoderbase-1b 0.950 0.944 0.958
StarCoderbase-7b 0.941 0.940 0.944

Phi-2 0.935 0.931 0.941
Llama2-7b 0.941 0.938 0.945

CodeLlama-7b 0.951 0.950 0.953

Table 6: Results for many-to-one matched pairs with
threshold = 0.3.

Model F#
1 P# R# F ∗

1 P ∗ R∗
F+

1 P+

ChatGPT 0.431 0.314 0.849 0.415 0.293 0.878 0.395 0.276
Bard 0.614 0.575 0.753 0.619 0.556 0.795 0.594 0.522

StarCoderbase-1b 0.738 0.778 0.752 0.771 0.767 0.819 0.735 0.712
StarCoderbase-7b 0.713 0.764 0.723 0.745 0.754 0.783 0.713 0.701

Phi- 2 0.213 0.158 0.604 0.211 0.152 0.661 0.200 0.143
Llama2-7b 0.653 0.697 0.669 0.669 0.671 0.726 0.633 0.623

CodeLlama-7b 0.752 0.792 0.761 0.777 0.780 0.816 0.750 0.737

Table 7: Result comparison for various fine-tuned models against out-of-the box large models for threshold = 0.4.
represents one-to-one bipartite matching, * represents many-to-one bipartite matching, + represents weighted
many-to-one bipartite matching.

Model
ROUGE-1 ROUGE-2 ROUGE-L

F1 P R F1 P R F1 P R

ChatGPT 0.527 0.509 0.670 0.391 0.381 0.489 0.512 0.493 0.652
Bard 0.701 0.734 0.764 0.590 0.621 0.628 0.694 0.725 0.756

StarCoderbase-1b 0.813 0.804 0.903 0.721 0.713 0.805 0.811 0.801 0.899
StarCoderbase-7b 0.820 0.848 0.869 0.696 0.715 0.744 0.818 0.845 0.867

Phi-2 0.733 0.741 0.831 0.631 0.635 0.720 0.730 0.736 0.826
Llama2-7b 0.812 0.842 0.863 0.714 0.739 0.757 0.809 0.838 0.858

CodeLlama-7b 0.834 0.858 0.880 0.737 0.758 0.778 0.832 0.855 0.878

Table 8: Results for one-to-one matched pairs with threshold = 0.4.

Model
BERTScore

F1 P R

ChatGPT 0.906 0.901 0.913
Bard 0.923 0.919 0.927

StarCoderbase-1b 0.951 0.945 0.959
StarCoderbase-7b 0.946 0.944 0.949

Phi-2 0.940 0.937 0.944
Llama2-7b 0.946 0.943 0.950

CodeLlama-7b 0.948 0.947 0.950

Table 9: Results for one-to-one matched pairs with
threshold = 0.4.

Model
ROUGE-1 ROUGE-2 ROUGE-L

F1 P R F1 P R F1 P R

ChatGPT 0.632 0.605 0.799 0.493 0.476 0.625 0.616 0.588 0.781
Bard 0.740 0.768 0.813 0.639 0.667 0.692 0.735 0.760 0.807

StarCoderbase-1b 0.810 0.796 0.909 0.724 0.710 0.823 0.808 0.794 0.906
StarCoderbase-7b 0.805 0.824 0.868 0.688 0.699 0.750 0.802 0.820 0.865

Phi-2 0.739 0.738 0.845 0.644 0.642 0.744 0.735 0.734 0.839
Llama2-7b 0.793 0.818 0.855 0.697 0.716 0.755 0.791 0.815 0.851

CodeLlama-7b 0.828 0.847 0.883 0.738 0.754 0.790 0.826 0.845 0.881

Table 10: Results for many-to-one matched pairs with threshold = 0.4.

Model
BERTScore

F1 P R

ChatGPT 0.921 0.912 0.930
Bard 0.925 0.922 0.930

StarCoderbase-1b 0.955 0.948 0.963
StarCoderbase-7b 0.947 0.946 0.950

Phi-2 0.947 0.943 0.952
Llama2-7b 0.946 0.943 0.951

CodeLlama-7b 0.953 0.952 0.955

Table 11: Results for many-to-one matched pairs with
threshold = 0.4.

