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Abstract

Traditional Automatic Video Dubbing (AVD)
pipeline consists of three key modules, namely,
Automatic Speech Recognition (ASR), Neu-
ral Machine Translation (NMT), and Text-
to-Speech (TTS). Within AVD pipelines,
isometric-NMT algorithms are employed to
regulate the length of the synthesized output
text. This is done to guarantee synchroniza-
tion with respect to the alignment of video and
audio subsequent to the dubbing process. Pre-
vious approaches have focused on aligning the
number of characters and words in the source
and target language texts of Machine Trans-
lation models. However, our approach aims
to align the number of phonemes instead, as
they are closely associated with speech dura-
tion. In this paper, we present the development
of an isometric NMT system using Reinforce-
ment Learning (RL), with a focus on optimiz-
ing the alignment of phoneme counts in the
source and target language sentence pairs. To
evaluate our models, we propose the Phoneme
Count Compliance (PCC) score, which is a
measure of length compliance. Our approach
demonstrates a substantial improvement of ap-
proximately 36% in the PCC score compared
to the state-of-the-art models when applied to
English-Hindi language pairs. Moreover, we
propose a student-teacher architecture within
the framework of our RL approach to maintain
a trade-off between the phoneme count and
translation quality.

1 Introduction

Automatic Video Dubbing (AVD) technologies
have become popular in recent times with the ad-
vent of Generative AI technologies. AVD tech-
nology automatically converts a video from one
language to another language in three steps, (i) Au-
tomatic Speech Recognition (ASR) (ii) Neural Ma-
chine Translation (NMT), and (iii) Text-to-Speech
(TTS). This task has become crucial especially in
content creation as it helps to break down language

barriers and reach a wider audience. A crucial fac-
tor underlying the quality and effectiveness of an
AVD system is the synchronization of the audio and
video post-dubbing. For seamless and consistent
synchronization, the duration of the target language
speech generated by TTS in the AVD system must
match with the duration of the source language
speech. If the duration is not matched, various
signal processing techniques can be applied to a
certain extent to manipulate the duration of the final
audio. However, this process introduces artifacts
and degrades the quality of TTS output. Hence, a
major focus of the research community has shifted
towards controlling the length of the text output
after NMT, such that there is much less mismatch
in duration after dubbing. In this paper, we strive
to enhance the performance of the Isometric NMT
model, introduced in (Lakew et al., 2022), which
is tasked with controlling the length of generated
texts.

Traditionally machine translation for AVD has
been done as a two-step process (Lakew et al.,
2021), where for every input sentence, various out-
put sentences are generated and then re-ranked ac-
cording to length-matching. (Lakew et al., 2022)
marked the advent of self-learning methods for
the NMT task for AVD. Further works aimed to
produce output texts with the duration compliance
directly (Wu et al., 2023). However, these mod-
els rely on training a separate duration generation
model for the length compliance, which is compu-
tationally too expensive. Furthermore, works like
(Lakew et al., 2019) use the matching of the num-
ber of characters or words between the source and
target language sentences. However, in this work,
we model this problem as matching the number of
phonemes between the source and target language
sentences because phonemes have a closer asso-
ciation with the speech duration (Quatieri, 2001;
Oppenheim et al., 1999). We model this matching
as a reward indicator which simplifies and speeds

3966



up the training process in contrast with some pre-
vious works (Wu et al., 2023) where the duration
of translated texts was controlled using estimates
of phoneme lengths, which is time-consuming (Wu
et al., 2023).

In addition, we propose a Reinforcement Learn-
ing (RL) based training strategy to achieve the
task of isometric NMT in the context of generating
translation outputs such that the phoneme counts
of the source and target language sentences are
as close as possible. We first translate the source
language sentences using a pre-trained transformer-
based NMT model (generation step), which we
treat as an RL agent. Then, we compute the ratio
between the phoneme counts of the source and the
generated target language sentences. After this, we
filter out sentences where the phoneme count ratio
(PCR) deviates from a pre-defined threshold deter-
mined empirically. We then use the filtered data
for finetuning the agent model. We perform mul-
tiple iterations of generation using the RL agent
and subsequent finetuning using the duration-based
positively rewarded dataset.

