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Abstract

The performance cost of differential privacy
has, for some applications, been shown to
be higher for minority groups; fairness, con-
versely, has been shown to disproportionally
compromise the privacy of members of such
groups. Most work in this area has been re-
stricted to computer vision and risk assess-
ment. In this paper, we evaluate the im-
pact of differential privacy on fairness across
four tasks, focusing on how attempts to mit-
igate privacy violations and between-group
performance differences interact: Does pri-
vacy inhibit attempts to ensure fairness? To
this end, we train (e, ¢)-differentially pri-
vate models with empirical risk minimiza-
tion and group distributionally robust train-
ing objectives. Consistent with previous find-
ings, we find that differential privacy increases
between-group performance differences in the
baseline setting; but more interestingly, differ-
ential privacy reduces between-group perfor-
mance differences in the robust setting. We ex-
plain this by reinterpreting differential privacy
as regularization.

1 Introduction

Classification tasks in computer vision and natural
language processing face the challenge of balanc-
ing performance with the need to prevent discrim-
ination against protected demographic subgroups,
satisfying fairness principles. In some tasks, we
train our classifiers on private data and therefore
also need our models to satisfy privacy guarantees.

Privacy-preserving algorithms, however, tend
to disproportionally affect members of minority
classes (Farrand et al., 2020). E.g., Bagdasaryan,
Poursaeed, and Shmatikov (2019), show the per-
formance cost of differential privacy (Dwork et al.,
2006) in face recognition is higher for minority
groups, suggesting that privacy and fairness are
fundamentally at odds (Chang and Shokri, 2021;
Agarwal, 2021).

In this paper, we evaluate two hypotheses at
scale: (a) that the performance cost of differential
privacy is unevenly distributed across demographic
groups (Ekstrand, Joshaghani, and Mehrpouyan,
2018; Cummings et al., 2019; Bagdasaryan, Pour-
saeed, and Shmatikov, 2019; Farrand et al., 2020),
and (b) that such effects can be mitigated by more
robust learning objectives (Sagawa et al., 2020a;
Pezeshki et al., 2020).

Contributions We build upon previous work
suggesting that differential privacy and fairness
are at odds: Differential privacy hurts minority
groups the most, and reducing the fairness gap by
focusing on minority groups during training typ-
ically puts their privacy at risk. We evaluate this
hypothesis at scale by measuring the impact of dif-
ferential privacy in terms of fairness across (1) a
baseline empirical risk minimization and (2) under
a group distributionally robust optimization. We
conduct our experiments across four tasks of dif-
ferent modalities, assuming the group membership
information is available at training time, but not
at test time: face recognition (CelebA), topic clas-
sification, volatility forecasting based on earning
calls, and sentiment analysis of product reviews.
Our results confirm that differential privacy com-
promises fairness in the baseline setting; however,
we demonstrate that differential privacy not only
mitigates the decrease but also improves fairness
compared to non-private experiments for 4/5 tasks
in the distributionally robust setting. We explain
this by reinterpreting differential privacy as an ap-
proximation of Gaussian noise injection, which is
equivalent to strategies previously shown to deter-
mine the efficacy of group-robust learning.

2 Fairness and Privacy

Fair machine learning aims to ensure that induced
models do not discriminate against individuals with
specific values in their protected attributes (e.g.,
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race, gender). We represent each data point as
z=(z,9,y) € X x G x Y, with g € G encoding
its protected attribute(s).! Let D} denote the distri-
bution of data with protected attribute g and label
Y.

Several definitions of group fairness exist in the
literature (Williamson and Menon, 2019), but here
we focus on a generalization of approximately con-
stant conditional (equalized) risk (Donini et al.,
2018):2

Definition 2.1 (A-Fairness). Let (9(0) =
E[¢(0(x),y)lg = g¢i] be the risk of the samples
in the group defined by g¢;, and A € [0, 1]. We say
that a model 6§ is A-fair if for any two values of g,
say g; and g;, [09:(0) — €91 (0)| < A.

Note that if ¢ coincides with the performance
metric of a task, and § = 0, this is identical to
performance or classification parity (Yuan et al.,
2021).3 Such a notion of fairness can be derived
from John Rawls’ theory on distributive justice and
stability, treating model performance as a resource
to be allocated. Rawls’ difference principle, maxi-
mizing the welfare of the worst-off group, is argued
to lead to stability and mobility in society at large
(Rawls, 1971). A directly measures what is some-
times called Rawlsian min-max fairness (Bertsimas,
Farias, and Trichakis, 2011). In our experiments,
we measure A-fairness as the absolute difference
between performance of the worst-off and best-off
subgroups.