Model F#
1 P# R# F ∗

1 P ∗ R∗
F+

1 P+

ChatGPT 0.398 0.290 0.783 0.392 0.280 0.806 0.380 0.269
Bard 0.553 0.520 0.672 0.562 0.514 0.702 0.547 0.492

StarCoderbase-1b 0.710 0.747 0.724 0.730 0.743 0.763 0.711 0.712
StarCoderbase-7b 0.682 0.731 0.689 0.702 0.726 0.724 0.685 0.697

Phi- 2 0.198 0.148 0.558 0.199 0.145 0.593 0.192 0.139
Llama2-7b 0.611 0.647 0.624 0.621 0.634 0.656 0.602 0.608

CodeLlama-7b 0.726 0.756 0.735 0.742 0.7506 0.769 0.726 0.723

Table 12: Result comparison for various fine-tuned models against out-of-the box large models for threshold = 0.5.
represents one-to-one bipartite matching, * represents many-to-one bipartite matching, + represents weighted
many-to-one bipartite matching.

Model
ROUGE-1 ROUGE-2 ROUGE-L

F1 P R F1 P R F1 P R

ChatGPT 0.632 0.617 0.752 0.499 0.488 0.611 0.617 0.602 0.736
Bard 0.796 0.822 0.843 0.696 0.721 0.739 0.788 0.812 0.835

StarCoderbase-1b 0.866 0.858 0.943 0.796 0.790 0.876 0.864 0.855 0.941
StarCoderbase-7b 0.850 0.875 0.896 0.743 0.759 0.795 0.849 0.872 0.895

Phi-2 0.800 0.806 0.882 0.718 0.725 0.797 0.799 0.805 0.878
Llama2-7b 0.858 0.889 0.905 0.784 0.813 0.834 0.855 0.886 0.902

CodeLlama-7b 0.881 0.901 0.920 0.791 0.813 0.834 0.880 0.899 0.919

Table 13: Results for one-to-one matched pairs with threshold = 0.5.

Model
BERTScore

F1 P R

ChatGPT 0.920 0.914 0.928
Bard 0.937 0.934 0.941

StarCoderbase-1b 0.962 0.956 0.969
StarCoderbase-7b 0.954 0.953 0.956

Phi-2 0.956 0.953 0.959
Llama2-7b 0.954 0.953 0.956

CodeLlama-7b 0.959 0.959 0.961

Table 14: Results for one-to-one matched pairs with
threshold = 0.5.

Model
ROUGE-1 ROUGE-2 ROUGE-L

F1 P R F1 P R F1 P R

ChatGPT 0.676 0.653 0.811 0.545 0.527 0.671 0.662 0.638 0.794
Bard 0.809 0.827 0.869 0.718 0.736 0.777 0.804 0.820 0.863

StarCoderbase-1b 0.841 0.829 0.929 0.770 0.758 0.859 0.840 0.826 0.925
StarCoderbase-7b 0.837 0.855 0.895 0.731 0.742 0.793 0.835 0.852 0.892

Phi-2 0.791 0.792 0.882 0.709 0.710 0.801 0.787 0.788 0.877
Llama2-7b 0.831 0.857 0.887 0.754 0.778 0.811 0.828 0.854 0.883

CodeLlama-7b 0.870 0.886 0.917 0.781 0.800 0.833 0.868 0.885 0.915

Table 15: Results for many-to-one matched pairs with threshold = 0.5.

Model
BERTScore

F1 P R

ChatGPT 0.928 0.919 0.937
Bard 0.938 0.936 0.942

StarCoderbase-1b 0.962 0.956 0.969
StarCoderbase-7b 0.954 0.953 0.955

Phi-2 0.958 0.956 0.962
Llama2-7b 0.953 0.951 0.956

CodeLlama-7b 0.953 0.951 0.956

Table 16: Results for many-to-one matched pairs with
threshold = 0.5.

Model Learning Rate Learning Rate Scheduler Batch Size Step Size Epochs

StarCoderbase-1b 5e-7 cosine 2 100 10
StarCoderbase-7b 5e-6 cosine 1 100 5

Phi-2 5e-7 cosine 1 100 10
Llama2-7b 5e-6 cosine 1 100 5

CodeLlama-7b 5e-5 cosine 1 100 5

Table 17: Hyperparamaters for the different fine-tuned models

	Introduction
	FuncRead Dataset
	Dataset Collection
	Dataset Annotation
	Annotation Validation

	Task Modelling
	Experiments and Results
	Evaluation Metrics
	Results

	Conclusion
	Appendix
	Limitations
	Dataset
	Annotators Profile
	Annotation Instructions
	Annotator Validation Example

	Task Modelling using ChatGPT, Bard
	Evaluation Metrics
	Model Hyperparameters
	Quantitative Results