With each finetuning step, we make the PCR cri-
teria stricter by increasing the threshold value for
reward strategies, which positively reflects in the
results we obtain (see Sec.4.5), by achieving higher
PCC scores. However, this adversely affects the
translation quality. To address this issue, we modify
the RL-agent (i.e., a fine-tuned (FT) model) with
the help of knowledge distillation step via a student-
teacher architecture (see Figure 1) (Hinton et al.,
2015). We use knowledge-distillation step and
Student-teacher interchangeably throughout the pa-
per. Here, the teacher is the SOTA NMT model
(i.e., the model with the best BLEU score, but, pos-
sibly a poor PCC score). This further finetuning
step helps the student (the current FT-model) to
learn to produce good-quality as well as phoneme
count compliant output. The effectiveness of our
proposed model is demonstrated for the English-
Hindi language pair (Hindi is spoken by more than
500 million people). For the training and validation,
we used the BPCC corpus (Gala et al., 2023), and
for testing, we used i) held-out BPCC Test corpus,
ii) Flores, and iii) a movie database (see Section
4.1). We significantly improved the performance
of the English-Hindi NMT with respect to various
metrics like BLEU, BLEURT, COMET, chrF, and
a novel metric, namely, PCC which measures the
length compliance between the source and trans-
lated sentence.

We summarize our contributions as:

1. To the best of our knowledge this is the first
attempt to apply a RL strategy for achieving Iso-
metric NMT.

2. We propose a method to match phoneme counts
in source and target sentences to control duration
using a reward strategy in RL, aiming to enhance
synchronization in the AVD task.

3. To address translation quality degradation from
constrained duration in source and target language
translations, we propose a student-teacher archi-
tecture as a post-processing step for the RL-NMT
approach.

4. The work centers on AVD for English-to-Hindi
languages, an area that has been relatively ne-
glected until now.

5. We benchmark the performance of our proposed
approaches against many state-of-the-art models
and Large Language Models (LLMs).

The paper is structured as follows. Section 2 dis-
cusses related work. Section 3 discusses in detail
the methodology. Section 4 presents details of ex-
periments and results. Section 5 concludes the
paper and presents limitations of the work.

2 Related Work

Neural Machine Translation models (Bahdanau
et al., 2014; Cho et al., 2014; Sutskever et al., 2014)
have majorly improved the performance in the ma-
chine translation task. Transformer (Vaswani et al.,
2017) architecture is widely used in state-of-the-art
NMT models. Automatic Video Dubbing pipeline
requires the use of NMT models which produce out-
puts such that the corresponding speech duration
of the target language sentence matches the speech
duration of the source language sentence. Lakew
et al. (2019) formulated this problem as matching
the number of characters in the source and target
language sentences. They injected the information
regarding the number of characters in the positional
embeddings with the help of tags appended to the
source language sentence. In the work, Lakew et al.
(2022) introduced a self-training approach, both
offline and online, and implemented the tagging of
source sentences with the length ratio between the
source and target language sentences, calculated
based on the number of characters. Wu et al. (2023)
formulated the problem as matching the duration
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in terms of the number of mel-frames of the source
and target language sentences. They incorporated
the number of mel-frames in positional embeddings
of the transformer architecture.

3 Methodology

In this section, we first discuss the problem setup
of formulating the MT task in the RL framework.
Next, we propose our RL-based training approach
for Isometric NMT for achieving phoneme count
compliant translation. Finally, we conclude by
proposing the student-teacher architecture by mod-
ifying the agent in the RL training to mitigate the
problem of quality degradation.

3.1 Problem Setup

The machine translation (MT) task can be cast into
a Reinforcement Learning (RL) problem (Gulcehre
et al., 2023).1 We consider the problem of translat-
ing an input sentence x from a source language A
to sentence y in some other target language B. To
integrate the MT task into an automatic dubbing
pipeline, we strive towards generating the output
sentence y to have (nearly) the same number of
phonemes as the input sentence x, which would
imply better duration alignment between the input
and the output languages.