Recall the standard definition of (e, §)-privacy:

Definition 2.2. 0 is (e, d)-private iff Pr[d(X)] <
exp(e) x Pr[f(X’)] + o for any two distributions,
X and X', different at most in one row.

Differential privacy thereby ensures that an algo-
rithm will generate similar outputs on similar data
sets. Note the multiplicative bound exp(¢) and the
additive bound ¢ serve different roles: The § term
represents the possibility that a few data points are
not governed by the multiplicative bound, which

'Tn practice our protected attributes in §3 will be age and
gender. Both are protected under the Equality Act 2010.

*In the fairness literature, approximate fairness is referred
to as d-fairness, but below we will use lower case J to refer to
(e, 6)-differential privacy, and we refer to A-fairness to avoid
confusion.

3Performance or classification parity has been argued to
suffer from statistical limitations in (Corbett-Davies and Goel,
2018), which remind us that when risk distributions differ,
standard error metrics are poor proxies of individual equity.
This is known as the problem of infra-marginality. Note, how-
ever, that this argument does not apply to binary classification
problems.

controls the level of privacy (rather than its scope).
Note that it also follows directly that if ¢ = 0 and
0 = 0, absolute privacy is required, leading 6 to be
independent of the data.

Several authors have shown that differential pri-
vacy comes at different costs for minority sub-
groups (Ekstrand, Joshaghani, and Mehrpouyan,
2018; Cummings et al., 2019; Bagdasaryan, Pour-
saeed, and Shmatikov, 2019; Farrand et al., 2020).
The more private the model is required to be, the
larger group disparities it will exhibit.* This hap-
pens because differential privacy distributes noise
where it is needed to reduce the influence of indi-
vidual examples. Since outlier examples are likely
to have disproportional influence on output distri-
butions (Campbell, 1978; Chernick and Murthy,
1983), they are also disproportionally affected by
noise injection in differential privacy.

Agarwal (2021) show that, in fact, a (e,0)-
private and fully fair model — using equalized odds
as the definition of fairness — will be unable to learn
anything. To see this, remember that a fully pri-
vate model is independent of the data and unable to
learn from correlations between input and output.
If 4 is, in addition, required to be fair, it is thereby
required to be fair for all distributions, which pre-
vents # from encoding any prior beliefs about the
output distribution. Note this finding generalizes
straight-forwardly to equalized risk, and even to
approximate fairness (since even for finite distribu-
tions, we can define a A > 0, such that preserving
absolute privacy would lead to a constant 6).

Theorem 1. For sufficiently small values of A, a
fully (e,0)-private model 0 that is also A-fair, will
have trivial performance.

Proof. This follows directly from the above. [

While we do not strictly require an absolute pri-
vacy in our experiments (setting § = 107°), in-
tuitively, privacy compromises fairness by adding
more noise to data points of minority group mem-
bers than to those of majority groups. Fairness,
on the other hand, leads to over-sampling or over-
attending to data points of minority group members,
more likely compromising their privacy.

Pannekoek and Spigler (2021) show, however,
that it is possible to learn somewhat private and

*Note this is a different trade-off than the fairness-privacy
trade-off which results from the need for collecting sensitive
data to learn fair models; the latter is discussed at length in
Veale and Binns (2017).
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somewhat fair classifiers. They combine differen-
tial privacy with reject option classification. Their
results nevertheless confirm that privacy and fair-
ness objectives are fundamentally at odds, as fair-
ness decreases with the introduction of differential
privacy.

3 Experiments

This section describes the algorithms and datasets
involved in our experiments, and presents the re-
sults of these.

3.1 Algorithms

Empirical Risk Minimization For a model pa-
rameterized by 6, in our baseline Empirical Risk
Minimization (ERM) setting, we minimize the
expected loss E[¢(6(x),y)] with data (x,g,y) €
X x G x Y drawn from a dataset D:

Opry = arg;ninEﬁ[f(Q(:E),y)] (1)

Here D denotes the empirical training distribution.
Note that we disregard any group information in
our data. In an overparameterized setting, ERM
is prone to overfitting spurious correlations, which
are more likely to hurt performance on minority
groups (Sagawa et al., 2020b).

Distributionally Robust Optimization Several
authors have suggested to mitigate the effects of
such overfitting by explicitly optimizing for out-of-
distribution mixtures of sub-populations (Hu et al.,
2018; Oren et al., 2019; Sagawa et al., 2020a). In
this work we focus on Group-aware Distribution-
ally Robust Optimization (Group DRO) (Sagawa
et al., 2020a).