Let the input and the output (target) sentences
consist of n and m tokens (words/sub-words, etc.),
respectively. Then, with some abuse of notation,
a machine translation system characterized by a
policy p, which takes as input a sequence of vec-
tors x ≡ (x1, x2, . . . , xn) (where each xi is an
embedding vector according to the input vocabu-
lary) and generates an output sequence of vectors
y ≡ (y1, y2, . . . , ym) can be expressed as an auto-
regressive product of the probability distribution
using the Bayes’ Theorem as shown in Eq. 1,

p(y
∣∣ x, w) =

m∏

s=1

p(ys
∣∣ y1, . . . , ys−1,x, w),

(1)
where w are the parameters defining the policy. For
the automatic dubbing task, to enforce the impor-
tance of the equal time duration of the input and
output texts, we define a notion of a reward r(., .)
as a function that takes two arguments, namely, ŷ
and x. Here ŷ is the translated sentence for the
input sentence x by the system. Then r(ŷ,x) is

1We push the detailed Markov Decision Process (MDP)
formalism to the appendix, due to space constraints.

chosen as a function of the Phoneme Count Ratio
(PCR) score. In particular, for some (small) δ > 0
we set as shown in Eq. 2,

r(ŷ,x) := I {PCR(ŷ,x) ∈ [1− δ, 1 + δ]} . (2)

We aim to optimize the following blend of the two
loss (reward) functions (see Eq. 3), which would
help achieve good translation quality along with
reasonable time-duration compliance between the
input and the output texts,

max
w

−Ex∼D

[
r(ŷ,x)

(
M∑

s=1

log p(ŷs|ŷ<s,x, w)

)]
.

(3)

3.2 Proposed Reinforcement Learning based
Training for Isometric NMT (RL-NMT)

For the task of Isometric NMT, we require that the
number of phonemes in the output translation of
the model be as close as possible to the number
of phonemes in the source sentence. In RL, the
model observes the environment and takes some
action. Based on this action the reward function
gives some reward to the model. Then the model
is trained to optimize this reward. In our approach,
we use a function of the ratio between the phoneme
counts in the source and target sentences as the
reward equivalent. The algorithm of our work is
depicted in Alg.1.

We first train an existing (pretrained) NMT
model on a bilingual corpus to obtain M. Given a
source language sentence, x = (x1, x2, ..., xn) and
the target language sentence y = (y1, y2, ..., ym),
the NMT model minimizes the Cross-Entropy Loss
which is shown in Eq. 4

LCE = − 1

N

N∑

i=1

∑

k∈V
{I(yi = k)

× log p(ŷi = k|y<i,x; θ)} (4)

where N is the number of tokens in the output sen-
tence, V is the (output) vocabulary, yi is the ith

word in ground-truth target language sentence and
ŷi is the ith word in the predicted target language
sentence.
Next, we translate all the source language sentences
(from the entire training corpus on which M was
trained on) using M and obtain the output trans-
lations. This forms the generation step which cor-
responds to the action step in RL terminology (as
shown in Fig. 1). We compute the Phoneme Count
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Figure 1: Schema showing (a) block diagram of the proposed RL-NMT architecture (b) modified agent with
student-teacher (ST) framework for quality-duration balance.

Ratio (PCR) between the number of phonemes in
the source and target sentences. This PCR acts as
the reward model. We, then filter out the sentence
pairs whose PCR does not lie in the specified range
[1−δ, 1+δ], where δ is the threshold. We iteratively
reduce the threshold and finetune the NMT model
(M) on the filtered dataset. After this, we perform
the Generation step again, using the model that is
produced after the final finetuning step. Iteratively
finetuning the NMT model on sentences whose
PCR is closer to 1, reinforces the trained model to
generate sentences matching the phoneme count
of the input. Hence, One RL step consists of one
Generation steps followed by multiple finetuning
steps.