Under the assumption that the training distribu-
tion D is a mixture of a discrete number of groups,
D, for g € G, we define the worst-case loss as the
maximum of the group-specific expected losses:

{O)worst = maxEp [£(0(x),y)] @)

In Group DRO - in contrast with ERM — we exploit
our knowledge of the group membership of data

points (x, g,y). The overall objective is for mini-
mizing the empirical worst-case loss is therefore:

Opro = argmin E(b) =maxEx |
0

worst * 9eG

3)

Note, again, that the knowledge of group mem-
bership g is only available at training time, not at
test time. Unlike Sagawa et al. (2020a), we do not
employ heavy /5 regularization during our experi-
ments, but rather use it with the same parameters
as proposed in Koh et al. (2021).

Differentially Private Stochastic Gradient De-
scent (DP-SGD) We implement differential pri-
vacy (Dwork et al., 2006) using DP-SGD, as pre-
sented in Abadi et al. (2016). DP-SGD limits the
influence of training samples by (i) clipping the
per-batch gradient where its norm exceeds a pre-
determined clipping bound C, and by (ii) adding
Gaussian noise N characterized by a noise scale o
to the aggregated per-sample gradients. We control
this influence with a privacy budget €, where lower
values for € indicates a more strict level of privacy.
DP-SGD has remained popular, among other things
because it generalizes to iterative training proce-
dures (McMahan et al., 2018), and supports tighter
bounds using the Rényi method (Mironov, 2017).

Differential privacy generally comes at a perfor-
mance cost, leading to privacy-preserving models
performing worse compared to their non-private
counterparts (Alvim et al., 2011). However, we fol-
low Kerrigan, Slack, and Tuyls (2020) and finetune
the private models, which are first pretrained (with-
out differential privacy) on a large public dataset.
This protocol generally seems to provide a bet-
ter trade-off between accuracy and privacy (Ker-
rigan, Slack, and Tuyls, 2020), leading to better-
performing, yet private models. The only exception
to this setup is the volatility forecasting task, where
our models were trained from scratch, as those rely
on PRAAT audio features.

3.2 Tasks and architectures

To study the impact of differential privacy on fair-
ness, in ERM and Group DRO, we evaluate increas-
ing levels of differential privacy across five datasets
that span four tasks and three different modalities:
speech, text and vision.

Facial Attribute Detection We study facial at-
tribute recognition with the CelebFaces Attributes
Dataset (CelebA) (Liu et al., 2015). It contains
faces of celebrities annotated with attributes, such
as hair color, gender and other facial features. Fol-
lowing Sagawa et al. (2020a), we use the hair color
as our target variable, with gender being the demo-

Dy £(0(), y)) graphic attribute (see Figure 1 (left)). The dataset

contains ~ 163K datapoints, where the smallest
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CelebA

Woman

Topic: Arts

I've seen on so many others]...]
Topic: Technology

Text: Potter's class this morning went well.
Working on a bowl that is going to have a leaf

all those embedded pop culture photographs

Blog Authorship Corpus

Man

Text: As you can probably tell I'm a Linux nut.

! i i Youn
design on it. Clay really dries your hands out. It;aitsly IVS rljotlcecri rr:o‘;e (f:orn?_?:]erflal sl <
*Reaches for vitamin E cream™[....] G _g. et U Ux[...]

Topic: Technology
Text: I'm trying to work out how blog skins work | Text: So much cool stuff was on display that |
so my web log will look really cute and contain | started to get worried. Why? A few simple old

reasons. Too much stuff is exactly what crushed
Apple in the John Scully days...]
Topic: Technology

Figure 1: Examples of the different subgroups that appear in a subset of the datasets we train on. CelebA (left)
contains images of celebrities, using hair-color as our target variable and gender as our protected attribute. Blog
Authorship Corpus (right) contains text-based blogposts on two topics {Technology, Arts} our targets, using G :
{Man, Woman} x {Young, Old} as our protected subgroups.

group (blond males) only counts 1387. We fine-
tune a publicly pretrained ResNet50, a standard
model for image classification tasks, on the CelebA
dataset and evaluate model performances as accu-
racies over 3 individual seeds.

Topic Classification For topic classification, we
use the Blog Authorship Corpus (Schler et al.,
2006). The Blog Authorship Corpus contains we-
blogs written on 19 different topics, collected from
the Internet before August 2004. The dataset con-
tains self-reported demographic information about
the gender and age of the authors. Gender infor-
mation is binary, and we binarize age, distinguish-
ing between young (=< 35) and older (> 35) au-
thors,” resulting in four different group combina-
tions (see Figure 1 (right)). We chose two topics of
roughly equal size (Technology and Arts), reduc-
ing the topic classification task to a binary classi-
fication task. For our experiments, we finetune a
pretrained English DistilBERT model (Sanh et al.,
2019). To reduce the overall added computational
cost of DP-SGD, we freeze our model, except for
the outer-most Transformer encoder layer as well
as the classification layer. We report model perfor-
mances as F1 scores over 3 individual seeds.

Volatility Forecasting For the stock volatility
forecasting task, we use the Earnings Conference
Calls dataset by Qin and Yang (2019). This con-
sists of 559 public earnings calls audio recordings
for 277 companies in the S&P 500 index, span-
ning over a year of earnings calls. We obtain the
self-reported gender of the CEOs from Reuters,®

5Older authors tend to be underrepresented in web data
*https://www.thomsonreuters.com/en/
profiles.html

Crunchbase,” and the WikiData API.® Gender in-
formation is binary, with 12.3% of speakers being
female and 87.7% of speakers being male, a highly
skewed distribution. Since our primary focus with
this task is to explore the impact of differential pri-
vacy on speech, we use only audio features without
the call transcripts. For each audio recording A
of a given earning call E, the goal is to predict
the company’s stock volatility as a regression task.
Following Qin and Yang (2019), we calculate the
average log volatility 7 days (temporal window)
following the day of the earnings call. For each
audio clip belonging to a given call, we extract
26-dimensional features with PRAAT (Boersma
and Van Heuven, 2001). Each audio embedding of
the call is fed sequentially to a BiLSTM, followed
by an attention layer and two fully-connected lay-
ers. The model is trained by optimizing the Mean
Square Error (MSE) between the predicted and true
stock volatility. For all results, we report MSE on
the test set for a 70:10:20 temporal split of the
data.The results are averaged over 5 seeds.

Sentiment Analysis For our sentiment analysis
task, we use the Trustpilot Corpus (Hovy, Jo-
hannsen, and S¢gaard, 2015)9. It consists of text-
based user reviews from the Trustpilot website, rat-
ing companies and services on a 1 to 5 star scale.
The reviews spans 5 different countries; Germany,
Denmark, France, United Kingdom and USA, how-
ever, we only consider the English reviews, i.e. UK
and US. The Trustpilot contains demographic in-
formation about the gender, age and geographic

"https://www.crunchbase.com/discover/
people

Shttps://query.wikidata.org/

*https://bitbucket.org/lowlands/
release/src/master/WWW2015/data/
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Performance at e-Privacy

No DP €1 €2 €3
Score Score € Score € Score €
2 ERM  0.954 £ 0.000 0.943 £ 0.001 9.50 0.940 £ 0.002 5.17 0.932£0.001 0.99
S DRO 0.953 + 0.001 0.899 + 0.006 9.50 0.891 +£0.014 5.17 0.873 £0.007 0.99
o ERM  0.699 £ 0.002 0.661 £ 0.003 9.25 0.661 +£0.003 5.03 0.648 £0.005 1.02
E DRO 0.692 + 0.001 0.651 £ 0.001 9.25 0.650 £ 0.005 5.03 0.630 £0.003 1.02
51 ERM  0.756 + 0.036 0.778 £ 0.073 9.32 0.794 +£0.046 6.42 0.778 £0.039  0.96
> DRO 0.814 + 0.061 0.798 £ 0.042 9.32 0.815+0.056 6.42 0.833 £0.093 0.96
% ERM  0.933 &+ 0.008 0.919 + 0.002 9.39 0.916 £ 0.001 4.94 0.889 £0.009 1.02
& DRO 0.931 + 0.004 0.893 £ 0.006 9.39 0.873 £ 0.015 4.94 0.820 £0.015 1.02
S ERM  0.894 + 0.007 0.817 £0.014 10.71  0.812+0.009 5.10 0.666 £0.019 1.01
e DRO 0.899 + 0.009 0.569 £0.132 10.71  0.437+0.112 5.10 0.3424+0.012 1.01
Group-disparity at e-Privacy
No DP €1 €2 €3
GD GD € GD € GD €
2 ERM  0.556 £0.021 0.746 + 0.032 9.50 0.734 £0.025 5.17 0.770 £ 0.013 0.99
5 DRO  0.514 £ 0.042 0.039 +0.018 9.50 0.080 +0.031  5.17 0.056 £0.027 0.99
- ERM  0.108 £0.013 0.149 + 0.006 9.25 0.140 +£0.004  5.17 0.136 +0.011 0.99
E DRO  0.078 £ 0.009 0.056 + 0.020 9.25 0.070 £0.013  5.17 0.077 £0.027 0.99
55 ERM  0.302 &+ 0.042 0.328 + 0.067 9.32 0.557 £ 0.050 6.42 0.573 + 0.050 0.96
> DRO  0.221 +£ 0.062 0.320 + 0.085 9.32 0.371 £ 0.058  6.42 0.421 4+ 0.083 0.96
» ERM  0.018 4+ 0.005 0.022 + 0.006 9.39 0.020 +0.014  4.94 0.037 &+ 0.006 1.02
E DRO  0.030 + 0.008 0.030 + 0.004 9.39 0.039 +0.023 4.94 0.025+£0.010 1.02
% ERM  0.055 + 0.006 0.048 +£0.019 10.71  0.054 £0.015 5.10 0.109 £ 0.017 1.01
e DRO  0.036 £ 0.007 0.118 +£0.040 10.71  0.078 £0.030 5.10 0.021 £0.030 1.01