3.3 Proposed Student Teacher NMT
Architecture (ST-RL-NMT)

When we optimize the model to generate outputs
where the phoneme counts in the source and target
sentences are similar, we face a trade-off in the
quality of the translation as shown in Fig. 2. We

Figure 2: Example of quality degradation with RL-NMT
and improvement achieved with ST-RL-NMT

see in the example that constraining the PCR, can
sometimes lead to incomplete translations. In or-
der to overcome this issue of quality degradation,
we propose a student-teacher architecture to further
finetune the trained model M, in addition to the RL

approach. We use the NMT model trained on the
entire parallel corpus (without the RL approach)
as the teacher model. This model produces high-
quality output but the phoneme counts between
the output and source sentences may not be sim-
ilar. We use the RL-NMT model as the student,
which has better phoneme count compliance, but
possibly, poor quality. Employing finetuning on
the student model with the teacher model provides
a balance between translation quality and phoneme
count compliance. In the ST-framework, we add
consistency loss term while finetuning to make the
output probability distribution of the student model
closer to the teacher model. We use the KL Di-
vergence (Csiszár and Körner, 2011) between the
output probability distributions of the student and
teacher model as the consistency loss. This trans-
fers the knowledge of the teacher model to the stu-
dent model. We expect that, as the teacher model
generates good quality output, it will improve the
quality of the student model. Furthermore, fine-
tuning on the phoneme count compliant parallel
corpus will keep the phoneme counts of the out-
put translations and source sentences close to each
other. The KL Divergence loss term used as the
consistency loss term in the training of student-
teacher architecture is given in Eq. 5

LKL =
N∑

i=1

KL
(
p(∗|y<i,x, θ

s)||p(∗|y<i,x, θ
t)
)

(5)

where p(∗|y<i,x, θ
s) represents the probability dis-

tribution of student model and p(∗|y<i,x, θ
t) rep-

resents the probability distribution of the teacher
model. The overall loss term used in the training
of student-teacher architecture is given in Eq. 6

L = LCE + αLKL (6)
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Algorithm 1: Reinforcement Learning based training algorithm for Isometric NMT
Terminologies: x: source language sentence, y: target language sentence, ŷ: target language

sentence produced by NMT model M, DG: Generated Dataset, DF : Filtered Dataset, N :
Number of parallel sentences in dataset D

Input: D: Dataset, M: Initial NMT model, LCE : Cross Entropy Loss, LKL: KL Divergence Loss,
L: Overall Loss (L = LCE + αLKL), G: Number of Generation steps, F : Number of
Fine-tuning steps, PCR(x, y): Reward Model (Phoneme Count Ratio), δ : list of F threshold
values, ST − Flag

Train Model M on Dataset D = {(xi, yi)|Ni=1} using Loss LCE .
for g = 1 to G do

Generate Dataset DG using Model M, DG = {(xi, ŷi)|Ni=1 | xi ∈ D, ŷi = M(xi; θ)}
Annotate Dataset DG using the Reward Model PCR(x, ŷ)
for f = 1 to F do

Create Filtered Dataset DF ,
DF = {(xi, ŷi)|N ′

i=1 | (xi, ŷi) ∈ DG, PCR(xi, ŷi) ∈ [1− δf , 1 + δf ]}
Train Model M on the Filtered Dataset Df using Loss LCE

end
end
if ST-Flag is true then

Train Model M on Filtered Dataset Df using Loss L = LCE + αLKL

end
Output: Model M

where α is a scaling factor for the KL loss (LKL).

3.4 Proposed Phoneme Count Compliance
Score

Previous approaches used word or character count
compliance scores for evaluation, but we propose a
Phoneme Count Compliance (PCC) score in this pa-
per. The PCC score PCCδ for a particular thresh-
old δ denotes the percentage of sentence pairs
whose phoneme count ratio (PCR) lies in the range
[1−δ, 1+δ]. If s denotes the phoneme count in the
source sentence and t denotes the phoneme count
in the translated sentence then the PCR is given in
Eq. 7,

PCR = s/t. (7)

If N is the number of parallel sentences in the test
set then the PCCδ score is given in Eq. 8

PCCδ =

(
N∑

i=1

I[PCR(si, ti) ∈ [1− δ, 1 + δ]]

)

× (100/N). (8)

We evaluate all the models on the PCC scores for
the threshold (δ) values of 0.2 and 0.1.