Table 1: Performance (top) and A-Fairness (bottom) of ERM and Group DRO across different degrees of differ-
ential privacy (€). €1, €2 and €3 corresponds to e-values of roughly 10, 5 and 1 respectively (see table for exact
values). We report F1 scores for sentiment and topic classification, accuracy for face recognition and MSE for
volatility forecasting. Group disparity (GD) is measured by the absolute difference between the best and worst per-
forming sub-group (A-Fairness; see Definition 2.1). The performance and corresponding uncertainties are based
on several individual runs of each configuration, see §6.2 in the Appendix for further details. Differential privacy
consistently hurts fairness for ERM. For Group DRO, we bold-face numbers where strict differential privacy (e3)
increases fairness; this happens in 4/5 datasets. We see large increases for face recognition and small increases for

topic classification and sentiment analysis.

location of the users, but as with the topic classi-
fication task, we only concern ourselves with the
gender and age of the users. As with the topic
classification task, we finetune DistilBERT on the
UK and US English parts of the Trustpilot Corpus,
freezing all parameters but the final encoder layer,
as well as the classification layer. Classification per-
formance is measured as F1 scores and the results
are averaged over 3 seeds.

Our implementation is a PyTorch extension of
the WILDS repository'? (Koh et al., 2021) using
the DP-SGD implementation provided by the Opa-
cus Differential Privacy framework''. For further
details about data and training, see §6.2 in the Ap-

Ohttps://github.com/p-lambda/wilds/
"https://opacus.ai/

pendix. We release the code for our experiments at:
https://github.com/anonymized.

3.3 Results

Our results are presented in Table 1. The top half of
the table presents standard (average) performance
numbers across multiple runs of ERM and Group
DRO at different privacy levels. Recall that per-
formance for sentiment analysis as well as topic
classification is measured in F1, volatility forecast-
ing is measured in MSE and face recognition is
measured in accuracy. The accuracy of our ERM
face attribute detection classifier is 0.954 in the
non-private setting, for example.

Our first observation is that, as hypothesized ear-
lier, differential privacy hurts model performance.
For our smallest text-based dataset (T-US), per-
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Figure 2: Face Attribute Detection: Performance of individual groups of increasing levels of . Comparing
baseline ERM to Group DRO, we find that Group DRO performance on the minority group (blond males) perform
much better under privacy constraints; we return to this in §3.4.
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Figure 3: Topic Classification: Performance of individual groups of increasing levels of €. Group DRO, compared
to baseline ERM, results in a more balanced performance across all groups, even on a low privacy budget.

formance becomes very poor at the strictest pri-
vacy level. This is however associated with a high
amount of variance between seeds, see Figure 5 in
the Appendix. The above face attribute detection
classifier, which had an accuracy of 0.954 in the
non-private setting, has a performance of 0.932 at
this level.

Differential privacy hurts fairness in ERM
The effect on differential privacy on fairness (bot-
tom half of Table 1) is also quite consistent. The
gap between the majority group and the minor-
ity group (or, more precisely, the best-performing
and the worst-performing demographic subgroup)
widens with increased privacy. In face recognition,
for example, the accuracy gap between the two
groups is 0.556 without differential privacy, but
0.770 at the strictest privacy level.

Differential privacy increases fairness in Group
DRO For Group DRO, we see the opposite effect.
For 4/5 datasets, we see that differential privacy
leads to an increase in fairness. For face recogni-
tion, for example, the gap goes from 0.514 in the
non-private setting to 0.056 in the strictest, basi-
cally disappearing. This is also illustrated in the
bar plots in Figure 2. See Figure 3 for similar bar
plots of the topic classification results; we include
similar plots for other tasks in the Appendix. We
do also observe that this increase in privacy can
be expensive in terms of overall performance (e.g.
Trustpilot-US). Note that the increase in fairness at
higher privacy levels is seemingly at odds with pre-
vious results suggesting that privacy and fairness
conflict, e.g., Agarwal (2021). We return to this
question in §3.4.