Our primary reasons for choosing phoneme
count rather than syllable count was that in Indian

languages like Hindi and Marathi, there isn’t a one-
to-one correspondence between the letter (akshara)
and syllable due to the presence of sandhi and so
on. As a result, there exists multiple ways to split a
word into syllables (CV, CVC, CCCV, etc.) result-
ing in variable syllable counts for the same sentence
(Raj et al., 2007; Choudhury, 2003). Hence, we be-
lieved controlling the length of the output in NMT
using syllable count won’t be a feasible option de-
spite the fact that syllables have more correlation
with the duration. However, we would like to men-
tion that the PCC, although being a crude measure
of length duration, is a very fast method to quickly
estimate the duration of the output speech. We have
taken inspirations from (Räsänen et al., 2021), and
(Fujita et al., 2021). Although many other meth-
ods which explicitly estimate the time duration are
available, they are computationally expensive and
time-consuming (Wu et al., 2023). While our ap-
proach gives reasonable results although being less
nuanced.

4 Experiments and Results

4.1 Dataset

Training Data We use the English-Hindi par-
allel corpus from the Bharat Parallel Corpus Col-
lection (BPCC) (Gala et al., 2023) for training the
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NMT model. BPCC is a combination of various
publicly available parallel corpora for 22 Indic lan-
guages, which contains human-annotated as well
as automatically mined data. It contains around
39 million parallel sentences for the English-Hindi
language pair, which we used for training the NMT
models. We preprocess the data using the Indic
NLP Library (Kunchukuttan, 2020)

Evaluation Data We evaluate the model on
various standard test sets such as Facebook Low
Resource (Flores) (Team et al., 2022), Movie subti-
tles, and BPCC test set. The Flores test set contains
1012 parallel sentences each for more than 200
languages in multiple domains. We focused on
the English-Hindi language pair. The movie subti-
tles test set contains the subtitles of a Hollywood
movie in English and Hindi. The BPCC test con-
tains two parts, the general domain test set and the
conversational domain test set. Both the general
and conversational domain test sets contain 1023
parallel sentences.

4.2 Evaluation Metrics

BLEU BLEU (Papineni et al., 2002) score is an
automatic evaluation metric that scores the trans-
lated sentences with respect to the gold translation
based on n-gram matchings. We use the Sacrebleu2

implementation for generating the BLEU scores
for evaluating all the models.
chrF chrF (Popović, 2015) is a evaluation metric
for machine translation based on character n-gram
F1 scores. We use the Sacrebleu2 implementation
for generating the chrF scores for evaluating all the
models.
BLEURT BLEURT (Sellam et al., 2020) is a
metric that uses a trained BERT model to evaluate
the quality of the machine translation output. The
model takes the reference and candidate sentence
as input and outputs a score ranging from 0 to 1
based on the translation quality.
COMET We also compute the COMET scores
(Rei et al., 2020) for the various models since
COMET is known to correlate highly with human
judgements (Sai B et al., 2023). We use the default
model, i.e., wmt22-comet-da for our experiments.
This model employs a reference-based regression
approach and is built upon the XLM-R architec-
ture. It has been trained on direct assessments from
WMT17 to WMT20 and provides scores ranging
from 0 to 100%, where 100% signifies a perfect

2¯¯¯¯¯https://github.com/mjpost/sacrebleu

translation (Rei et al., 2020).

4.3 Model Architecture
We use the model architecture of the publicly avail-
able IndicTrans2 (Gala et al., 2023) model in all
our experiments. The IndicTrans2 model is based
on the Transformer architecture and supports 22
Indic languages. We note that we use the default
hyperparameters of the IndicTrans2 model in all
our experiments. Both student and teacher network
has exactly same architecture. We took one as the α
in the distillation step in order to give equal weigh-
tage to both the student and teacher networks. We
train all the models using the Nvidia A100 40GB
GPU and training one model takes 30 hours on av-
erage. The detailed model parameters are shown in
Table 1.