Note also that the only exception to the latter

3957

6



Vol. ERM Vol. Group DRO
. 0.6 —o—==0.96
< A =642
£ 04 €=9.32
S0
E is
g |
5 0.2 H 2 _
3 - <$ \ , "
e I +
S 0~ )% Tlf/étk
T T T T T T T T T T
3 4 5 6 7 3 4 5 6 7
7 (Days) 7 (Days)

Figure 4: Volatility Forecasting: A comparison of group-disparity between subgroups for increasing temporal
volatility windows (7) and privacy budgets (¢), over 5 independent runs.

trend is for volatility forecasting, where differen-
tial privacy hurts fairness both in ERM and Group
DRO (though Group DRO mitigates the disparity).
This speech-based prediction is the only regression
task, and the only task for which we do not rely on
pretrained models trained on public data.

For this task, we further analyze group dispar-
ity for varying temporal windows (7) used to cal-
culate target volatility values, along with increas-
ingly strict privacy budgets (¢) in Figure 4. The
disparity between subgroups widens with stricter
privacy guarantees (Bagdasaryan, Poursaeed, and
Shmatikov, 2019). This gap is significant for lower
values of 7, strengthening the hypothesis that short-
term volatility forecasting is much harder than long-
term (Qin and Yang, 2019), especially for minority
classes due to the disproportionate impact of noise.
Comparing ERM and Group DRO, we find Group
DRO mitigates this disparity gap. We observe dis-
parity reduces with increasing temporal window,
since stock prices over a larger time frame are com-
paratively more stable (Qin and Yang, 2019). As
a consequence, the influence of Group DRO for
higher 7 (6, 7) is reduced, despite facilitating faster
convergence. Most importantly, we observe the
power of Group DRO in mitigating the disparity
caused by strict privacy safeguards (¢ = 0.96) for
crucial short term prediction (7 = 3) tasks.

3.4 Discussion

It is well-known that differential privacy comes
with a performance cost (Shokri and Shmatikov,
2015).!2 However, recent work has additionally

12 A multitude of algorithmic improvements have been pro-
posed to mitigate the overall accuracy drop caused by the
increased privacy protection -— including private sampling

shown that differential privacy is at odds with most,
if not all, definitions of fairness, including equal-
ized risk (Ekstrand, Joshaghani, and Mehrpouyan,
2018; Cummings et al., 2019; Bagdasaryan, Pour-
saeed, and Shmatikov, 2019; Farrand et al., 2020).
Our work makes two important contributions: (a)
We evaluate and confirm this hypothesis at a larger
scale than previous studies for standard empirical
risk minimization; and (b) we point out that the
opposite holds true in the context of Group Dis-
tributionally Robust Optimization: Here, adding
differential privacy improves fairness (equalized
risk).

While (b) at first seems to contradict the very
hypothesis that (a) confirms — namely that privacy
is at odds with fairness — we believe the explanation
is quite simple, namely that we are observing two
opposite trends (at the same time): On one hand,
differential privacy adds disproportionate noise to
minority group examples; but on the other hand, it
adds Gaussian noise which acts as a regularizer to
improve robust optimization.

In their evaluation of Group Distributionally
Robust Optimization, Sagawa et al. (2020a) ob-
serve that robustness is only achieved in the con-
text of heavy regulation; specifically, they show
fairness improvements when they add /o regular-
ization or early stopping. The /5 regularization
and early stopping did not increase fairness under
ERM, but seemed to ’activate’ Group DRO. This
makes intuitive sense: Since regularized models
cannot perfectly fit the training data, heavily regu-

from hyperbolic word representation spaces (Feyisetan, Di-
ethe, and Drake, 2019), Gaussian f-differential privacy (Bu
et al. 2020), and gradient denoising (Nasr et al., 2020). It is
yet to be examined, if the empirical application of such utility
preservation techniques affects the disparate impact issue.
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larized Group DRO sacrifices average performance
for worst-case performance and obtain better gener-
alization. In the absence of regularization, however,
Group DRO is less effective.

In our experiments (§3), we add minimal regular-
ization to Group DRO, following the implementa-
tion in Koh et al. (2021), but differential privacy, we
argue, provides that additional regularization. To
see this, remember that DP-SGD works by Gaus-
sian noise injection. Gaussian noise injection is
known to be near-equivalent to ¢»-regularization
and early stopping (Bishop, 1995). DP-SGD sim-
ply makes the trade-off more urgent.