Parameter Value
# encoder layers 18
# decoder layers 18
# encoder attention heads 16
# decoder attention heads 16
Encoder embedding
dimensions

1024

Decoder embedding dimen-
sions

1024

Encoder feedforward layer
dimensions

8192

Decoder feedforward layer
dimensions

8192

Total number of parameters 1.1 Billion

Table 1: Details of the model architecture.

4.4 Baselines
We compare our approach with various state-of-the-
art models given as follows.
IndicTrans2 We compare our approach with the
SOTA IndicTrans2 (Gala et al., 2023) model with-
out applying any phoneme count control measures.
IndicTrans2-FT We fine-tune (FT) IndicTrans2
model using only English-Hindi data in order to
improve the performance of SOTA model for the
selected language pair. This model achieves high-
est BLEU score, i.e., it performs best w.r.t. quality
of translation. Hence, the same model is selected
for Teacher in our proposed architecture.
Isometric MT The Isometric MT (Lakew et al.,
2022) approach controls the number of words gen-
erated in the translation. The source language sen-
tences are tagged with ’<short>’, ’<normal>’ or
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Model Movie Test Set FLoRes

BLEU chrF BLEURT COMET
PCC

BLEU chrF BLEURT COMET
PCC

0.2 0.1 0.2 0.1
IndicTrans2 38.41 62.02 0.76 84.13 36.77 16.99 36.35 60.71 0.73 81.53 72.72 36.56

IndicTrans2 FT 42.25 64.28 0.76 83.93 38.85 18.46 36.59 60.72 0.72 80.66 73.81 37.15
Isometric MT 31.67 57.89 0.59 72.52 12.84 4.67 31.34 56.79 0.67 75.81 58.2 29.15
NLLB (1.3B) 36.87 59.53 0.72 81.91 37.48 17.66 30.40 56.00 0.71 80.32 73.22 38.93

M2M-100 30.54 54.81 0.68 76.15 28.04 13.5 26.18 50.82 0.65 73.88 68.67 34.18
LLaMA2-7B 29.27 50.66 0.663 77.73 0.45 0.22 17.48 39.55 0.512 62.49 0.39 0.24

RL-NMT
(Proposed)

32.73 54.19 0.71 80.05 72.14 39.32 34.31 58.75 0.71 79.70 91.3 50.39

ST-RL-NMT
(Proposed)

37.70 59.03 0.73 81.85 58.92 30.03 35.67 60.07 0.72 80.34 81.52 42.58

Table 2: Results of evaluation of different models on BLEU, chrF, BLEURT, COMET and PCC scores on the Movie
and FLoRes test set. The scores reported are the average values obtained.

Model BPCC General BPCC Conversational

BLEU chrF BLEURT COMET
PCC

BLEU chrF BLEURT COMET
PCC

0.2 0.1 0.2 0.1
IndicTrans2 32.57 57.87 0.72 80.45 81.25 45.31 28.55 49.85 0.76 80.45 46.5 23.55

IndicTrans2 FT 27.94 55.29 0.70 79.01 81.93 46.97 26.83 48.84 0.75 79.01 49.76 24.68
Isometric MT 23.77 50.79 0.65 73.31 70.31 39.06 20.97 45.51 0.70 78.72 31.13 13.63
NLLB (1.3B) 25.41 53.01 0.706 78.93 80.6 46.5 25.89 47.57 0.75 83.75 47.77 24.22
LLaMA2-7B 10.35 31.98 0.532 61.25 0.34 0.2 17.23 43.02 0.701 80.5 0.49 0.23

M2M-100 18.15 44.62 0.63 71.79 76.95 43.75 17.17 40.01 0.69 78.10 43.24 20.69
RL-NMT

(Proposed)
27.26 54.67 0.7045 78.33 92.38 58.10 24.55 46.45 0.73 78.33 83.23 48.10

ST-RL-NMT
(Proposed)

27.65 55.12 0.7091 78.80 87.20 53.71 25.98 47.88 0.75 78.80 67.07 34.39

Table 3: Results of evaluation of different models on BLEU, chrF, BLEURT, COMET and PCC scores on the BPCC
test set. The scores reported are the average values obtained.

Figure 3: Plot showing the different evaluation metrics at each RL-Step for (a) FLoRes, (b) Movie, (C) BPCC
General and (d) BPCC Conversational Tests. Here, last step is with the student-teacher objective.

3972



’<long>’ tag depending on the ratio between the
word counts in the source and target language sen-
tences. During inference, the input sentences are
tagged with the ’<normal>’ tag to generate length
compliant sentences.
No Language Left Behind (NLLB) NLLB
(Team et al., 2022) is a state-of-the-art multilin-
gual NMT model that can translate among 200 lan-
guages. The NLLB model makes use of a sparse
mixture of expert models with shared and special-
ized capacity to improve the performance of low-
resource languages. The NLLB model also makes
use of large-scale data augmentation with back-
translation. The distilled NLLB model has 1.3
billion parameters in total.
M2M-100 M2M-100 (Fan et al., 2021) is a mul-
tilingual NMT model that can translate among 100
languages. The M2M-100 model is trained on a par-
allel corpus of 2,200 language directions without
relying on English-centric datasets. The M2M-100
model gives good performance improvements over
bilingual NMT models. The M2M-100 model has
418 million parameters in total.
LLaMA2 & LLaMA2-FT LLaMA-2 (Touvron
et al., 2023) is a large language model (LLM) with
7 billion parameters and is trained on 2 trillion to-
kens. The baseline LLaMA-2 model did not give
good performance for the English-Hindi translation
task, so we finetuned (FT) the LLaMA-2 model on
1 million randomly sampled sentence pairs from
the training set of BPCC corpus.

4.5 Results

Table 2 and Table 3 present results obtained us-
ing various SOTA as well as proposed approaches
on four test sets, namely, Movie, FLoRes, BPCC
General and BPCC Conversational corpora. We
see significant improvements in PCC values for
both the p=0.2 and p=0.1 cases. Specifically, the
proposed RL-NMT technique has attained abso-
lute improvements ranging from 10% to 33% in
PCC values across the various evaluation test sets.
However, on the contrary, there has been an ob-
served absolute decrease of 2% to 10% in BLEU
scores, chrF scores, COMET scores and BLEURT
scores, which primarily indicate the quality of trans-
lation. Furthermore, based on Table 2 and Table
3, it can be discerned that the proposed ST-RL-
NMT framework is instrumental in mitigating the
degradation occurring on the translation front. In
particular, the proposed ST-RL-NMT framework
has successfully reduced the absolute degradation

in quality-related metrics from 0.5% to 5% com-
pared to the previous range of 2% to 10% with
the RL-NMT approach. This trade-off between
the BLEU score and Phoneme Count Compliance
Score (PCC) is visually represented in Fig. 4. The
results are presented across different baselines in-
cluding LLMs (Llama2 and Llama2-FT model). It
can be clearly seen that the IndicTrans2-FT model
achieves the highest BLEU score. Hence, we select
IndicTrans2-FT as the teacher in our proposed ST-
RL-NMT approach. While the RL-NMT approach
attains the best PCC scores, it does come at the
expense of a decline in performance on the BLEU
score side. On the other hand, the ST-RL-NMT
framework is able to simultaneously achieve better
trade-offs for PCC and BLEU score compared to
other SOTA algorithms.

Fig. 3 presents the detailed analysis of results at
each RL step during the training for all four evalu-
ation sets. We can see that with each RL step, the
PCC score is increasing significantly. On the other
hand, BLEU score, BLEURT score, COMET score
and chrF values are decreasing. Nevertheless, at
iteration 10, where the Student Teacher framework
was introduced, noticeable improvements in the
BLEU, BLEURT, COMET and chrF scores can be
observed.