4 Related Work

Fair machine learning Early work on mitigat-
ing group-level disparities included oversampling
(Shen, Lin, and Huang, 2016; Guo and Vik-
tor, 2004) and undersampling (Drumnond, 2003;
Barandela et al., 2003), as well as instance weight-
ing (Shimodaira, 2000). Other proposals modify
existing training algorithms or cost functions to
obtain fairness (Khan et al., 2017; Chung, Lin,
and Yang, 2015). In the context of large-scale
deep neural networks, Group DRO is a particu-
larly interesting approach to mitigating group-level
disparities (Creager, Jacobsen, and Zemel, 2021).
See Williamson and Menon (2019) and Corbett-
Davies and Goel (2018) for interesting discussions
of how fairness has been measured. More recent
alternatives to Group DRO include Invariant Risk
Minimization (Arjovsky et al., 2020), Spectral De-
coupling (Pezeshki et al., 2020) and Adaptive Risk
Minimization (Zhang et al., 2021). We ran ex-
periments with both Invariant Risk Minimization
and Spectral Decoupling, but they performed much
worse than Group DRO.

Fairness and privacy Recent studies suggest
that privacy-preserving methods such as differen-
tial privacy tend to disproportionately affect mi-
nority class samples (Ekstrand, Joshaghani, and
Mehrpouyan, 2018; Cummings et al., 2019; Bag-
dasaryan, Poursaeed, and Shmatikov, 2019; Far-
rand et al., 2020). Pannekoek and Spigler (2021)
show that it is possible to learn somewhat private
and somewhat fair classifiers, in their case by com-
bining differential privacy and reject option classi-
fication. Jagielski et al. (2019) introduced the so-
called DP-oracle-learner, derived from an oracle-
efficient algorithm (Agarwal et al., 2018), which
satisfies equalized odds, an alternative notion of

fairness (Williamson and Menon, 2019). Lyu et al.
(2020) introduced Differentially Private GANs (DP-
GANs), while Tran, Fioretto, and Van Hentenryck
(2020) utilize Lagrangian duality to integrate fair-
ness constraints to protected attributes. Group DRO
has, to the best of our knowledge, not been studied
under differential privacy before.

5 Conclusions

In §2, we summarized previous work suggesting
that differential privacy and fairness are at odds.
In §3, we then confirmed this hypothesis at scale,
across five datasets, spanning four tasks and three
modalities, showing that for Empirical Risk Mini-
mization, stricter levels of privacy consistently hurt
fairness. This holds true even after pretraining on
large-scale public datasets (Kerrigan, Slack, and
Tuyls, 2020). In the context of Group-aware Dis-
tributionally Robust Optimization (Group DRO)
(Sagawa et al., 2020a), however, which is designed
to mitigate group-level performance disparities (op-
timizing for equalized risk), we saw the opposite
effect: Strict levels of differential privacy were as-
sociated with an increase in fairness. In §3.4, we
discuss how this aligns well with the observation
that Group DRO works best in the context of heavy
{5 regularization, keeping in mind that Gaussian
noise injection is near-equivalent to ¢5 regulariza-
tion (Bishop, 1995).
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6 Appendix
6.1 Additional Figures

This section contains group-specific bar-plots for
the performance on individual groups in the Trust-
pilot Corpus. For barplots on CelebA and Blog
Authorship, see Figure 2 and 3.

6.2 Experimental Details

This section contains additional details surrounding
the experiments described in §3.

CelebA We use the same processed version
of the CelebA dataset as Sagawa et al. (2020a)
and Koh et al. (2021), that is, we use the same
train/val/test splits as Liu et al. (2015) with the
Blond Hair attribute as the target with the Male
attribute being the spuriously correlated variable.
See group distribution in the training data in Table
2.

| Non-Blond, Man [ Blond, Man [ Non-Blond, Woman [ Blond, Woman

[ 66s7d | 1387 | 71629 [ 22880

Table 2: Group distribution in the training set of
CelebA

Blog Authorship Corpus In addition to the pre-
processing described in §3, we split the data into
a 60/20/20 train/val/test split (you can find the ex-
act seed that generates the splits in our code). See
group distribution in the training data in Table 3.
The Blog Authorship Corpus can be downloaded

| Group | Young,Man | Old,Man | Young, Woman | Old, Woman |
[Count | 27222 | 2295 | 12750 | 2435 |

Table 3: Group distribution in the training set of Blog
Authorship corpus

at: https://www.kaggle.com/rtatman/
blog—authorship-corpus

Earnings Conference Calls Out of the 559 calls,
we only include 535 datapoints that contain self-
reported demographic attributes about gender. See
Table 4 for group distributions for the training data.
The target stock volatility variable is calculated
following (Kogan et al., 2009; Qin and Yang, 2019),
defined by:

Ult—r,t] = ln<\/zi0 (TtT—i — r)2) @

Here r; is the return price at day ¢ and 7 the mean
of return prices over the period of t — 7 to t. We

refer to 7 as the temporal volatility window in our
experiments. The return price 7 is defined as r; =

% — 1 where F; is the closing price on day .