Figure 4: Trade-off between BLEU score vs. PCC score

There can be many ways to choose which model
to push for the ST post-processing. To ensure
a fair comparison, we implemented the ST post-
processing at the tenth iteration of the RL algo-
rithm. However, we can plot the max-normalized
BLEU scores and PCC scores and select the point
where the two plots either intersect or have min-
imum distance. Subsequently, this model can be
considered as the student and we believe that it will
have a balanced compromise between the quality
and length compliance. Fig. 5 illustrates the quali-
tative output generated by the baseline IndicTrans2
model and proposed ST-RL-NMT model. It is ev-
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ident that the original English sentence contains
10 phonemes. Conversely, the baseline model has
produced a correct translation with 18 phonemes,
as it did not take into account any length-based
constraints. In contrast, the proposed ST-RL-NMT
model produces the correct output that adheres to
the desired length, containing 10 phonemes. This
results in (near-) equal duration when synthesized
using the target language TTS. Therefore, minimal
post-processing is required to adjust the duration
in the final dubbed output.

Figure 5: A qualitative example of AVD using baseline
and proposed approach.

5 Summary and Conclusion

In this paper, we proposed a reinforcement learning-
based training strategy for Isometric NMT. We pro-
posed to match the count of phonemes for this task,
as phonemes have a strong correlation with speech
duration. Further, we enhanced our agent in the
RL-based training strategy with a student-teacher
architecture to circumvent the problem of quality
degradation that arises from optimizing the model
for generating phoneme count compliant sentences.
We also proposed the Phoneme Count Compli-
ance score to evaluate the performance of Isomet-
ric NMT models. Experimental results showed
that our approach gives significant performance
improvements in terms of Phoneme Compliance
Scores over various state-of-the-art NMT models
including LLMs.

Limitations

In the future, on the technical front, we will investi-
gate a soft-threshold approach for filtering the data
based on PCC and the BLEU score. On the com-
putational front, we note that the generation step
in our approach is expensive as we need to trans-
late the entire source side of the parallel corpus.
Also, we plan to perform experiments with various
language pairs from different language families.

Ethics Statement

The aim of our work is to improve the performance
of NMT models for the Isometric NMT task. The
datasets that we used in this work are publicly avail-
able. Publicly available datasets can contain biased
sentences. We train the NMT models on the avail-
able parallel corpus, evaluate the models, and have
cited the appropriate sources.
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A Appendix

A.1 Machine Translation as a Reinforcement
Learning Problem

We cast the machine translation task as a Rein-
forcement Learning problem. Let the input and
output language vocabularies, after the suitable
embeddings be denoted as VI and VO, respec-
tively. In this terminology any input (output) sen-
tence of length M will be from the finite Carte-
sian product VM

I (VM
O ). Hence any possible input

sentence x will be from the set
⋃

M⩾1

VM
I . The out-

put (generated) sentence y will be similarly from
the set

⋃
M⩾1

VM
O . Also, let the distribution of the

training inputs be denoted as D. We frame the
problem as a Markov Decision Process (MDP)
M (S,A,P, r, γ). The state space S is the set
of all possible such tuple of vectors (x, y). The
action set A ≡ VO. In this case, the transition
kernel dynamics P : S × A → S is defined
in the following way. At any time t, we choose
P [(x, y1:t−1, a)|(x, yt−1), at] = 1 if a == at,
else it is 0. This makes the transition kernel de-
terministic. The discount parameter γ is identically
set to 0. The reward r(., .) is a function which
takes two arguments, namely, ŷ and x, where ŷ
is the translated sentence for the input sentence x
by the system. Then r(ŷ, x) is chosen as a func-
tion of the Phoneme Count Ratio (PCR) score. In
particular, we set,

r(ŷ, x) := I {PCR(ŷ, x) ∈ [1− δ, 1 + δ]} .

We impose an even stricter notion of reward for the
experiments, in that we only allow sentence pairs
(x, ŷ) which admit a positive reward, to be used in
the fine-tuning step, and reject the zero-reward sen-
tence pairs. We note here that the reward, as defined
here, is only generated at the end of the translation
of the full sentence. This notion of reward func-
tion indirectly enforces better quality translations
as well as forces the output translations to adhere
to strict length constraints which is essential for the
automatic dubbing application.
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