Group [ Man [ Woman ‘
Count | 333 | 42 |

Table 4: Group distribution in the training set of Earn-
ings Conference Calls

Trustpilot We only include the datapoints that
contains complete demographic attributes, i.e. the
gender, age and location, but as with our topic clas-
sification experiments, we only study the group
that we can define based on age and gender. All
attributes are self-reported. For training we divide
the reviews into the four resulting groups (Old-
Man, Young-Woman, etc.) and downsample the
largest groups to match the size of the smallest
group. For validation as well as testing, we with-
hold 200 samples from each demographic with an
even distribution among the ratings (1 to 5). The re-
view scores are then binarized by grouping positive
(4 and 5 stars) and negative (1 and 2 stars) and dis-
carding neutral ones (3 stars). For a similar use of
this binarization scheme, see Gupta, Thadani, and
O’Hare (2020) and Desai, Zhan, and Aly (2019).
See the group distributions for the training data in
Table 5 and 6 for the US and UK tasks respectively.

Group | Young,Man | Old, Man | Young, Woman | Old, Woman |
Count | 7242 | 7210 | 7222 [ 7255 |

Table 5: Group distribution in the training set of
Trustpilot-US

Group | Young,Man | Old, Man | Young, Woman | Old, Woman |
Count | 18464 | 18693 | 18554 | 18693 |

Table 6: Group distribution in the training set of
Trustpilot-UK

BiLSTM The BiLSTM model was trained using
a Nvidia Tesla K80 GPU. We use a learning rate of
le~2 and train using DP-SGD for 30 epochs using
a virtual batch size of 32. The average sequence
length of the audio embeddings is 159. We set the
maximum sequence length to 150 as we did not
observe a performance increase for higher values.
We run 5 individual seeds for each configuration.
In our differentially private experiments with
the BiLSTM (i.e Earnings Conference Calls), we
fix the gradient clipping C to 0.8. By specifying
various approximate target levels of ¢ € {1,5,10}
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Figure 5: Performance of individual groups of increasing levels of ¢ for the Trustpilot-US corpus. Error bars show

standard deviation over 3 individual seeds.
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Figure 6: Performance of individual groups of increasing levels of ¢ for the Trustpilot-UK corpus. Error bars show

standard deviation over 3 individual seeds.

a corresponding noise multiplier ¢ is computed
with the Opacus framework, based on the batch
size and number of training epochs.

DistilBERT DistilBERT is a small Transformer
model trained by distilling BERT (Devlin et al.,
2019) (bert-base-uncased). It has 3/5th of the pa-
rameters of bert-base-uncased, runs 60% faster,
while preserving over 95% of the performance of
bert-base-uncased, as measured on the GLUE
language understanding benchmark (Wang et al.,
2018).

We finetune DistilBERT on the Trustpilot corpus
and Blog Authorship corpus for 20 epochs each,
using a batch size of 8, accumulating gradient for
a total virtual batch size of 16 using the built in
Opcaus functionality. We limit the number of to-
kens in a sequence to 256 and use a learning rate of
5e~* with the AdamW optimizer in addition to a

weight decay of 0.01. Otherwise we use the default
parameters defined in the Huggingface Transform-
ers python package (version 4.4.2). The models are
trained using a single Nvidia TitanRTX GPU and
each configuration takes between 5 and 14 hours to
run, depending on the size of that dataset and if DP
is used or not. We run 3 individual seeds for each
configuration.

In our differentially private experiments with
DistilBERT (i.e. Blog Authorship and Trustpilot),
we fix the gradient clipping C to 1.2 and by speci-
fying various target levels of ¢ € {1,5,10} a cor-
responding noise multiplier o is computed with the
Opacus framework, based on the batch size and
number of training epochs.

Resnet50 ResNet50 is a variant of the ResNet
model (He et al., 2015), which has 48 convolution
layers along with 1 max pooling and 1 average
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pooling layer. It has 3.8 x 10° floating points oper-
ations.

We finetune our Resnet50 model on the CelebA
dataset for 20 epochs using a batch size of 64. We
optimize the model using standard stochastic gra-
dient descent (SGD) with a learning rate of le~3,
momentum of 0.9 and no weight decay. We train
our models using a single Nvidia TitanRTX GPU
and each configuration takes between 6 and 8 hours
to run, depending on if DP is used or not. We run
3 individual seeds for each configuration.

As with the differentially private DistilBERT
experiments, we also here fix the gradient clipping
C to 1.2 and by specifying various target levels of
e € {1,5,10} a corresponding noise multiplier &
is computed with the Opacus framework, based on
the batch size and number of training epochs.
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